Regular mildly generalized closed and regular mildly generalized open sets in bitopological spaces

RS Wali and Nirani Laxmi

Abstract
The aim of this paper is to introduced the concept of \((\tau_i, \tau_j)\)-Regular Mildly Generalized (briefly \((\tau_i, \tau_j)\)-RMG) closed and \((\tau_i, \tau_j)\)-Regular Mildly Generalized (briefly \((\tau_i, \tau_j)\)-RMG) open sets and study their basic properties in bitopological spaces. Further we define and study new neighborhood namely \((\tau_i, \tau_j)\)-Regular Mildly Generalized (briefly \((\tau_i, \tau_j)\)-RMG-interior) interior and discuss some of their properties in bitopological spaces. Also give some characterizations and applications of it.

Mathematics Subject Classification 2010: 54C08, 54C010, 54C20

Keywords: RMG-closed set, RMG-open, \((\tau_i, \tau_j)\)-RMG-closed, \((\tau_i, \tau_j)\)-RMG-open, \((\tau_i, \tau_j)\)-gr-open, \((\tau_i, \tau_j)\)-RMG-nhd, \((\tau_i, \tau_j)\)-RMG-closure, \((\tau_i, \tau_j)\)-RMG-interior

1. Introduction
A triple\((X, \tau_1, \tau_2)\) where \(X\) is a non-empty set and \(\tau_1, \tau_2\) are topologies on \(X\) is called bitopological space. J. C. Kelly [3] initiated the systematic study of such spaces in 1963. In 1986, T. Fukutake [3] introduced the concept of generalized closed sets in bitopological spaces and after that several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. M. A. Jalic [4], N. Nagaveni [6], I. Arockiarani [1] and M. Sheik John [11] introduced \((i, j)\)-pre-open, \((i, j)\)-wg-closed, \((i, j)\)-rg-closed and \((i, j)\)-g' -closed sets in bitopological spaces. Also R. S. Wali and Nirani Laxmi[12, 13] introduce and studied the properties of RMG-closed and RMG-open sets in topological space. The purpose of this paper to introduced and investigate the concept of \((\tau_i, \tau_j)\)-RMG-closed and \((\tau_i, \tau_j)\)-RMG-open sets which are introduced in a bitopological space by analogy with RMG-closed and RMG-open sets in bitopological space.

2. Preliminaries
Throughout this paper the space \(X\) always means \((X, \tau_1, \tau_2)\) bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let \(A\) be a subset of a space \(X\). \(\tau_i\)-\text{int}(A), \(\tau_i\)-\text{cl}(A) we shall denote the interior and closure of \(A\subset X\) with respect to the topology \(\tau_i\) for \(i=1, 2\). By \((i, j)\) means pair of topologies \((\tau_i, \tau_j)\) and \(X-A\) or \(A'\) denotes the complement of \(A\) in \(X\).

Now we recall the following known definitions and results that are used in our work;

Definition 2.1: A subset \(A\) of a topological space \(X\) is called
(i) Pre-open [7], if \(A\subseteq \text{int}(\text{cl}(A))\) and pre-closed if \(\text{cl}(\text{int}(A))\subseteq A\).

Definition 2.2: A subset \(A\) of a topological space \(X\) is called
(i) Generalized closed (briefly g-closed) [6] if \(\text{cl}(A)\subseteq U\) whenever \(A\subseteq U\) and \(U\) is open in \(X\).
(ii) Weakly generalized closed (briefly wg-closed) [8] if \(\text{cl}(\text{int}(A))\subseteq U\) whenever \(A\subseteq U\) and \(U\) is open in \(X\).
(iii) Strongly generalized closed (briefly g*–closed) \(^{[11]}\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is g-open in \(X\).
(iv) Mildly generalized closed (briefly mildly g-closed) \(^{[10]}\) if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is g-open in \(X\).
(v) Regular weakly closed (briefly rw-closed) \(^{[2]}\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular semi open in \(X\).
(vi) Regular generalized closed (briefly rg-closed) \(^{[9]}\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular open set in \(X\).
(vii) Regular Mildly Generalized closed(briefly RMG-closed) \(^{[12]}\) if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is rg-open in \(X\).

The complements of above all closed sets are their respective open sets in the same topological space \(X\).

Definition 2.3: Let \(i, j \in \{1, 2\}\) be fixed integers. A subset \(A\) of a bitopological space \((X, \tau_i, \tau_j)\) is said to
(i) \((\tau_i, \tau_j)\)-pre-open \([4]\) if \(A \subseteq \tau_i - \text{int}(\tau_j \cap \text{cl}(A))\)
The complement of \((\tau_i, \tau_j)\)-pre-open set is called \((\tau_i, \tau_j)\)-pre-closed set.

Definition 2.4: Let \(i, j \in \{1, 2\}\) be fixed integers. A subset \(A\) of a bitopological space \((X, \tau_i, \tau_j)\) is called
(i) \((i, j)\)-g–closed \(^{[3]}\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(\tau_i\).
(ii) \((i, j)\)-wg–closed \(^{[8]}\) if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(\tau_i\).
(iii) \((i, j)\)-g*–closed \(^{[11]}\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(\tau_i\).
(iv) \((i, j)\)-rw–closed \(^{[3]}\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular semi open in \(\tau_i\).
(v) \((i, j)\)-rg–closed \(^{[1]}\) if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular open set in \(\tau_i\).

The complements of above all closed sets are their respective open sets in the same bitopological space \(X\).

3.\((\tau_i, \tau_j)\)-Rmg-Closed Sets and Some of Their Properties.

Definition 3.1: Let \((i, j) \in \{1, 2\}\) be fixed integers. In a bitopological space \((X, \tau_i, \tau_2)\), a subset \(A \subseteq X\) is said to be \((i, j)\)-Regular Mildly Generalized closed (briefly, \((i, j)\)-Rmg-closed) set if \(\text{cl}(\text{int}(A)) \subseteq G\), whenever \(A \subseteq G\) and \(G \subseteq \text{RGO}(X, \tau_i)\).
We denote the family of all \((i, j)\)-Rmg-closed sets in a bitopological space \((X, \tau_i, \tau_2)\) by \(\text{D}_{\text{Rmg}}(\tau_i, \tau_2)\) or \(\text{D}_{\text{Rmg}}(i, j)\).

Remark 3.2: By setting \(\tau_1 = \tau_2\) in Definition 3.1, \((i, j)\)-Rmg closed set reduces to an Rmg-closed set in \(X\).
First we prove that the class of \((i, j)\)-Rmg-closed sets properly lies between the class of \((i, j)\)-pre-closed sets and the class of \((i, j)\)
mildly-g-closed sets.

Theorem 3.3: If \(A\) is a \((i, j)\)-pre-closed subset of \((X, \tau_i, \tau_2)\), then \(A\) is \((i, j)\)-Rmg-closed, but converse is not true.

Proof: Let \(A\) be a \((i, j)\)-pre-closed subset of \((X, \tau_i, \tau_2)\). Let \(U\) be rg-open in \((X, \tau_i)\) such that \(A \subseteq G\). Since \(A\) is \((i, j)\)-pre-closed subset of \((X, \tau_i, \tau_2)\) that is \(\text{cl}(\text{int}(A)) \subseteq \text{cl}(\text{int}(A)) \subseteq G\), we have \(\text{cl}(\text{int}(A)) \subseteq \text{cl}(\text{int}(A)) \subseteq G\). Therefore \(A\) is \((i, j)\)-Rmg-closed.

Example 3.4: Let \(X = \{a, b, c\}\), \(\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\). Then the subset \{a, c\} is \((1, 2)\)-Rmg closed set, but not \((1, 2)\)-pre-closed set in the bitopological space \((X, \tau_1, \tau_2)\).

Theorem 3.5: If \(A\) be a \((i, j)\)-Rmg-closed subset of \((X, \tau_i, \tau_2)\), then \(A\) is \((i, j)\)-mildly-g-closed, but converse is not true.

Proof: Let \(A\) be a \((i, j)\)-Rmg-closed subset of \((X, \tau_i, \tau_2)\). Let \(G \subseteq \text{RGO}(X, \tau_i)\) be such that \(A \subseteq G\). Since \(G \subseteq \text{RGO}(X, \tau_i)\), we have \(G \subseteq \text{RGO}(X, \tau_i)\). Then by hypothesis, \(\text{cl}(\text{int}(A)) \subseteq G\). Therefore \(A\) is \((i, j)\)-mildly-g-closed.

Example 3.6: Let \(X = \{a, b, c, d\}\), \(\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\). Then the subsets \{a, b\} and \{a, b, d\} are \((1, 2)\)-mildly-g-closed sets, but not \((1, 2)\)-Rmg-closed sets in the bitopological space \((X, \tau_1, \tau_2)\).

Theorem 3.7: If \(A\) is \(\tau_j\)-closed subset of bitopological space \((X, \tau_1, \tau_2)\), then the set \(A\) is \((i, j)\)-Rmg-closed, but converse is not true.

Proof: Let \(\text{RGO}(X, \tau_i)\) be such that \(A \subseteq G\). Then by hypothesis, \(\text{cl}(\text{int}(A)) \subseteq \text{cl}(A) = A\), which implies \(\text{cl}(\text{int}(A)) \subseteq G\). Therefore \(A\) is Rmg-closed.

Example 3.8: Let \(X = \{a, b, c\}\), \(\tau_1 = \{X, \emptyset, \{a\}\}\) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}\}\). Then the subset \{b\} is \((1, 2)\)-Rmg-closed set, but not \(\tau_2\)-closed set in the bitopological space \((X, \tau_1, \tau_2)\).

Remark 3.9: \(\tau_j\)-pre-closed sets and \((i, j)\)-Rmg-closed sets are independent as seen from the following example.
Example 3.10: Let \(X = \{a, b, c\}, \tau_1 = \{X, \emptyset, \{a\}, \{b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}\} \). Then the subset \(\{a, c\} \) is (1, 2)-RMG-closed set, but not \(\tau_2 \)-pre-closed sets in the bitopological space \((X, \tau_1, \tau_2) \).

Example 3.11: Let \(X = \{a, b, c\}, \tau_1 = \{X, \emptyset, \{a\}, \{b, a\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b, a\}\} \). Then the subset \(\{b\} \) is \(\tau_2 \)-pre-closed set, but not (1, 2)-RMG-closed sets in the bitopological space \((X, \tau_1, \tau_2) \).

Remark 3.12: \(\tau_1 \)-mildly-g-closed sets and \((i, j) \)-RMG-closed sets are independent as seen from the following example.

Example 3.13: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Then the subsets \(\{b, d\} \) and \(\{a, b, d\} \) are \(\tau_2 \)-mildly-g-closed set, but not (1, 2)-RMG-closed sets in the bitopological space \((X, \tau_1, \tau_2) \).

Example 3.14: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Then the subset \(\{b\} \) is (1, 2)-RMG-closed set, but not \(\tau_2 \)-mildly-g-closed set in the bitopological space \((X, \tau_1, \tau_2) \).

Remark 3.15: \((i, j) \)-g-closed sets and \((i, j) \)-RMG-closed sets are independent as seen from the following example.

Example 3.16: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Then the subset \(\{c\} \) is (1, 2)-RMG-closed set, but not \(\tau_1 \)-g-closed set. Also the subsets \(\{b, d\} \) and \(\{a, b, d\} \) are (1, 2)-g-closed sets, but not (1, 2)-RMG-closed set in the bitopological space \((X, \tau_1, \tau_2) \).

Remark 3.17: \((i, j) \)-g*-closed sets and \((i, j) \)-RMG-closed sets are independent as seen from the following example.

Example 3.18: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Then the subset \(\{c\} \) is (1, 2)-RMG-closed set, but not (1, 2)-g*-closed set. Also the subsets \(\{b, d\} \) and \(\{a, b, d\} \) are (1, 2)-g*-closed sets, but not (1, 2)-RMG-closed set in the bitopological space \((X, \tau_1, \tau_2) \).

Theorem 3.19: If \(A \) be a \((i, j) \)-RMG-closed subset of \((X, \tau_1, \tau_2) \), then \(A \) is \((i, j) \)-wg-closed, but converse is not true.

Proof: Let \(A \) be a \((i, j) \)-RMG-closed subset of \((X, \tau_1, \tau_2) \). Let \(G \subseteq O(X, \tau_i) \) be such that \(A \subseteq G \). Since \(O(X, \tau_i) \subseteq RGO(X, \tau_i) \), we have \(G \subseteq RGO(X, \tau_i) \). Then by hypothesis, \(\tau_1 \)-cl(\(\tau_1 \)-int(\(A \)) \) \(\subseteq G \). Therefore \(A \) is \((i, j) \)-mildly-closed.

Example 3.20: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Then the subsets \(\{b, d\} \) and \(\{a, b, d\} \) are (1, 2)-wg-closed set, but not (1, 2) RMG-closed set in the bitopological space \((X, \tau_1, \tau_2) \).

Remark 3.21: (i, j)-RMG-closed sets and (i, j)-rw-closed sets are independent as seen from the following example.

Example 3.22: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Then the subsets \(\{a, b\}, \{a, c\}, \{b, d\}, \{a, b, c\} \) and \(\{a, b, d\} \) are (1, 2)-rw-closed sets, but not (1, 2)-RMG-closed sets. Also the subset \(\{c\} \) is (1, 2)-RMG-closed set, but not (1, 2)-rw-closed set in the bitopological space \((X, \tau_1, \tau_2) \).

Remark 3.23: (i, j)-RMG-closed sets and (i, j)-rg-closed sets are independent as seen from the following example.

Example 3.24: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Then the subsets \(\{a, b\}, \{a, c\}, \{b, d\}, \{a, b, c\} \) and \(\{a, b, d\} \) are (1, 2)-rg-closed sets, but not (1, 2)-RMG-closed sets. Also the subset \(\{c\} \) is (1, 2)-RMG-closed set, but not (1, 2)-rg-closed set in the bitopological space \((X, \tau_1, \tau_2) \).

Remark 3.25: From the above discussion and know results we have the following implications.
Remark 3.26: The intersection of two (i, j)-RMG-closed sets is generally not a (i, j)-RMG-closed set as seen from the following example.

Example 3.27: Let \(X = \{a, b, c\}, \tau_1 = \{X, \emptyset, \{a\}, \{b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}\} \). Then the subsets \{a, c\} and \{b, c\} are (1, 2)-RMG-closed sets, but \{a, c\} \cap \{b, c\} = \{c\} is not a (1, 2) RMG-closed set in bitopological space \((X, \tau_1, \tau_2)\).

Remark 3.28: The union of two (i, j)-RMG-closed sets is generally not a (i, j)-RMG-closed set as seen from the following example.

Example 3.29: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} \). Then the subsets \{b\} and \{c\} are (1, 2)-RMG-closed sets, but \{b\} \cup \{c\} = \{b, c\} is not a (1, 2)-RMG-closed set in bitopological space \((X, \tau_1, \tau_2)\).

Remarks 3.30: The family \(D_{RMG}(X, \tau_1, \tau_2) \) is generally not equal to the family \(D_{RMG}(X, \tau_2, \tau_1) \) as seen from the following example.

Example 3.31: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} \). Then \(D_{RMG}(X, \tau_1, \tau_2) = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} \) and \(D_{RMG}(X, \tau_2, \tau_1) = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} \). Therefore \(D_{RMG}(X, \tau_1, \tau_2) \neq D_{RMG}(X, \tau_2, \tau_1) \).

Theorem 3.32: If \(\tau_1 \subseteq \tau_2 \) and \(RGO(X, \tau_1) \subseteq RGO(X, \tau_2) \) in \((X, \tau_1, \tau_2)\), then \(D_{RMG}(X, \tau_1, \tau_2) \subseteq D_{RMG}(X, \tau_2, \tau_1) \).

Proof: Let \(A \) be a \((\tau_2, \tau_1)\)-RMG-closed set and \(G \) be an \(\tau_1 \)-rg-open set containing \(A \). By the assumption \(\tau_1 \subseteq \tau_2 \) it follows that \(G \) is \(\tau_2 \)-rg-open set containing \(A \) and \(\tau_2 \)-cl(\(\tau_1 \)-int(\(A \))) \subseteq \tau_2 \)-cl(\(\tau_1 \)-int(\(A \))). Then \(\tau_2 \)-cl(\(\tau_1 \)-int(\(A \))) \subseteq G \) and \(A \) is \((\tau_1, \tau_2)\)-RMG-closed.

Theorem 3.33: Let \(i, j \in \{1, 2\} \). For each point \(x \) of \((X, \tau_i, \tau_j)\), a singleton \(\{x\} \) is \(\tau_i \)-rg-closed or \(\{x\} \) is \((\tau_j, \tau_i)\)-RMG-closed.

Proof: Suppose \(\{x\} \) is not \(\tau_i \)-rg-closed. Then \(\{x\} \) is not \(\tau_i \)-rg-open. Therefore a \(\tau_i \)-rg-open set containing \(\{x\} \) is \(X \) only. Also \(\tau_j \)-cl(\(\tau_i \)-int(\(\{x\} \))) \subseteq X \). Hence \(\{x\} \) is \((\tau_i, \tau_j)\)-RMG-closed.

Theorem 3.34: If a subset \(A \) of \(X \) is \((i, j)\)-RMG-closed in \((X, \tau_i, \tau_j)\) if and only if \(\tau_j \)-cl(\(\tau_i \)-int(\(A \))) \subseteq U^c \). That is \(U \cap \tau_j \)-cl(\(\tau_i \)-int(\(A \))) \subseteq U^c \). Hence \(U \cap \tau_j \)-cl(\(\tau_i \)-int(\(A \))) \subseteq U^c \).

Proof: Suppose that \(A \) is a \((i, j)\)-RMG-closed set in \((X, \tau_i, \tau_j)\). We prove the the result by contradiction. Let \(U \) be \(\tau_i \)-rg-closed set such that \(U \subseteq \tau_j \)-cl(\(\tau_i \)-int(\(A \))) \) and \(U \neq \emptyset \). Then \(U \subseteq \tau_j \)-cl(\(\tau_i \)-int(\(A \))) \) and \(U \subseteq \tau_j \)-cl(\(\tau_i \)-int(\(A \))) \). Therefore \(U \cap \tau_j \)-cl(\(\tau_i \)-int(\(A \))) \) is \(\tau_i \)-rg-closed set and \(A \) is \((i, j)\)-RMG-closed, \(\tau_j \)-cl(\(\tau_i \)-int(\(A \))) \subseteq U^c \). That is \(U \subseteq \tau_j \)-cl(\(\tau_i \)-int(\(A \))) \) and \(U \subseteq \tau_j \)-cl(\(\tau_i \)-int(\(A \))) \). Hence \(U \subseteq \tau_j \)-cl(\(\tau_i \)-int(\(A \))) \).
Theorem 3.35: In a bitopological space (X, τ_1, τ_2), $\text{RGO}(X, \tau_j) \subset \{ F \subset X : F^c \in \tau_j \}$ if and only if every subset of (X, τ_1, τ_j) is a (i, j)-RMG-closed set.

Proof: Suppose that $\text{RGO}(X, \tau_j) \subset \{ F \subset X : F^c \in \tau_j \}$. Let A be any subset of X. If $G \in \text{RGO}(X, \tau_j)$ then $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) - A$ does not contain any non-empty τ_1-rg-closed set in (X, τ_1, τ_j).

Conversely, assume that $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) - A$ contains no empty τ_1-rg-closed set. Let $A \subseteq U$, U is a τ_1-rg-closed set. Suppose that $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) - U^c$ is not contained in U. Then $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) \cap U^c$ is a non empty τ_1-rg-closed set and contained in $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) - A$, which is contradiction. Therefore $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) \subseteq U$. Hence A is (i, j)-RMG-closed in (X, τ_1, τ_j).

Theorem 3.36: If A is a (i, j)-RMG-closed set and $A \subset B \subset \tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A))$, then B is (i, j)-RMG-closed.

Proof: Let U be a τ_1-rg-open set such that $B \subseteq U$. As A is (i, j)-RMG-closed set and $A \subseteq C$, we have $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) \subseteq U$. Now $B \subseteq \tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A))$ which implies $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(B)) \subseteq \tau_1 - \text{cl}(\tau_1 \setminus \text{int}(\{ \tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) \})) = \tau_1 - \text{cl}(\tau_1 \setminus \text{int}(B)) \subseteq U$. Thus $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(B)) \subseteq U$. Therefore B is (i, j)-RMG-closed set.

Theorem 3.37: Let $A \subset Y \subset X$ and suppose that A is (i, j)-RMG-closed in (X, τ_1, τ_2). Then A is (i, j)-RMG-closed relative to Y provided Y is τ_1-open set.

Proof: τ_{1-Y} be the restriction of τ_1 to Y. Let $G \subseteq Y$ be a τ_{1-Y}-open set such that $A \subseteq G$. Since $A \subseteq Y \subset X$ and Y is τ_1-open. By the Lemma 3.26 [12], G is τ_{1-Y}-open. Since A is (i, j)-RMG-closed, $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) \subseteq G$. That is $Y \cap \tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) \subseteq Y \cap G = G$. Also $Y \cap \tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) = \tau_{1-Y} - \text{cl}(\tau_{1-Y} \setminus \text{int}(A))$. Thus $\tau_{1-Y} - \text{cl}(\tau_{1-Y} \setminus \text{int}(A)) \subseteq G$. Hence A is (i, j)-RMG-closed in Y.

Theorem 3.38: In a bitopological space (X, τ_1, τ_2), if $\text{RGO}(X, \tau_j) = \{ X, \emptyset \}$, then every subset of (X, τ_1, τ_2) is (i, j)-RMG-closed.

Proof: Let $\text{RGO}(X, \tau_j) = \{ X, \emptyset \}$ in a bitopological space (X, τ_1, τ_2). Let A be any subset of X. To prove that A is an (i, j)-RMG-closed. Suppose $A \neq \emptyset$. Then A is (i, j)-RMG-closed. Suppose $A \neq \emptyset$, then X is only τ_1-rg-open set and $\tau_1 - \text{cl}(\tau_1 \setminus \text{int}(A)) \subseteq X$. Hence A is (i, j)-RMG-closed set.

4. (i, j)-Rmg-Open Sets And Some Of Their Properties.

In this section, we introduce (i, j)-RMG-open sets in bitopological spaces and study some of their properties.

Definition 4.1: Let $i, j \in \{ 1, 2 \}$ be fixed integers. In a bitopological space (X, τ_1, τ_2), a subset $A \subset X$ is said to be (τ_1, τ_j)-Regular Mildly Generalized open (briefly, (i, j)-RG-open) if A^c is (i, j)-Rmg-closed. We denote the family of all (i, j)-Rmg-open sets in a bitopological space (X, τ_1, τ_2) by $D^{\tau_1, \tau_2}(i, j, \tau_1, \tau_j)$ or $D^{\tau_1, \tau_2}(i, j)$.

Theorem 4.2: In bitopological space (X, τ_1, τ_2), we have the following.

(i) Every (i, j)-pre-open set is (i, j)-Rmg-open set but not conversely.

(ii) Every (i, j)-Rmg-open set is (i, j)-mildly g-open set but not conversely.

(iii) Every τ_1-open set is (i, j)-Rmg-open set but not conversely.

(iv) Every (i, j)-Rmg-open set is (i, j)-wg-open set but not conversely.

Proof: The proof follows from the Theorems 3.3, 3.5, 3.7 and 3.19.

Example 4.3: Let $X = \{ a, b, c, d \}$, $\tau_1 = \{ X, \emptyset, \{ a \}, \{ b, c \}, \{ a, b, c \} \}$ and $\tau_2 = \{ X, \emptyset, \{ a \}, \{ b \}, \{ a, b \}, \{ a, b, c \} \}$. Then the subsets $\{ c \}$ and $\{ b, c \}$ are $(1, 2)$-Rmg-open sets, but not $(1, 2)$-pre-open sets in the bitopological space (X, τ_1, τ_2).

[32]
Example 4.4: Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$. Then the subsets $\{c\}$ and $\{a, c\}$ are $(1, 2)$-mildly g-open sets, but not $(1, 2)$-RMG-open sets in the bitopological space (X, τ_1, τ_2).

Example 4.5: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b\}\}$. Then the subsets $\{b\}, \{a, b\}$ and $\{a, c\}$ are $(1, 2)$-RMG-open sets, but not τ_2-open sets in the bitopological space (X, τ_1, τ_2).

Example 4.6: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b, a, c\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}\}$. Then the subsets $\{a, b\}$, $\{a, b, c\}$ and $\{b, d\}$ are $(1, 2)$-wg-open sets, but not $(1, 2)$-RMG-open sets in the bitopological space (X, τ_1, τ_2).

Remark 4.7: The intersection of two (i, j)-RMG-open sets is generally not an (i, j)-RMG-open sets as seen from the following example.

Example 4.8: Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b, a, c\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b, a, c\}\}$. Then the subsets $\{a, b, d\}$ and $\{a, c, d\}$ are $(1, 2)$-RMG-open sets, but $\{a, b, d\} \cap \{a, c, d\} = \{a, d\}$ is not $(1, 2)$-RMG-open set in the bitopological space (X, τ_1, τ_2).

Remark 4.9: The union of two (i, j)-RMG-open sets is generally not an (i, j)-RMG-open sets as seen from the following example.

Example 4.10: Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b, a, c\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}\}$. Then the subsets $\{a\}$ and $\{c\}$ are $(1, 2)$-RMG-open sets, but $\{a\} \cup \{c\} = \{a, c\}$ is not $(1, 2)$-RMG-open set in the bitopological space (X, τ_1, τ_2).

Remarks 4.11: The family $D_{RMG}^*(X, \tau_1, \tau_2)$ is generally not equal to the family $D_{RMG}^*(X, \tau_2, \tau_1)$ as seen from the following example.

Example 4.12: Let $X = \{a, b, c\}, \tau_1 = \{X, \emptyset, \{b, a, c\}\}, \tau_2 = \{X, \emptyset, \{a, c\}\}$. Then $D_{RMG}^*(X, \tau_1, \tau_2) = \{X, \emptyset, \{b\}, \{a, c\}, \{b, c\}\}$ and $D_{RMG}^*(X, \tau_2, \tau_1) = \{X, \emptyset, \{a\}, \{b, a\}\}$. Therefore $D_{RMG}^*(X, \tau_1, \tau_2) \neq D_{RMG}^*(X, \tau_2, \tau_1)$.

Theorem 4.13: A subset A of (X, τ_1, τ_2) is (i, j)-RMG-open if and only if $F \subseteq \tau_1 \text{int}(\tau_1 \text{cl}(A))$, where F is τ_1-rg-closed set and $F \subseteq A$.

Proof: Suppose that F is τ_1-rg-closed set, $F \subseteq A$ and $A^c \subseteq G$. Then $G \subseteq A$ and G^c is τ_1-rg-closed. Thus $G^c \subseteq \tau_1 \text{int}(\tau_1 \text{cl}(A))$ and $[\tau_1 \text{int}(\tau_1 \text{cl}(A))]^c \subseteq G$. It follows that $\tau_1 - \text{int}(\tau_1 \text{cl}(A))^c \subseteq G$ and hence A^c is (i, j)-RG-closed. Hence A is (i, j)-RMG-open.

Conversely, Suppose that A is (i, j)-RMG-open, $F \subseteq A$ and F is τ_1-rg-closed set. Then F^c is τ_1-rg-open and $A^c \subseteq F^c$. Therefore $\tau_1 - \text{cl}(\tau_1 - \text{int}(A^c)) \subseteq F^c$ and hence $[\tau_1 - \text{int}(\tau_1 - \text{cl}(A))]^c \subseteq F^c$. Thus $F \subseteq \tau_1 \text{int}(\tau_1 \text{cl}(A))$, since $\tau_1 - \text{cl}(\tau_1 - \text{int}(A^c)) = [\tau_1 - \text{int}(\tau_1 - \text{cl}(A))]^c$.

Theorem 4.14: Let A and G be two subsets of a bitopological space (X, τ_1, τ_2). If the set A is (i, j)-RMG-open, then $G = X$ whenever G is τ_1-rg-open and $\tau_1 \text{int}(\tau_1 \text{cl}(A)) \cup A^c \subseteq G$.

Proof: Let A be (i, j)-RMG-open. G be the τ_1-rg-open and $\tau_1 \text{int}(\tau_1 \text{cl}(A)) \cup A^c \subseteq G$. Then $G^c \subseteq \tau_1 - \text{int}(\tau_1 - \text{cl}(A)) \cup A^c \subseteq G^c$. Since A^c is (i, j)-RMG-closed and G^c is τ_1-rg-open, by the Theorem 3.34, it follows that $G^c = \emptyset$. Therefore $G = X$.

The converse of the above theorem need not be true as seen from the following example.

Example 4.15: Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b, c\}\}$. If $A = \{a, c\}$ then only τ_1-rg-open set containing $\tau_2 \text{int}(\tau_1 \text{cl}(A)) \cup A^c$ is X. But A is not $(1, 2)$-RMG-open set in (X, τ_1, τ_2).

Theorem 4.16: If a subset A of (X, τ_1, τ_2) is (i, j)-RMG-closed, then $\tau_1 \text{cl}(\tau_1 \text{int}(A)) - A$ is (i, j)-RMG-open.

Proof: Let A be (i, j)-RMG-closed subset in (X, τ_1, τ_2). Let F be a τ_1-rg-open set such that $F \subseteq \tau_1 \text{cl}(\tau_1 \text{int}(A)) - A$. By Theorem 3.34, $F = \emptyset$. Therefore $F \subseteq \tau_1 \text{int}(\tau_1 \text{cl}(\tau_1 \text{cl}(\tau_1 \text{int}(A)) - A))$ and by Theorem 4.13, $\tau_1 \text{int}(\tau_1 \text{cl}(A))$ is (i, j)-RMG-open.

The converse of the above theorem need not be true as seen from the following example.

Example 4.17: For a subset $A = \{b\}$ in X. $X = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{c, d\}\}$. Then $\tau_1 \text{cl}(\tau_1 \text{int}(A)) - A = \{a, b\} - \{b\}$ is $(1, 2)$-RMG-open but $A = \{b\}$ is not $(1, 2)$-RMG-closed.
Theorem 4.18: If τ_i-int$(\tau_j$-$cl(A)) \subseteq B \subseteq A$ and A is (i, j)-RMG-open in (X, τ_j, τ_2), Then B is (i, j)-RMG-open.

Proof: Let F be τ_i-rg-open such that $F \subseteq B$. Now $F \subseteq B \subseteq A$. That is $F \subseteq A$. Since F is (i, j)-RMG-open, by Theorem 4.13, $F \subseteq \tau_i$-$int(\tau_j$-$cl(A))$. By hypothesis τ_i-$int(\tau_j$-$cl(A)) \subseteq B$. Therefore τ_i-$int(\tau_j$-$cl(A)) \subseteq \tau_i$-$int(\tau_j$-$cl(B))$. That is τ_i-$int(\tau_j$-$cl(A)) \subseteq \tau_i$-$int(\tau_j$-$cl(B))$ and hence $F \subseteq \tau_i$-$int(\tau_j$-$cl(B))$. Again by Theorem 4.13, B is (i, j)-RMG-open set in (X, τ_j, τ_2).

Corollary 4.19: Let A and B be subsets of a space (X, τ_j, τ_2). If B is (i, j)-RMG-open and $A \supseteq \tau_i$-$int(\tau_j$-$cl(B))$, Then $A \cap B$ is (i, j)-RMG-open.

Proof: Let B be (i, j)-RMG-open and $A \supseteq \tau_i$-$int(\tau_j$-$cl(B))$. That is τ_i-$int(\tau_j$-$cl(B)) \subseteq A$. Then τ_i-$int(\tau_j$-$cl(B)) \subseteq A \cap B$. Also τ_i-$int(\tau_j$-$cl(B)) \subseteq A \cap B$ is (i, j)-RMG-open. By Theorem 4.18, $A \cap B$ is (i, j)-RMG-open.

Theorem 4.20: Every singleton point set in a space (X, τ_j, τ_2) is either (i, j)-RMG-open or τ_i-rg-closed.

Proof: Let (X, τ_j, τ_2) be a bitopological space. Let $x \in X$. To prove that $\{x\}$ is either (i, j)-RMG-open or τ_i-rg-closed. That is to prove $X-\{x\}$ is either (i, j)-RMG-closed or τ_i-rg-closed. Which follows from the Theorem 3.33.

5.(\tau_i, \tau_j$)-RMG-Neighbourhoods and some of their properties.

Definition 5.1: In a bitopological space (X, τ_j, τ_2). A subset N of X is said to be $(\tau_i, \tau_j$)-RMG-neighbourhood (briefly, $(\tau_i, \tau_j$)-RMG-nhd) of a point $x \in X$ if there exists $(\tau_i, \tau_j$)-RG-open set G such that $x \in G \subseteq N$.

Example 5.2: $X=\{a, b, c, d\}$, $\tau_1=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\} \}$ and $\tau_2=\{X, \emptyset, \{a\}, \{b, c\}, \{a, c\} \}$; then $(\tau_i, \tau_j$)-RMG-closed sets are $X, \emptyset, \{c\}, \{a, c\}, \{a, b, c\}$ and $(\tau_i, \tau_j$)-RMG-open sets are $X, \emptyset, \{a\}, \{a, b\}, \{b, c\}, \{a, b, d\}, \{a, b, c\}$. Let $c \in \{b, c\}$ is $(\tau_i, \tau_j$)-RG-open.

\[\vdash \{a, b, c\} \text{ is a } (\tau_i, \tau_j$)-RMG-neighbourhood of c.\]

The collection of all $(\tau_i, \tau_j$)-RMG-neighbourhoods of $x \in X$ is denoted by $(\tau_i, \tau_j$)-RMG-$N(x)$.

Theorem 5.3: If N be a subset of a bitopological space (X, τ_j, τ_2) is $(\tau_i, \tau_j$)-RMG-open set, then N is $(\tau_i, \tau_j$)-RG-nhd of each of its points.

Proof: In a bitopological space (X, τ_j, τ_2). Let N be $(\tau_i, \tau_j$)-RMG-open set.

\[\forall x \in N \text{ there exists } (\tau_i, \tau_j$)-RG-open set N such that $x \in N \subseteq N. \]

\[\Rightarrow N \text{ is } (\tau_i, \tau_j$)-RMG-neighbourhood of x.

Remark 5.4: (i, j)-RMG-nhd of point $x \in X$ need not be a (i, j)-nhd of x in X as seen from the following example.

Example 5.5: Let $X=\{a, b, c, d\}$, $\tau_1=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\} \}$ and $\tau_2=\{X, \emptyset, \{a\}, \{b, c\}, \{a, c\} \}$. $\text{D}^\text{RMG}(\tau_i, \tau_j)=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c\} \}$. Let $c \in \{b, c\}$ is (i, j)-RG-nhd of c since there exists a (i, j)-RG-open set $\emptyset \subseteq \{b, c\}$. Also the set the set $\{b, c\}$ is (i, j)-RG-nhd of c, since there exists a (i, j)-RG-open set $\{c\}$ such that $c \in \{c\}$. However $\{b, c\}$ is not (i, j)-RG-open set in X.

Theorem 5.6: Let (X, τ_i, τ_j) be a bitopological space.

(i) $\forall x \in X, (\tau_i, \tau_j)-\text{RG} - N(x) \neq \emptyset$.

(ii) If $N \in (\tau_i, \tau_j) - \text{RG} - N(x)$ and $N \subseteq M \Rightarrow M \in (\tau_i, \tau_j) - \text{RG} - N(x)$.

(iii) If $N \in (\tau_i, \tau_j) - \text{RG} - N(x) \Rightarrow \exists M \in (\tau_i, \tau_j) - \text{RG} - N(x)$ such that $M \subseteq N$ and $M \in (\tau_i, \tau_j) - \text{RG} - N(y) \forall y \in M$.

Proof:

(i) Since X is an $(\tau_i, \tau_j$)-RMG-open set, it is a $(\tau_i, \tau_j$)-RG-nhd of $\forall x \in X$. Hence there exists at least one $(\tau_i, \tau_j$)-RG-neighbourhood G for every $x \in X$. Therefore (τ_i, τ_j)-RG-$N(x)$ \(\neq \emptyset\).

(ii) If $\text{RG}(\tau_i, \tau_j)$-RG-$N(x)$ and $x \subseteq M$ then there exists an (τ_i, τ_j)-RG-open set G such that $x \in G \subseteq N$, since $N \subseteq M$, $x \in G \subseteq M$ and M is (τ_i, τ_j)-RMG-nhd of x. Hence M is an (τ_i, τ_j)-RG-neighbourhood of x. Therefore $M \in (\tau_i, \tau_j)$-RG-$N(x)$.

(iii) If $\text{RG}(\tau_i, \tau_j)$-RG-$N(x)$, then there exists an (τ_i, τ_j)-RG-open set M such that $x \in M \subseteq N$. Since M is an (τ_i, τ_j)-RMG-open set, then it is (τ_i, τ_j)-RG-neighbourhood of each of its points. Therefore $M \in (\tau_i, \tau_j)$-RG-$N(y)$ $\forall y \in M$.

Theorem 5.7: Every τ_j-neighbourhood of a point x of a bitopological space (X, τ_1, τ_2) is a (τ_i, τ_j)-RMG-neighbourhood of the point x.
Proof: \((X, \tau_1, \tau_2)\) is a bitopological space and \(x \in X\). \(N\) is a \(\tau_j\)-neighbourhood of \(x\).
\(\Rightarrow\) \exists a \(\tau_j\)-open set \(G\) such that \(x \in G \subseteq N\).
\(\Rightarrow\) \exists \((\tau_i, \tau_j)\)-RMG-open set \(G\) such that \(x \in G \subseteq N\).
\(\Rightarrow\) \(N\) is a \((\tau_i, \tau_j)\)-RMG-neighbourhood of the point \(x\).

The converse of the above theorem need not be true as seen from the following example.

Example 5.8: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}\). \((\tau_i, \tau_j)\)-RMG-closed sets are \(X, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\). \((\tau_i, \tau_j)\)-RMG-open sets are \(X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\) and \((\tau_i, \tau_j)\)-RMG-open sets are \(X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\) where \(\{a, b\}\) is \((\tau_i, \tau_j)\)-RMG-open. Therefore \(\{a, b, c\}\) is \((\tau_i, \tau_j)\)-RMG-neighbourhood of \(c\). \(N = \{b, c\}\) is a \((\tau_i, \tau_j)\)-RMG-neighbourhood of \(c\). But there does not exist an open set \(G\) in \(\tau_2 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}\) such that \(x \in G \subseteq N\). Therefore \(N\) is not \(\tau_2\)-neighbourhood of \(c\).

Theorem 5.9: If \(F\) is a \((\tau_i, \tau_j)\)-RMG-closed subset of a bitopological space \((X, \tau_1, \tau_2)\), then \(\forall x \in F^c\) there exists an \((\tau_i, \tau_j)\)-RMG-open set \(N\) containing \(x\) such that \(N \cap F = \emptyset\).

Proof: \(F\) is a \((\tau_i, \tau_j)\)-RMG-closed subset of a bitopological space \((X, \tau_1, \tau_2)\)
\(\Rightarrow\) \(F^c\) is a \((\tau_i, \tau_j)\)-RMG-open subset of \(X\).
\(\Rightarrow\) \(F^c\) is a \((\tau_i, \tau_j)\)-neighbourhood of each of its points.
\(\Rightarrow\) There exists a \((\tau_i, \tau_j)\)-RMG-open set \(N\) such that \(x \in N \subseteq F^c\) \(\forall x \in F\).
\(\Rightarrow\) There exists a \((\tau_i, \tau_j)\)-RMG-open set \(N\) containing \(x\) such that \(N \cap F = \emptyset\).

6. \((\tau_i, \tau_j)\)-Rmg-Closure and Some of Their Properties.

Definition 6.1: Let \((X, \tau_1, \tau_2)\) be a bitopological space and \(i, j \in \{1, 2\}\) be fixed integers. For each subset \(E\) of \(X\), define \((\tau_i, \tau_j)\)-RMG-\(cl(E) = \bigcap \{A : \emptyset \subseteq A \subseteq \text{D}_{\text{RMG}}(i, j)\}\) and is denoted by \((i, j)\)-RMG-\(cl(E)\).

Theorem 6.2: Let \(A\) and \(B\) be subset of \((X, \tau_1, \tau_2)\). Then
(i) \((i, j)\)-RMG-\(cl(X) = X\) and \((i, j)\)-RMG-\(cl(\emptyset) = \emptyset\).
(ii) \(A \subseteq (i, j)\)-RMG-\(cl(A)\).
(iii) If \(B\) is any \((i, j)\)-RMG-closed set containing \(A\), \(then (i, j)\)-RMG-\(cl(A) \subseteq B\).

Proof: Follows from the Definition 6.1.

Theorem 6.3: Let \(A\) and \(B\) be subset of \((X, \tau_1, \tau_2)\) and \(i, j \in \{1, 2\}\) be the fixed integers. If \(A \subseteq B\), then \((i, j)\)-RMG-\(cl(A) \subseteq (i, j)\)-RMG-\(cl(B)\).

Proof: Let \(A \subseteq B\). By Definition 6.1, \((i, j)\)-RMG-\(cl(B) = \bigcap \{F : B \subseteq F \subseteq \text{D}_{\text{RMG}}(i, j)\}\). If \(B \subseteq F \subseteq \text{D}_{\text{RMG}}(i, j)\), since \(A \subseteq B\), \(A \subseteq B \subseteq \text{D}_{\text{RMG}}(i, j)\), we have \((i, j)\)-RMG-\(cl(A) \subseteq F\). Therefore \((i, j)\)-RMG-\(cl(A) \subseteq \bigcap \{F : B \subseteq F \subseteq \text{D}_{\text{RMG}}(i, j)\} = (i, j)\)-RMG-\(cl(B)\). That is \((i, j)\)-RMG-\(cl(A) \subseteq (i, j)\)-RMG-\(cl(B)\).

Theorem 6.4: Let \(A\) be a subset of \((X, \tau_1, \tau_2)\). If \(\tau_1 \subseteq \tau_2\) and \(\text{RGO}(X, \tau_1) \subseteq \text{RGO}(X, \tau_2)\), then \((1, 2)\)-RMG-\(cl(A) \subseteq (2, 1)\)-RMG-\(cl(A)\).

Proof: By definition 6.1, \((1, 2)\)-RMG-\(cl(A) = \bigcap \{F : A \subseteq F \subseteq \text{D}_{\text{RMG}}(1, 2)\}\). Since \(\tau_1 \subseteq \tau_2\), by Theorem 3.32, \(\text{D}_{\text{RMG}}(2, 1) \subseteq \text{D}_{\text{RMG}}(1, 2)\). Therefore \(\bigcap \{F : A \subseteq F \subseteq \text{D}_{\text{RMG}}(2, 1)\} \subseteq \bigcap \{F : A \subseteq F \subseteq \text{D}_{\text{RMG}}(1, 2)\}\). That is \((1, 2)\)-RMG-\(cl(A) \subseteq \bigcap \{F : A \subseteq F \subseteq \text{D}_{\text{RMG}}(2, 1)\} = (2, 1)\)-RMG-\(cl(A)\) Hence \((1, 2)\)-RMG-\(cl(A) \subseteq (2, 1)\)-RMG-\(cl(A)\).

Theorem 6.5: Let \(A\) be a subset of \((X, \tau_1, \tau_2)\) and \(i, j \in \{1, 2\}\) be fixed integers, then \(A \subseteq (i, j)\)-RMG-\(cl(A) \subseteq \tau_j\)-\(cl(A)\).

Proof: By definition 6.1, it follows that \(A \subseteq (i, j)\)-RMG-\(cl(A)\). Now to prove that \((i, j)\)-RMG-\(cl(A) \subseteq \tau_j\)-\(cl(A)\). By definition of closure, \(\tau_j\)-\(cl(A) = \bigcap \{F : A \subseteq F \subseteq \text{D}_{\text{RMG}}(\tau_j)\}\). Since \(\tau_1 \subseteq \tau_2\), by Theorem 3.32, \(\text{D}_{\text{RMG}}(\tau_1) \subseteq \text{D}_{\text{RMG}}(\tau_2)\). Therefore \(\bigcap \{F : A \subseteq F \subseteq \text{D}_{\text{RMG}}(\tau_2)\} = (\tau_j\)-\(cl(A)\). Hence \((i, j)\)-RMG-\(cl(A) \subseteq \tau_j\)-\(cl(A)\).

Remark 6.6: Containment relation in above theorem may be proper as seen from the following example.

Example 6.7: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}\) and \(\tau_2 = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}\). Then \(\tau_2\)-closed sets are \(X, \emptyset, \{a\}, \{a, d\}, \{a, c\}, \{a, b, c\}\) and \((1, 2)\)-RMG-closed sets are \(X, \emptyset, \{c\}, \{d\}, \{a, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\). Take \(A = \{a, c\}\). Then
Theorem 6.8: Let A be a subset of \((X, \tau_i, \tau_j)\) and \(i, j \in \{1, 2\}\) be fixed integers. If \(A\) is \((i, j)\)-RMG-closed, then \((i, j)\)-RMG-cl-closed \(= A\).

Proof: Let \(A\) be a \((i, j)\)-RMG-closed subset of \((X, \tau_i, \tau_j)\). We know that \(A \subseteq (i, j)\)-RMG-cl \(A\). Also \(A \subseteq A\) and \(A\) is \((i, j)\)-RMG-closed. By the Theorem 6.2(iii), \((i, j)\)-RMG-cl \(A\) \(\subseteq A\). Hence \((i, j)\)-RMG-cl \(A\) \(= A\).

Remark 6.9: The converse of the above Theorem 6.7 need not be true as seen from the following example.

Example 6.10: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}\) and \(\tau_2 = \{X, \emptyset, \{a, b\}, \{c, d\}\}\). Then \((1, 2)\)-RMG-closed sets are \(X, \emptyset, \{a\}, \{b\}, \{c, d\}\). Take \(A = \{a\}\). Now \((1, 2)\)-RMG-cl \(A\) \(= X\cap \{a\}\) \(\cap \{b\}\) \(\cap \{a, c, d\} = \{a\}\), but \(A\) is not a \((1, 2)\)-RMG-closed.

Theorem 6.11: And B are subsets of a bitopological space \((X, \tau_i, \tau_j)\), then \((\tau_i, \tau_j)\)-RMG-cl \((A \cup B) \subseteq (\tau_i, \tau_j)\)-RMG-cl \((A\cup B)\).

Proof: Let \(A\) and \(B\) are subset of \((X, \tau_i, \tau_j)\). Clearly \(A \cup B \subseteq A\) and \(B \subseteq A\).

\[\Rightarrow (\tau_i, \tau_j)\)-RMG-cl \(A \cup B \subseteq (\tau_i, \tau_j)\)-RMG-cl \(A\), \(B\) \(\subseteq (\tau_i, \tau_j)\)-RMG-cl \(A\) \(\cup B\) \(\subseteq (\tau_i, \tau_j)\)-RMG-cl \(A\cup B\).

Remark 6.12: \((\tau_i, \tau_j)\)-RMG-cl \(A\) \(\subseteq (\tau_i, \tau_j)\)-RMG-cl \(A\) \(\cup (\tau_i, \tau_j)\)-RMG-cl \(A\).

Example 6.13: Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}\) and \(\tau_2 = \{X, \emptyset, \{a, b\}, \{c, d\}\}\). Then \((1, 2)\)-RMG-closed sets are \(X, \emptyset, \{a\}, \{b\}, \{c, d\}\). Let \(A = \{a\}\) and \(B = \{b\}\). Then \(A \cup B = \{a, b\}\), \((\tau_i, \tau_j)\)-RMG-cl \(A\) \(= \{a\}\), and \((\tau_i, \tau_j)\)-RMG-cl \(B\) \(= \{b\}\).

Theorem 14.1: If \(A\) is a subset of a bitopological space \((X, \tau_i, \tau_j)\), then \((\tau_i, \tau_j)\)-RMG-cl \((A \cap B) \subseteq (\tau_i, \tau_j)\)-RMG-cl \((A\cap B)\).

Proof: Since \((\tau_i, \tau_j)\)-RMG-cl \(A\) \(= (\tau_i, \tau_j)\)-RMG-cl \((A)\) \(\cap (\tau_i, \tau_j)\)-RMG-cl \((B)\).

Theorem 15.1: If \(A\) and \(B\) are subsets of a bitopological space \((X, \tau_i, \tau_j)\), then \((\tau_i, \tau_j)\)-RMG-cl \((A \cap B) \subseteq (\tau_i, \tau_j)\)-RMG-cl \((A\cap B)\).

Proof: Let \(A\) and \(B\) are subset of \((X, \tau_i, \tau_j)\). Clearly \(A \cap B \subseteq A\) and \(B \subseteq B\).

\[\Rightarrow (\tau_i, \tau_j)\)-RMG-cl \((A \cap B) \subseteq (\tau_i, \tau_j)\)-RMG-cl \((A\cap B)\).

Theorem 6.16: A is a nonempty subset of a bitopological space \((X, \tau_i, \tau_j)\), \(x \in X\) and \(x \notin (\tau_i, \tau_j)\)-RMG-cl \((A)\) if and only if \(\forall \tau_i, \tau_j\)-RMG-open set \(V\) containing \(x\).

Proof: Let \(A\) be a nonempty subset of a bitopological space \((X, \tau_i, \tau_j)\). Let \(x \in X\) and \(x \notin (\tau_i, \tau_j)\)-RMG-cl \((A)\). To prove the result by contradiction. Suppose \(\exists \) a \((\tau_i, \tau_j)\)-RMG-open set \(V\) containing \(x\) such that \(V \cap A = \emptyset\). Then \(\forall \tau_i, \tau_j\)-RMG-closed set and so \((\tau_i, \tau_j)\)-RMG-cl \((A) \subseteq \tau_i, \tau_j\)-RMG-cl \((X)\). This shows that \(x \notin (\tau_i, \tau_j)\)-RMG-cl \((A)\), which is a contradiction. Hence \(\forall \tau_i, \tau_j\)-RMG-open set \(V\) containing \(x\).

Conversely, let \(\forall \tau_i, \tau_j\)-RMG-open set containing \(x\). To prove \(x \notin (\tau_i, \tau_j)\)-RMG-cl \((A)\). We prove the result by contradiction. Suppose that \(x \notin (\tau_i, \tau_j)\)-RMG-cl \((A)\).

Then there exists a \((\tau_i, \tau_j)\)-RMG-closed subset \(F\) containing \(A\) such that \(x \in F\). Then \(x \in \tau_i, \tau_j\)-RMG-open. Also \((X, \tau_i, \tau_j)\)-RMG-open.

Theorem 6.17: If \(A\) is a subset of a bitopological space \((X, \tau_i, \tau_j)\). Then \((\tau_i, \tau_j)\)-RMG-cl \(A\) \(\subseteq (\tau_i, \tau_j)\)-pre-cl \(A\).

Proof: Let \(A\) be a subset of \((X, \tau_i, \tau_j)\). By the definition of \((\tau_i, \tau_j)\)-pre-closure, \((\tau_i, \tau_j)\)-pre-closure \(A\) \(= \cap \{F \subseteq X: \tau_i, \tau_j\}-RMG\)-closed set \(X\). \(A \subseteq \tau_i, \tau_j\)-pre-closed set \(X\). Therefore \(A \subseteq \tau_i, \tau_j\)-pre-closed set \(X\).
Theorem 6.18: If A be subset of a bitopological space (X, τ_i, τ_j).

(i) (τ_i, τ_j)-mildly-g-$cl(A) \subseteq (\tau_i, \tau_j)$-$RMG$-$cl(A)$

(ii) (τ_i, τ_j)-wg-$cl(A) \subseteq (\tau_i, \tau_j)$-$RMG$-$cl(A)$

Proof: (i) Let A be a subset of (X, τ_i, τ_j). By the definition of (τ_i, τ_j)-RMG-closure, (τ_i, τ_j)-RMG-$cl(A) = \bigcap \{F: A \subseteq F \in D_{RMG}(i, j)\}$. If $A \subseteq F \in D_{RMG}(i, j)$, then $A \subseteq F \in (\tau_i, \tau_j)$-mildly-$g$-$closed$. Because as every (τ_i, τ_j)-RMG-closed set is (τ_i, τ_j)-mildly-g-$closed$, that is (τ_i, τ_j)-mildly-g-$cl(A) \subseteq F$. Therefore (τ_i, τ_j)-mildly-g-$cl(A) \subseteq \bigcap \{F: A \subseteq F, (\tau_i, \tau_j)$-$RMG$-$cl(A)\}$. Therefore (τ_i, τ_j)-mildly-g-$cl(A) \subseteq (\tau_i, \tau_j)$-$RMG$-$cl(A)$.

(ii) Similarly (ii) results may be proved.

7. (τ_i, τ_j)-RMG-Interior and Some of Their Properties.

Definition 7.1: Let A be a subset of a bitopological space (X, τ_i, τ_j). We define the (τ_i, τ_j)-RMG-interior of A to be the union of all (τ_i, τ_j)-RMG-open sets contained in A and is denoted by (τ_i, τ_j)-RMG-$int(A)$.

Theorem 7.2: Let A and B be subsets of bitopological space (X, τ_i, τ_j), then

(i) (i,j)-RMG-$int(X)=X$ and (i,j)-RMG-$int(\emptyset)=\emptyset$.

(ii) (i,j)-RMG-$int(A) \subseteq A$.

(iii) If B is any (i,j)-RMG-open set contained in A. Then $B \subseteq (i,j)$-RMG-$int(A)$.

(iv) If A is (i,j)-RMG-open, Then (i,j)-RMG-$int(A)=A$.

Proof: (i) Since X and \emptyset are (i,j)-RMG-open sets. By the definition 7.1, (i,j)-RMG-$int(X)=X$ and (i,j)-RMG-$int(\emptyset)=\emptyset$.

(ii) If $F=\{G: G \subseteq A \subseteq \tau_i \text{ and } G \subseteq A \}$, then (i,j)-RMG-$int(A) = \bigcup G_{G \subseteq F}$ and $G \subseteq A$, $\forall G \in F \cup G_{G \subseteq F} \subseteq A$. That is (i,j)-RMG-$int(A) \subseteq A$.

(iii) Let B be any (i,j)-RMG-open set such that $B \subseteq A$. Let $x \in B$. Then since B is an (i, j)-RMG-open set contained in A, x is an (i,j)-RMG-interior point of A. That is $x \in (i,j)$-RMG-$int(A)$. Hence $B \subseteq (i,j)$-RMG-$int(A)$.

(iv) If a subset A of space X is (i,j)-RMG-open subset of X. We know that (i,j)-RMG-$int(A) \subseteq A$. Also, A is (i,j)-RMG-open set contained in A. From above result (ii), $A \subseteq (i, j)$-RMG-$int(A)$. Hence (i,j)-RMG-$int(A)=A$.

Theorem 7.3: Let A and B be subsets of bitopological space (X, τ_i, τ_j).

(i) If $A \cup B$, then (i,j)-RMG-$int(A) \subseteq (i,j)$-RMG-$int(B)$.

(ii) (i,j)-RMG-$int(A \cap B) \subseteq (i,j)$-$RMG$-$int(A) \cap (i,j)$-$RMG$-$int(B)$.

(iii) (i,j)-RMG-$int(A \cap B) \subseteq (i,j)$-$RMG$-$int(A \cup B)$.

Proof: (i) Let A and B be subsets of bitopological space (X, τ_i, τ_j). Then $A \subseteq B$.

(i,j)-RMG-$open\{F = (i,j)$-RMG-$open \cap A \subseteq F \subseteq B \text{ and } F \in (i,j)$-$RMG$-$open\}$

(i,j)-RMG-$int(A \cap B) \subseteq (i,j)$-$RMG$-$int(A \cup B)$.

(ii) We know that $A \cap B \subseteq A$ and $A \cap B \subseteq B$. We have by above result (i), (i,j)-RMG-$int(A \cap B) \subseteq (i,j)$-$RMG$-$int(A)$ and (i,j)-RMG-$int(A \cap B) \subseteq (i,j)$-$RMG$-$int(B)$. This implies that (i,j)-RMG-$int(A \cap B) \subseteq (i,j)$-$RMG$-$int(A) \cap (i,j)$-$RMG$-$int(B)$.

(iii) Let A and B be subsets of bitopological space (X, τ_i, τ_j). We know that $A \subseteq A \cup B$ and $B \subseteq A \cup B$. We have (i,j)-RMG-$int(A \cap B) \subseteq (i,j)$-$RMG$-$int(A \cup B)$ and (i,j)-RMG-$int(B) \subseteq (i,j)$-RMG-$int(A \cup B)$. This implies that (i,j)-RMG-$int(A \cup B) \subseteq (i,j)$-$RMG$-$int(A \cap B)$.

Theorem 7.4: If A is a subset of a bitopological space (X, τ_i, τ_j), then

(i) (i,j)-RMG-$int(A) \subseteq (i,j)$-$mildly-g$-$int(A)$.

(ii) (i,j)-RMG-$int(A) \subseteq (i,j)$-wg-$int(A)$.

Proof: (i) A is a subset of a bitopological space (X, τ_i, τ_j). Let $x \in (i,j)$-RMG-$int(A) \Rightarrow x \in \bigcup \{G \subseteq X: G \text{ is } (i,j)$-$RMG$-$open, G \subseteq A\}$

(i,j)-$mildly-g$-$open \text{ such that } x \in G$ and $G \subseteq A$.

(i,j)-wg-$open \text{ such that } x \in G$ and $G \subseteq A$.

(i,j)-$mildly-g$-$int(A)$.

$x \in (i,j)$-$mildly-g$-$int(A)$.

"37"
Hence (i, j)-RMG-int(A) ⊆ (i, j)-mildly-g-int(A).

(ii) Similarly these results may be proved.

Theorem 7.5: If A is a subset of a bitopological space (X, τ_1, τ_2), then (i, j)-pre-int(A) ⊆ (i, j)-RMG-int(A).

Proof: A is a subset of a bitopological space (X, τ_1, τ_2).
Let $x \in (i, j)$-pre-int(A) ⇒ $x \in U \{G \subseteq X: G$ is (i, j)-pre-open, $G \subseteq A\}$
⇒ there exists a (i, j)-pre-open set G such that $x \in G$ and $G \subseteq A$, as every (i, j)-pre-open set is (i, j)-RMG-open set in X.
⇒ there exists a (i, j)-RMG-open set G such that $x \in G$ and $G \subseteq A$.
⇒ $x \in U\{G: G$ is (i, j)-RMG-open, $G \subseteq A\}$.
⇒ $x \in (i, j)$-RMG-int(A).
Hence (i, j)-pre-int(A) ⊆ (i, j)-RMG-int(A).

Theorem 7.6: Let A be any subset of (X, τ_1, τ_2). then
(i) $X-(i, j)$-RMG-int(A) = (i, j)-RMG-cl(X-A).
(ii) (i, j)-RMG-int(A) = $X-(i, j)$-RMG-cl(X-A).
(iii) (i, j)-RMG-int(X-A) = (i, j)-RMG-cl(A).
(iv) $X-(i, j)$-RMG-cl(A) = (i, j)-RMG-int-(X-A).

Proof: (i) Let $x \in X-(i, j)$-RMG-int(A). Then $x \not\in (i, j)$-RMG-int(A). That is every (i, j)-RMG-open set U containing x is such that $U \subseteq A$. That is every (i, j)-RMG-open set U containing x such that $U \cap (X-A) \neq \emptyset$. By Theorem 6.16, $x \notin (i, j)$-RMG-cl(X-A) and Therefore $X-(i, j)$-RMG-int(A) ⊆ (i, j)-RMG-cl(X-A).
Conversely, $x \not\in (i, j)$-RMG-cl(X-A). Then by Theorem 6.16, every (i, j)-RMG-open set U containing x is such that $U \cap (X-A) \neq \emptyset$. That is every (i, j)-RMG-open set U containing x such that $U \subseteq A$. This implies by Definition of (i, j)-RMG-interior of A, $x \notin (i, j)$-RMG-int(A). That is $x \in X-(i, j)$-RMG-int(A) and (i, j)-RMG-cl(X-A) ⊆ X-(i, j)-RMG-int(A). Thus $X-(i, j)$-RMG-int(A) = (i, j)-RMG-cl(X-A).

(ii) Follows by taking compliments in (i).
(iv) Follows by replacing A by $X-A$ in (i).
(v) Follows by result (i).

8. References