Data mining techniques in forecasting methods

K Sreenivasulu and G Mokesh Rayalu

Abstract
Over the last few recent years, there has been much research directed at predicting the future and making better decisions. This research has led to many developments in forecasting methods. Most of these methodological advances have been based on statistical techniques. Statistical methods and neural networks are commonly used for time series prediction. Empirical results have shown that Neural Networks outperform linear regression specially in the case of more complex behaviour of dependent variables like nonlinear, dynamic and chaotic behaviours. Neural networks are reliable for modeling nonlinear, dynamic market predictions. Neural Network makes very few assumptions as opposed to normality assumptions commonly found in statistical methods. Neural network can perform prediction after learning the underlying relationship between the input variables and outputs. From a statistician’s point of view, neural networks are analogous to nonparametric, nonlinear regression models.

Keywords: Data mining techniques, forecasting methods

1. Introduction
Machine learning should be construed as a subfield of computer science i.e., soft computing which is evolved from the learning of pattern recognition and computational learning theory. Machine learning may border on Data Mining where the latter focuses more on exploratory data analysis. It may also be known as unsupervised learning. Machine learning is a field of study that gives to computers the capacity to learn without openly programmed. Machine learning brings out the study and construction of algorithms which could make any one to learn from and.

These algorithms operate by creating a model or inputs in order to make data riven decisions or predictions. Machine learning is closely associated to computational statistics which focuses in prediction making with the use of computers. It has closer ties with mathematical optimization, which yields to methods, theory and application domain. Where programming and designing is not feasible, Machine learning is used.
In the field of data analysis, machine learning is a devise that lend themselves to prediction in commercial use. Hence it is also known as predictive analysis. Such analysis helps researchers, engineers and data analysts to bring out reliable decision and results. Through learning from historical relationships and trends in the data, it brings out hidden insights.

In machine learning, classification is the difficulty in allotting to which of a set of categories a new observation belongs. It is based on the training data set which contains observations whose relationship is observed. Classification is significant in pattern recognition. In machine learning, classification is supervised learning where as clustering is unsupervised. There is a difference between supervised learning and unsupervised learning. In the former, the training data is pairs of input data (vectors) and desired outputs. But in unsupervised learning, there is no priority output. A classifier is one which does classification, particularly in a concrete implementation. It also sometimes refer to mathematical function implemented by a classification algorithm. In machine learning, three terminologies are important. They are instances, features and classes. Instances are observation, features are explanatory variables and classes are the possible categories to be predicted.
1.1 Review of neural network methodology
In the literature, we can find different reviews on the neural network methodology based on their own applications. In this section, a brief description was given on components of ANN with its architecture and general steps involved in forecasting methodology.

1.2 Components of neural networks
i. Nodes or neurons: The nodes can be seen as computational units. They receive inputs, and process them to obtain an output. This processing might be very simple such as summing the inputs, or quite complex like node might contain another network or involves huge iterative calculations.

![Diagram of neural network components](image)

Artificial neuron
ii Connectors: The connections determine the information flow between nodes. They can be unidirectional, when the information flows only in one sense, and bidirectional, when the information flows in either sense.

iii Input and output nodes: Input nodes are the starting points of input data in to the system. There are no preceding nodes to this input node. Each ANN my contain more that one input node also. Similarly output nodes are final resultants of the forecasting process.

1.3 Architecture of neural networks
The basic architecture consists of three types of neuron layers: input, hidden, and output layers. In the forward networks, the signal flow is from input to output units, which is termed as feed-forward network. There are several other neural network architectures (Elman network, adaptive resonance theory maps, competitive networks, etc.), depending on the properties and requirement of the application.

A simple architecture can be represented diagrammatically as follows.

![Diagram of multilayered artificial neural network](image)

Multilayered artificial neural network
Neural network architecture comprises of the following four main elements
a) Processing Elements (Neurons)
b) Connection between the elements
c) Weights of the connection
d) Activation function

1.4 Steps involved in neural network forecasting
We can not find a constant and regular procedure for neural network models forecasting. We can generalize the fitting process in the following steps.

Step 1: Usually the modeling of ANN begins by postulating an initial network based on general modeling practices. One regular practice is to add very important variables in the model based on user knowledge on the data and respective scenario.

Step 2: Only one hidden layer is needed for a artificial neural network to be a universal function approximator to a continuous function so often only one hidden layer is used; however, more than one hidden layer maybe used since overall fewer neurons will be required. If the function to be approximated is discontinuous, the model will require at most two hidden layers.
Step 3: Determine the weights which are usually initialized with random values. The observations are then input to the network and parameters adjusted by several available methods. The adjustment process is repeated until the error converges on a minimum point.

Step 4: The results calculated in step 3 are now transformed as output nodes. The number of nodes in the output layer corresponds to the number of variables to be predicted.

2. Neural network learning algorithms

A neural network has to be configured such that the application of a set of inputs produces the desired set of outputs. Various methods to set the strengths of the connections exist. One way is to set the weights explicitly, using a priori knowledge. Another way is to train the neural network by feeding it teaching patterns and letting it change its weights according to some learning rule. The following are some of the important learning algorithms which are applied more regularly in practice.

2.1 Hebbian learning

Hebb (1949), proposed a learning which was based on the modification of synaptic connections between neurons. The basic idea is that if two neurons are active simultaneously, their interconnection must be strengthened. If we consider a single layer net, one of the interconnected neurons will be an input unit and one an output unit. If the data are represented in bipolar form, it is easy to express the desired weight update as

$$\omega_i^{(\text{new})} = \omega_i^{(\text{old})} + x_{io}$$

where o is the desired output for $i = 1$ to n(inputs).

Unfortunately, plain Hebbian learning continually strengthens its weights without bound (unless the input data is properly normalized).

2.2 Perceptron learning rule

The perceptron is a single layer neural network whose weights and biases could be trained to produce a correct target vector when presented with the corresponding input vector. The training technique used is called the perceptron learning rule. Perceptrons are especially suited for simple problems in pattern classification.

Suppose we have a set of learning samples consisting of an input vector x and a desired output $d(k)$. For a classification task, the $d(k)$ is usually +1 or −1. The perceptron-learning rule is very simple and can be stated as follows:

1. Start with random weights for the connections.
2. Select an input vector x from the set of training samples.
3. If output $y_k \neq d(k)$ (the perceptron gives an incorrect response), modify all connections w_i according to:

$$\delta w_i = \eta(d_k - y_k)x_i; \quad (\eta = \text{learning rate}).$$

4. Go back to step 2.

Note that the procedure is very similar to the Hebb rule; the only difference is that when the network responds correctly, no connection weights are modified.

2.3 Conjugate Gradient Learning Algorithm

Conjugate gradient algorithm is one of the popular search methods to minimize the network output error in conjugate directions. Conjugate gradient method uses orthogonal and linearly independent non zero vector. Two sectors d_i and d_j are neutrally G-Conjugate if

$$d_i^T G d_j = 0 \quad \text{for } i \neq j \quad \ldots \quad (2.3.1)$$

The algorithm firstly developed to minimise the quadratic function of n-variables

$$F(w) = C - b^T W + 1/2 W^T G W \quad \ldots \quad (2.3.2)$$

Where W is vector with n elements and G is nxn symmetric and positive definite matrix. The algorithm was then extended to minimization of general linear functions interpretation (2.3.2) as a secured order taylor series expansion of the objective function G. A starting point W is selected and the first search direction d_1 is said to be negative gradient g_1 i.e., $(d_1 = -g_1)$ conjugate gradient method is to minimize differential function 4.4.2 by generating a sequence of appropriation W_{k+1} interatively according to

$$W_{k+1} = W_k + \alpha_k d_k \quad \ldots \quad (2.3.3)$$

$$d_{k+1} = -g_{k+1} + \beta_k d_k \quad \ldots \quad (2.3.4)$$

α and β are momentum terms to avoid oscillations

Let $\mu = \frac{1}{1 + \beta_k}$ then equation (2.3.4) can be written as

$$d_{k+1} = \frac{1}{\mu_k} [\mu_k g_{k+1} + (1-\mu_k)d_k] \quad \ldots \quad (2.3.5)$$
The value of α_k can be determined by line search techniques. Such as golden search and brent algorithm in the way that $f(W_k+\alpha_k d_k)$ is minimized along the direction d_k. β_k can be calculated by any of the following formula.

$$\beta_k = \frac{g_k^T (g_{k+1} - g_k)}{d_k^T (g_{k+1} - g_k)}$$

Polka and Reeves formula is given by

$$\beta_k = \frac{g_k^T (g_{k+1} - g_k)}{g_k^T g_k}$$

Shanno derives the formula for d_{k+1} by considering conjugate method as memory less quasi-nergion method.

$$d_{k+1} = g_{k+1} \left[1 + \frac{y_k^T y_k}{p_k^T y_k} \right] \left(\frac{p_k^T g_k}{p_k^T y_k} - \frac{y_k^T g_k}{y_k^T y_k} \right) p_k + \frac{p_k^T g_k}{p_k^T y_k} y_k$$

Where $p_k = \alpha_k d_k$ and $y_k = g_{k+1} - g_k$

The method performs an approrreimating line minimization in a descent direction in order to increase numerical stability.

The summary of conjugate gradient algorithm is described below

1. Set $K=1$, Initialize W
2. Compute $g_1 = V f(w_1)$
3. Set $d_1 = -g_1$
4. Compute $\alpha_k = \text{avg min} [f(w_k+\alpha_k d_k)]$
5. Update neighbor vector by $W_{k+1} = W_k + \alpha_k d_k$
6. If network error is less than a pre set minimum value (or) the maximum number of iterations one reached, then stop. Else go to step 7.
7. If $k+1 \geq n$ then $W_j = W_{k+1}$, $K=1$ and go to step 2.

2.4 Multiple Linear Regression Weight Initializations

Back propagation technique has risk of being stopped at local minimum. Multiple linear regression Weight method, neighter between hidden layer and output layer are obtained by multiple linear regression.

The weight W_{ij} between input mode I and output mode j is initialized by uniform randomization. Once input x_i of sample s has been fed into input mode and w_{ij}s have been assigned values, output value R_j^s of the hidden layer can be calculated as

$$Y_i = \left(\sum_j V_j R_j^i \right) \quad \text{... (2.4.1)}$$

Where V_j is weight between the hidden layer and output layer.

Assume that sigmoid function $f(x) = \frac{1}{1+e^{-x}}$ is used as the transfer function of the network. By Taylor expansion $f(x) \approx \frac{1}{2} + \frac{x}{4}$ \quad \text{... (2.4.2)}

Applying linear approximation is (2.4.1) in (2.4.2) we have the following linear approximate relationship between output y and V_js.

$$y^s = \frac{1}{2} + \frac{1}{4} \left(\sum_j V_j R_j^s \right) \quad \text{(or) } 4y^s - 2 = V_j R_j^s + \ldots + V_m R_m^s$$

\quad \text{... (2.4.3)}

Where m is number of hidden layers. The set of equation in (4.4.8) is multiple linear regression model. R_j^s are considered as repressors, V_j^s can be estimated by standard regression method.

3. Conclusions

The field of neural networks is very dynamic and vast so that the opportunities for future research exist in many aspects, including data preprocessing and representation, architecture selection, and application. In the case of training algorithm for ANN, we need to develop algorithms such that the overall performance should be improved further in terms of time for completion and forecast errors. We need to develop methods and techniques to auto refining of the model parameters when new data being added in to the
system. It saves lot of human efforts and cost involved in the project for forecasting tasks. In this paper, we described the several latest models for forecasting like Artificial Neural networks along with their merits and demerits.

4. References
4. Bishop CM. Neural Networks for Pattern Recognition, Oxford University. 1995.