Hyers – Ulam stability of linear difference equations of first order

M Vijaya

Abstract
We prove the Hyers – Ulam stability of linear difference equations of first order of the form
\[\phi(t) \Delta y(t) = y(t) \]

Keywords: Hyers – Ulam stability, difference equation, first order.

1. Introduction
The theory of difference equations and their applications have been receiving intensive attention. See, for example [1-3] and the references cited therein.

In this paper we consider the first order difference equation of the form
\[\phi(t) \Delta y(t) = y(t), \quad t \in I \]
where, \(I = \mathbb{N}(a) = \{a, a+1, a+2, \ldots\} \), (a is a fixed nonnegative integer), \(\Delta \) is the forward difference operator defined by \(\Delta y(t) = y(t+1) - y(t) \). Assume further that \(\phi: I \rightarrow \mathbb{R} \) is a given function. By a solution of equation (1) we mean a sequence \(\{z(t)\} \) which is defined for \(t \in I \), and satisfies equation (1). S.M Jung the author [4] who investigated the Hyers –Ulam stability of linear differential equation of first order
\[\phi(t) \sigma(t) = y(t), \]
which was the improvement of the papers [5, 6]. Indeed they dealt with the Hyers Ulam stability of differential equation \(\sigma(t) = \theta(t) \), while Alsina and Ger investigated the differential equation \(\sigma(t) = y(t) \).

The aim of this paper is to investigate the Hyers –ulam stability of the linear difference equation of first order (1). More precisely, we prove that if \(\phi(t) > 0 \) or \(\phi(t) \leq -1 \) hold for all \(t \in I \) and further if the function \(y(t) \) satisfies
\[|\phi(t) \Delta y(t) - y(t)| < \epsilon \quad \forall \ t \in I \]
then there exists a real number \(c \) such that
\[|y(t) - c \sum_{s=a}^{t-1} \theta(s)| \leq \epsilon \quad \forall \ t \in I. \]

2. Preliminaries
Following an idea of Scou – Mo Jung [4] we prove the following lemma.

Lemma 2.1 Assume that a function \(z: I \rightarrow \mathbb{R} \) is given, The inequality \(z(t) \leq \theta(t) \Delta z(t) \) is true for \(t \in I \), if and only if there exists a function \(\alpha: I \rightarrow \mathbb{R} \) such that
\[\Delta z(t) = \alpha(t) \sum_{s=a}^{t-1} \theta(s) \quad \forall \ t \in I. \]

Proof: Assume the inequality \(z(t) \leq \theta(t) \Delta z(t) \) holds true for all \(t \in I \). Let us define function \(\alpha: I \rightarrow \mathbb{R} \) such that
\[\alpha(t) = z(t) \sum_{s=a}^{t-1} \theta(s) \]
then,
\[\Delta \alpha(t) = \Delta \left(\sum_{s=a}^{t-1} \frac{\theta(s)}{1+\theta(s)} \right) z(t) + \sum_{s=a}^{t-1} \frac{\theta(s)}{1+\theta(s)} \Delta z(t) \]
\[= \prod_{s=a}^{t-1} \frac{\theta(t)}{1+\theta(s)} [\Delta z(t)] + z(t+1) \frac{\theta(t)}{1+\theta(t)} \]
Since by hypothesis \(\alpha(t) \Delta z(t) \geq z(t) \)
\[\alpha(t) \Delta z(t) \geq z(t) \prod_{s=a}^{t-1} \frac{\phi(s)}{\phi(s)} + z(t+1) \prod_{s=a}^{t} \frac{\phi(s)}{\phi(s)} > 0 \]
and
\[\alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} = z(t) \prod_{s=a}^{t-1} \frac{\phi(s)}{\phi(s)} \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} = z(t). \]

Conversely, assume that there exists a function \(\alpha: I \to R \) such that \(\alpha(t) \Delta z(t) \geq z(t) \) for each \(t \in I \). Let us define a function \(z: I \to R \) by,
\[z(t) = \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)}, \]
then,
\[\Delta z(t) = \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} + \alpha(t+1) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \]
Therefore, \(\alpha(t) \Delta z(t) = \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} + \alpha(t+1) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \).

Since by hypothesis \(\alpha(t) \Delta z(t) \geq 0 \), we have
\[\alpha(t) \Delta z(t) \geq \alpha(t+1) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \geq z(t), \forall t \in I \]
which proves lemma.

Lemma 2.2 Assume that a function \(z: I \to R \) is given, The inequality \(z(t) \geq \alpha(t) \Delta z(t) \) holds true for any \(t \in I \), if and only if there exists a function \(\beta: I \to R \) such that \(\beta(t) \Delta z(t) < 0 \) and \(z(t) = \beta(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)}, \forall t \in I \).

Proof: Assume the inequality \(z(t) \geq \alpha(t) \Delta z(t) \) holds for all \(t \in I \). Let us define \(\beta: I \to R \) to be \(\beta(t) = \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \), then,
\[\Delta \beta(t) = \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \Delta z(t) + \alpha(t+1) \prod_{s=a}^{t} \frac{1+\phi(s)}{\phi(s)} \]
\[\phi(t) \Delta \beta(t) = \phi(t) \Delta z(t) + \alpha(t+1) \prod_{s=a}^{t} \frac{1+\phi(s)}{\phi(s)} \]
Since \(\phi(t) \Delta \beta(t) \leq z(t) \)
\[\phi(t) \Delta \beta(t) \leq z(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} - z(t+1) \prod_{s=a}^{t} \frac{1+\phi(s)}{\phi(s)} \]
and
\[\beta(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} = z(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} = z(t). \]

Conversely, assume that \(\Delta \beta(t) \Delta z(t) \leq 0 \) for each \(t \in I \) and let us define a function \(z: I \to R \) by \(z(t) = \beta(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \), then,
\[\phi(t) \Delta z(t) = \phi(t) \Delta \beta(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} + \beta(t+1) \prod_{s=a}^{t} \frac{1+\phi(s)}{\phi(s)} \]

Since \(\phi(t) \Delta \beta(t) \leq 0 \),
\[\phi(t) \Delta z(t) \leq \beta(t+1) \prod_{s=a}^{t} \frac{1+\phi(s)}{\phi(s)} \]
Therefore \(\phi(t) \Delta z(t) \leq z(t) \). Hence the proof.

Theorem 2.3 Given an \(\epsilon > 0 \), a function \(y: I \to R \) is a solution of the following inequality
\[\left| \phi(t) \Delta y(t) \right| \leq \epsilon \]
if and only if there exists a function \(\alpha: I \to R \) such that
\[y(t) = c + \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \]
and
\[0 \leq \Delta \alpha(t) \leq 2 \prod_{s=a}^{t} \frac{1+\phi(s)}{\phi(s)}, \forall t \in I. \]

Proof: First we assume that \(y: I \to R \) is a solution of the inequality (2) then \(y(t) - c \leq \phi(t) \Delta y(t) \leq y(t) + c \)
for each \(t \in I \). Define \(z(t) = y(t) - c \) then \(\Delta z(t) = \Delta y(t) \), the inequality on the L.H.S of (5), becomes \(z(t) \leq \phi(t) \Delta z(t) \) holds for every \(t \in I \). According to lemma 1.1 there exists a function \(\alpha: I \to R \) such that
\[y(t) = c + \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \]
for all \(t \in I. \)

where \(\alpha \) additionally satisfies the condition,
\[\Delta \alpha(t) \geq 0, \forall t \in I \]

Analogously define \(z(t) = y(t) + c \), the inequality on the R.H.S of (5) implies that \(z(t) \geq \phi(t) \Delta y(t) \geq \phi(t) \Delta z(t) \) holds for any \(t \in I \).

According to lemma 1.2 there exists a function \(\beta: I \to R \) such that \(y(t) + c = z(t) \)
and \(\Delta \beta(t) \leq 0, \forall t \in I \).

From (6),
\[\Delta y(t) = \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \]

From (8), \(\Delta y(t) = \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \)

Also, from (8) and (6)
\[\beta(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} = 2 c + \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \]

substituting in (11)
\[\Delta y(t) = \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \]

from (7) and (9) we get,
\[0 \leq \Delta \alpha(t) \phi(t) \leq 2 c \prod_{s=a}^{t} \frac{1+\phi(s)}{\phi(s)} \]

Conversely, assume that \(y: I \to R \) is given by (3),
\[y(t) = c + \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \]
and a function \(\alpha: I \to R \) satisfies
\[0 \leq \Delta \alpha(t) \phi(t) \leq 2 c \prod_{s=a}^{t} \frac{1+\phi(s)}{\phi(s)} \]
then from (10),
\[\phi(t) \Delta y(t) = \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \]
Using (3) and (4)
\[\phi(t) \Delta y(t) = \alpha(t) \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \]

By (4) and the last equation, we conclude that
\[\left| \phi(t) \Delta y(t) \right| \leq \epsilon \]
Which proves the theorem.

3. **Hyers – Ulam Stability of difference equation (1)**
In the following theorem, we prove the Hyers-Ulam stability of the difference equation (1).

Theorem 3.1 If either \(\phi(t) > 0 \) holds for all \(t \in I \), or \(\phi(t) < 0 \) holds for all \(t \in I \), and if a function \(y: I \to R \) satisfies the inequality (2) then there exists a real number \(\epsilon \) such that
\[\left| y(t) - c \right| \prod_{s=a}^{t-1} \frac{1+\phi(s)}{\phi(s)} \leq \epsilon \]
Proof: First we assume that $\emptyset(t) > 0$ holds for all $t \in I$ and a function $y: I \to R$ satisfies the inequality (2) for all $t \in I$. Let $\alpha: I \to R$ is a function such that (3) and (4) hold, using Theorem 2.3

$$y(t) = \epsilon + \alpha(t) \prod_{s=a}^{t-1} \frac{1 + \emptyset(s)}{\emptyset(s)}$$

and

$$0 \leq \Delta \alpha(t)\emptyset(t) \leq 2\epsilon \prod_{s=a}^{t-1} \frac{\emptyset(s)}{1 + \emptyset(s)}$$

Define $c = \lim_{t \to a} \alpha(t)$. Also we use $\prod_{s=a}^{t-1} \frac{1 + \emptyset(s)}{\emptyset(s)} = 1$.

Now we can divide the above inequality by $-(\emptyset(t))$ we get,

$$0 \geq -\Delta \alpha(t) \geq \frac{-2\epsilon}{(\emptyset(t))} \prod_{s=a}^{t-1} \frac{\emptyset(s)}{1 + \emptyset(s)}$$

Since $1 + \emptyset(t) > \emptyset(t)$

Taking the summation on both sides, we get

$$0 \geq -\sum \Delta \alpha(t) \geq 2\epsilon \sum \prod_{s=a}^{t-1} \frac{\emptyset(s)}{1 + \emptyset(s)}$$

$$0 \geq -\alpha(t) + c \geq 2\epsilon \left(\prod_{s=a}^{t-1} \frac{\emptyset(s)}{1 + \emptyset(s)}\right)$$

$$-\epsilon \geq -\alpha(t) \prod_{s=a}^{t-1} \frac{1 + \emptyset(s)}{\emptyset(s)} + c \prod_{s=a}^{t-1} \frac{1 - \emptyset(s)}{\emptyset(s)} \geq \epsilon \geq c$$

$$-\epsilon \leq \alpha(t) \prod_{s=a}^{t-1} \frac{1 + \emptyset(s)}{\emptyset(s)} + c \prod_{s=a}^{t-1} \frac{1 - \emptyset(s)}{\emptyset(s)} \leq \epsilon$$

$$-\epsilon \leq y(t) - c \prod_{s=a}^{t-1} \frac{1 + \emptyset(s)}{\emptyset(s)} \leq \epsilon$$

$$\left|y(t) - c \prod_{s=a}^{t-1} \frac{1 + \emptyset(s)}{\emptyset(s)}\right| \leq \epsilon$$

for any $t \in I$, which proves (12).

If we assume that $1 + \emptyset(t) < 0$ holds true for all $t \in I$, then the proof is similar to the above procedure, hence we omit it.

4. Remark: Here, we notice that $y(a) \prod_{s=a}^{t-1} \emptyset(s)$ is the general solution of the difference equation $\emptyset(t)\Delta y(t) = y(t)$, where $\emptyset(s) = \frac{1 + \emptyset(s)}{\emptyset(s)}$.

5. References