Govindappa Navalagi and Kantappa M Bhavikatti

On contra βwg-continuous functions in topological spaces

Abstract
The main aim of this paper is to define and study the notions of contra βwg-continuous, almost contra βwg-continuous functions and discussed the relationship with other contra continuous functions and obtained their characteristics. Further we introduce the concepts of contra βwg-irresolute, contra βwg-closed functions and obtain some of their properties.

Keywords: βwg-continuous, contra βwg-continuous, almost contra βwg-continuous, contra βwg-irresolute, contra βwg-closed functions, βwg-locally indiscrete space.

1. Introduction

Throughout this paper $\mathcal{(X, \tau)}$, $\mathcal{(Y, \sigma)}$ and $\mathcal{(Z, \eta)}$ (or simply X, Y, and Z) represent the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. For a subset A of X, the closure of A and interior of A will be denoted by $\text{Cl}(A)$ and $\text{Int}(A)$ respectively. The union of all βwg-open sets of X contained in A is called βwg-interior of A and it is denoted by βwgInt (A). The intersection of all βwg-closed sets of X containing A is called βwg-closure of A and it is denoted by βwgCl (A). Also the collection of all βwg-open subsets of X containing a fixed point x is denoted by βwg O (X, x).

2. Preliminaries
We recall the following definitions which are useful in the sequel.

Definition 2.1 A subset A of a topological space $\mathcal{(X, \tau)}$ is called
(i) Semi-open [11] if $A \subseteq \text{Cl}(\text{Int}(A))$ and semi-closed if $\text{Int}(\text{Cl}(A)) \subseteq A$.
(ii) Preopen [13] if $A \subseteq \text{Int}(\text{Cl}(A))$ and preclosed if $\text{Cl}(\text{Int}(A)) \subseteq A$.
(iii) α-open [16] if $A \subseteq \text{Int}(\text{Cl}(\text{Int}(A)))$ and α-closed if $\text{Cl}(\text{Int}(\text{Cl}(A))) \subseteq A$.
(iv) semi-preopen [1] (f-open) if $A \subseteq \text{Cl}(\text{Int}(\text{Cl}(A)))$ and
(v) Semi-preclosed (f-closed) if $\text{Int}(\text{Cl}(\text{Int}(A))) \subseteq A$.
(vi) Regular open [23] if $A = \text{Int}(\text{Cl}(A))$ and regular closed if $A = \text{Cl}(\text{Int}(A))$.
Definition 2.2: A subset A of a topological space \((X, \tau)\) is called
(i) Generalized preclosed (briefly, gp-closed) \([12]\) if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).
(ii) Generalized semi-preclosed (briefly, gsp-closed) \([13]\) if \(\text{spcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \(X\).
(iii) Generalized pre regular closed (briefly, gpr-closed) \([10]\) if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular open in \(X\).
(iv) Generalized star preclosed (briefly, g*p-closed set) \([23]\) if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is g-open in \(X\).
(v) Generalized pre star closed (briefly, gp*-closed set) \([10]\) if \(\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is gp-open in \(X\).
(vi) \(\beta\)wg-closed \([14]\) if \(\beta cl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is ag-open in \(X\).
(vii) Pre semi-closed \([25]\) if \(\text{spcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is g-open in \(X\).

Definition 2.3: \([15]\) A function \(f: (X, \tau) \rightarrow (Y, \sigma)\) is called \(\beta\)wg-continuous if \(f^{-1}(V)\) is \(\beta\)wg-closed set in \((X, \tau)\) for every closed set \(V\) in \((Y, \sigma)\).

Definition 2.4: \([15]\) A function \(f: (X, \tau) \rightarrow (Y, \sigma)\) is called \(\beta\)wg-irresolute if \(f^{-1}(V)\) is \(\beta\)wg-closed set in \((X, \tau)\) for every \(\beta\)wg-closed set \(V\) in \((Y, \sigma)\).

Definition 2.5: A function \(f: (X, \tau) \rightarrow (Y, \sigma)\) is called
1. Contra continuous \([4]\) if \(f^{-1}(V)\) is closed in \(X\) for each open set \(V\) of \(Y\).
2. Contra pre-continuous \([10]\) if \(f^{-1}(V)\) is preclosed set in \(X\) for each open set \(V\) of \(Y\).
3. Contra semi-continuous \([5]\) if \(f^{-1}(V)\) is semi-closed set in \(X\) for each open set \(V\) of \(Y\).
4. Contra \(\alpha\)-continuous \([8]\) if \(f^{-1}(V)\) is \(\alpha\)-closed set in \(X\) for each open set \(V\) of \(Y\).
5. Contra pre-semi-continuous \([26]\) if \(f^{-1}(V)\) is pre semi-closed set in \(X\) for each open set \(V\) of \(Y\).
6. Contra \(g\)-continuous \([20]\) if \(f^{-1}(V)\) is \(g\)-closed set in \(X\) for each open set \(V\) of \(Y\).
7. Contra \(g\)-pre-continuous \([20]\) if \(f^{-1}(V)\) is \(g\)-pre-closed set in \(X\) for each open set \(V\) of \(Y\).
8. Contra \(rg\)-continuous if \(f^{-1}(V)\) is \(rg\)-closed set in \(X\) for each open set \(V\) of \(Y\).
9. Contra \(Ag\)-continuous if \(f^{-1}(V)\) is \(Ag\)-closed set in \(X\) for each open set \(V\) of \(Y\).
10. Contra \(Ag\)-pre-continuous if \(f^{-1}(V)\) is \(Ag\)-pre-closed set in \(X\) for each open set \(V\) of \(Y\).
11. Contra \(gsp\)-continuous \([20]\) if \(f^{-1}(V)\) is \(gsp\)-closed set in \(X\) for each open set \(V\) of \(Y\).
12. Contra \(gp\)-continuous \([21]\) if \(f^{-1}(V)\) is \(gp\)-closed set in \(X\) for each open set \(V\) of \(Y\).
13. Contra \((gsp)\)-continuous \([19]\) if \(f^{-1}(V)\) is \((gsp)\)-closed set in \(X\) for each open set \(V\) of \(Y\).
14. Contra \(g\)-pre-continuous \([18]\) if \(f^{-1}(V)\) is \(g\)-pre-closed set in \(X\) for each open set \(V\) of \(Y\).

Definition 2.6: A function \(f: (X, \tau) \rightarrow (Y, \sigma)\) is called
1. Perfectly continuous \([17]\) if \(f^{-1}(V)\) is clopen in \(X\) for every open set \(V\) of \(Y\).
2. Almost continuous \([22]\) if \(f^{-1}(V)\) is open in \(X\) for each regular open set \(V\) of \(Y\).
3. Almost \(\beta\)wg-continuous \([13]\) if \(f^{-1}(V)\) is \(\beta\)wg-open in \(X\) for each regular open set \(V\) of \(Y\).
4. Almost \(\beta\)wg-continuous \([13]\) if \(f^{-1}(V)\) is \(\beta\)wg-open in \(X\) for each regular open set \(V\) of \(Y\).
5. Pre-closed \([13]\) if \(f(U)\) is pre-closed in \(Y\) for each closed set \(U\) of \(X\).
6. Contra pre-closed \([2]\) if \(f(U)\) is pre-closed in \(Y\) for each open set \(U\) of \(X\).

Definition 2.7: Let \(A\) be a subset of a space \((X, \tau)\).
1. The set \(\bigcap \{U \in \tau | A \subseteq U\}\) is called the kernel of \(A\) and is denoted by \(\text{ker}(A)\).
2. The set \(\{F \in X/A \subseteq F, F\) is \(\beta\)-closed\} is called the \(\beta\)-closure of \(A\) and is denoted by \(\text{pcl}(A)\).

Lemma 2.8: The following properties hold for subsets \(A, B\) of a space \(X: \)
1. \(X \subseteq \text{ker}(A)\) if and only if \(U \cap A \neq \varnothing\) for any \(F \in C(X, x)\).
2. \(A \subseteq \text{ker}(A)\) and \(A = \text{ker}(A)\) if \(A\) is open in \(X\).
3. If \(A \subseteq B\), then \(\text{ker}(A) \subseteq \text{ker}(B)\).

Lemma 2.9: \([15]\) For \(x \in X, x \in [\beta \text{wg} \text{cl}(A))\) if and only if \(U \cap A \neq \varnothing\) for every \(\beta\)wg-open set \(U\) containing \(x\).
Proof: Necessary part: Suppose there exists \(\beta\)wg-open set \(U\) containing \(x\) such that \(U \cap A \neq \varnothing\). Since \(A \subseteq X - U\), \(\beta\)wg \(\text{cl}(A) \subseteq X-U\). This implies \(x \notin \beta\)wg \(\text{cl}(A)\). This is a contradiction.
Sufficiency part: Suppose that \(x \notin \beta\)wg \(\text{cl}(A)\). Then there exists \(\beta\)wg-closed subset \(F\) containing \(A\) such that \(x \notin F\). Then \(x \in X-F\) is \(\beta\)wg-open, \((X-F) \cap A = \varnothing\). This is a contradiction.

3. Contra \(\beta\)wg-Continuous Functions
In this section, we introduce and study new class of continuous functions called contra \(\beta\)wg-continuous functions and investigate some of their properties in the following.

Definition 3.1: A function \(f: X \rightarrow Y\) is called contra beta weakly generalised (briefly, \(\beta\)wg-continuous) continuous if \(f^{-1}(V)\) is \(\beta\)wg-closed set in \(X\) for every open set \(V\) in \(Y\).

Example 3.2: Let \(X = Y = \{a, b, c, d\}\) with topologies, \(\tau = \{X, \varnothing, \{a\}, \{b\}, \{a, b\}\}\) and

"140"
\(\sigma = \{Y, \varphi, \{a,b,c\}, \{a,b,c,d\}\}. \text{ Now } \beta \omega g C(X) = \{X, \varphi, \{a\}, \{b\}, \{c\}, \{d\}, \{a,c\}, \{a,d\}, \{b,c\}, \{b,d\}, \{c,d\}, \{a, c, d\}, \{b, c, d\}, \{a, c, d\}, X\}. \) Define a function \(f: X \rightarrow Y \) by \(f(a) = d, f(b) = a, f(c) = b \) and \(f(d) = c. \) Then \(f \) is contra \(\beta \omega g \)-continuous function, since every open set in \(Y \) is \(\beta \omega g \)-closed in \(X. \)

Theorem 3.3: Every contra continuous (resp. contra pre-continuous) function is contra \(\beta \omega g \)-continuous but not conversely.

Proof: Let \(U \) be an open set in \(Y \) then \(f^{-1}(U) \) is closed (resp. pre-closed) in \(X. \) Since every closed (resp. pre-closed) set is a \(\beta \omega g \)-closed set. Therefore \(f \) is contra \(\beta \omega g \)-continuous.

Example 3.4: Let \(X = \{a, b, c, d\} = Y \) with topologies \(\tau = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} \) and \(\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a,c\}, \{a,b,c\}\}. \) Define \(f: X \rightarrow Y \) by \(f(a) = c, f(b) = d, f(c) = b \) and \(f(d) = a. \) Then \(f \) is contra \(\beta \omega g \)-continuous but not contra continuous and contra pre-continuous. Since \(\{b,c\} \) is an open set in \(Y \) but \(f^{-1}(\{b,c\}) = \{a,c\} \) is \(\beta \omega g \)-closed but not closed and pre-closed in \(X. \)

We define the following

Definition 3.5: A function \(f: X \rightarrow Y \) is called contra \(\alpha g^* \)-continuous if \(f^{-1}(V) \) is \(\alpha \)-closed set in \(X \) for each open set \(V \) of \(Y \)

Theorem 3.6: Every contra \(\alpha g^* \)-continuous (resp. contra \(g^* \)-continuous) function is contra \(\beta \omega g \)-continuous but not conversely.

Proof: Let \(V \) be an open set in \(Y \) then \(f^{-1}(V) \) is \(\alpha g^* \)-closed (resp. \(g^* \)-closed) in \(X. \) Since every \(\alpha g^* \)-closed (resp. \(g^* \)-closed) set is an \(\beta \omega g \)-closed set. Therefore \(f \) is contra \(\beta \omega g \)-continuous.

Example 3.7: Let \(X = \{a, b, c, d\} = Y \) with topologies \(\tau = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} \) and \(\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a,c\}, \{a,b,c\}\}. \) Define \(f: X \rightarrow Y \) by \(f(a) = b, f(b) = a, f(c) = d \) and \(f(d) = b. \) Then \(f \) is contra \(\beta \omega g \)-continuous but not contra \(\alpha g^* \)-continuous and contra \(g^* \)-continuous, since \(\{b,c\} \) is an open set in \(Y \) but \(f^{-1}(\{b,c\}) = \{a,c\} \) is \(\alpha g^* \)-closed and \(g^* \)-closed in \(X. \)

Theorem 3.8: Every contra \(\beta \omega g \)-continuous function is contra pre-semi-continuous but not conversely.

Proof: Let \(U \) be an open set in \(Y \) then \(f^{-1}(U) \) is \(\beta \omega g \) - closed set in \(X. \) Since every \(\beta \omega g \)-closed set is pre semi-closed set then \(f^{-1}(U) \) is pre-semi-closed in \(X. \) Therefore \(f \) is contra pre-semi-continuous.

Example 3.9: Let \(X = \{a, b, c, d\} = Y \) with topologies \(\tau = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} \) and \(\sigma = \{Y, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,d\}\}. \) Define a function \(f: V \rightarrow Y \) by \(f(a) = a, f(b) = d, f(c) = c \) and \(f(d) = b. \) Then \(f \) is contra pre semi-continuous but not contra \(\beta \omega g \)-continuous, since \(\{a,b,d\} \) is an open set in \(Y \) but \(f^{-1}(\{a,b,d\}) = \{a,b,d\} \) is not \(\beta \omega g \)-closed in \(X. \)

Theorem 3.10: (i) Every contra \(\beta \omega g \)-continuous function is contra \(g^* \)-continuous.
1. Every contra \(\beta \omega g \)-continuous function is contra \(g^* \)-continuous.
2. Every contra \(\beta \omega g \) -continuous function is contra \(g \)-continuous.
3. Every contra \(\beta \omega g \)-continuous function is contra \(g^* \)-continuous.
4. Every contra \(\beta \omega g \)-continuous function is contra \(\alpha g^* \)-continuous (resp. \(g^* \)-continuous, \(g \)-continuous).

Proof: The proof is straightforward from the Definition 3.1 and Theorem 3.3.

Remark 3.11: The converses of Theorem 3.10, is not true as shown in the following examples.

Example 3.12: Let \(X = Y = \{a, b, c\}, \) \(\tau = \{X, \varphi, \{a\}, \{b\}, \{a,b\}\} \) and \(\sigma = \{Y, \varphi, \{a\}\}. \) Define \(f: X \rightarrow Y \) by \(f(a) = b, f(b) = b \) and \(f(c) = c. \) Then \(f \) is contra \(g^* \)-continuous but not contra \(\beta \omega g \)-continuous, since \(\{a,b\} \) is an open set in \(Y, f^{-1}(\{a,b\}) = \{a,b\} \) is \(g^* \)-closed but not \(\beta \omega g \)-closed in \(X. \)

Example 3.13: Let \(X = \{a,b,c,d\} = Y \) with topologies \(\tau = \{X, \varphi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} \) and \(\sigma = \{Y, \varphi, \{a\}, \{a,b\}, \{a,b,d\}\}. \) Define \(f: X \rightarrow Y \) by \(f(a) = a, f(b) = a, f(c) = c \) and \(f(d) = d. \) Then \(f \) is contra \(g^* \)-continuous but not contra \(\beta \omega g \)-continuous, since \(\{a,b,d\} \) is open set in \(Y, f^{-1}(\{a,b,d\}) = \{a,b,d\} \) is \(g^* \)-closed but not \(\beta \omega g \)-closed in \(X. \)

Example 3.14: Let \(X = \{a, b, c\} \) with topologies, \(\tau = \{\varphi, \{a\}, X\} \) and \(\sigma = \{Y, \varphi, \{a\}, \{a,b\}, \{b\}\}. \) Define \(f: X \rightarrow Y \) by \(f(a) = a, f(b) = c \) and \(f(c) = b. \) Then \(f \) is contra \(g^* \)-continuous (resp. contra \(g^* \)-continuous, contra \(g^* \)-continuous, contra \(g^* \)-continuous, contra \(g^* \)-continuous) but not contra \(\beta \omega g \)-continuous, since \(\{a,b\} \) is an open set in \(Y, f^{-1}(\{a,b\}) = \{a,c\} \) is \(g^* \)-closed (resp. \(g^* \)-closed, \(g^* \)-closed, \(g^* \)-closed, \(g^* \)-closed) set but not \(\beta \omega g \)-closed in \(X. \)

Also, we define and obtain the following

Definition 3.15: A function \(f: X \rightarrow Y \) is called a
1. Contra \(rg \)-continuous if \(f^{-1}(V) \) is \(rg \)-closed set in \(X \) for each open set \(V \) of \(Y \)
2. Contra \(Ag \)-continuous if \(f^{-1}(V) \) is \(Ag \)-closed set in \(X \) for each open set \(V \) of \(Y \).
3. Contra \(Ag^* \)-continuous if \(f^{-1}(V) \) is \(Ag^* \)-closed set in \(X \) for each open set \(V \) of \(Y \).

Theorem 3.16: Every contra \(\beta \omega g \)-continuous function is contra \(rg \)-continuous but not conversely.

Proof: Let \(U \) be an open set in \(Y \) then \(f^{-1}(U) \) is \(\beta \omega g \)-closed set in \(X. \) Since every \(\beta \omega g \)-closed set is \(rg \)-closed set then \(f^{-1}(U) \) is \(rg \)-closed in \(X. \) Therefore \(f \) is contra \(rg \)-continuous.
Example 3.17: Let $X = \{a, b, c\}$, $\tau = \{\varnothing, \{a\}, X\}$ and $\sigma = \{\varnothing, \{c\}, \{a, c\}, Y\}$. Now $RGC(X) = P(X)$ and $\beta wgC (X) = \{X, \varnothing, \{b\}, \{c\}, \{a, b, c\}\}$. Define $f: X \rightarrow Y$ by $f(a) = c$, $f(b) = b$ and $f(c) = a$. Then f is contra rg-continuous but not contra βwg-continuous, since $\{a, c\}$ is an open set in X, $f^{-1}(\{a, c\}) = \{a, c\}$ is rg-closed but not βwg-closed in X.

Theorem 3.17: If $f: X \rightarrow Y$ contra $(gsp)^*$-continuous then f is contra βwg-continuous function but not conversely.

Proof: Let G be an open set in Y. Since f is contra $(gsp)^*$-continuous, then $f^{-1}(G)$ is $(gsp)^*$-closed set in X. Since every contra $(gsp)^*$-closed set is βwg-closed set then $f^{-1}(U)$ is βwg-closed in X. Therefore f is contra βwg-continuous.

Example 3.18: Let $X = Y = \{a, b, c\}$, $\tau = \{\varnothing, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\varnothing, \{a, b, c\}\}$. Define the function $f: X \rightarrow Y$ by $f(a) = b$, $f(b) = a$ and $f(c) = d$. Then f is contra βwg-continuous but not contra $(gsp)^*$-continuous, since $\{c\}$ is an open set in Y, $f^{-1}(\{c\}) = \{c\}$ is βwg-closed but not $(gsp)^*$-closed in X.

Definition 3.19: A space (X, τ) is called βwg-locally indiscrete if every βwg-open set is closed.

Theorem 3.20: (i) If a function $f: X \rightarrow Y$ is βwg-continuous and (X, τ) is βwg-locally indiscrete then f is contra continuous.

(ii) If a function $f: X \rightarrow Y$ is contra βwg-continuous and (X, τ) is $\beta wgT_\frac{1}{2}$ space then f is contra continuous.

(iii) If a function $f: X \rightarrow Y$ is contra βwg-continuous and (X, τ) is βwgT_α space then f is contra precontinuous.

Proof: (i) Let G be open in (Y, σ). By assumption, $f^{-1}(G)$ is βwg-open in X. Hence f is contra continuous.

(ii) Let G be open in (Y, σ). By assumption, $f^{-1}(G)$ is βwg-closed in X. Since by definition, X is βwgT_α space, $f^{-1}(G)$ is closed in X. Hence f is contra continuous.

(iii) Let G be open in (Y, σ). By assumption, $f^{-1}(G)$ is βwg-closed in X. Since by definition, X is βwgT_α space, $f^{-1}(V)$ is pre-closed in X. Hence f is contra precontinuous.

Theorem 3.21: If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra βwg-continuous and (X, τ) is βwgT_α-space then f is contra g-continuous.

Proof: Let V be open in (Y, σ). By assumption, $f^{-1}(V)$ is βwg-closed in X. Since X is βwgT_α-space, $f^{-1}(V)$ is g-closed in X. Hence f is contra g-continuous.

Theorem 3.22: If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra βwg-continuous and (X, τ) is βwgT_α-space then f is contra α-continuous.

Proof: Let V be open in (Y, σ). By assumption, $f^{-1}(V)$ is βwg-closed in X. Since X is βwgT_α-space, $f^{-1}(V)$ is α-closed in X. Hence f is contra α-continuous.

Theorem 3.23: The following are equivalent for a function $f: (X, \tau) \rightarrow (Y, \sigma)$:

1. For every closed subset F of Y, $f^{-1}(F) \in \beta wg O(X)$;
2. $f(\beta wg Cl(A)) \subseteq ker(f(A))$ for every subset A of X;
3. $\beta wg Cl(f^{-1}(B)) \subseteq f^{-1}(ker(B))$ for every subset of B of Y.

Proof: The implications (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii): Let A be any subset of X. Suppose that $y \notin ker(f(A))$. Then by Lemma 2.10, there exists $F \in C(X, Y)$ such that $f(A) \cap F = \varnothing$. Thus $A \cap f^{-1}(F) = \varnothing$ and $\beta wg-cl(A) \cap f^{-1}(F) = \varnothing$. Therefore, we obtain $f(\beta wg-cl(A)) \cap f^{-1}(F) = \varnothing$ and $y \notin f(\beta wg-cl(A))$. This implies that $f(\beta wg-cl(A)) \subseteq ker(f(A))$.

(iii) \Rightarrow (iv): Let B be any subset of Y. By (iv) and Lemma 2.10, we have $f(\beta wg Cl(f^{-1}(B))) \subseteq ker(f(\beta wg Cl(f^{-1}(B)))) \subseteq ker(B)$ and $\beta wg Cl(f^{-1}(B)) \subseteq f^{-1}(ker(B))$.

(iv) \Rightarrow (i): Let V be any open set of Y. Then by Lemma 2.10, we have $\beta wg Cl(f^{-1}(V)) \subseteq f^{-1}(ker(V))$ and $\beta wg-cl(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is βwg-closed in X.

Remark 3.24: The Composition of two contra βwg-continuous maps need not be contra βwg-continuous map and this can be shown by the following example.

Example 3.25: Let $X = Y = \{a,b,c,d\} = Z$ with topologies, $\tau = \{X, \varnothing, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}, \{a,b,c,d\}\}$ and $\sigma = \{Y, \varnothing, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$. Define a functions $f: X \rightarrow Y$ by $f(a) = b$, $f(b) = a$, $f(c) = c$ and $g: X \rightarrow Z$ by $g(a) = d$, $g(b) = c$, $g(c) = b$ and $g(d) = a$. Then both f and g are contra βwg-continuous functions. But gof is not contra βwg-continuous functions. For gof is contra βwg-continuous. But gof is not contra βwg-continuous map, since $\{b,c,d\}$ is an open set in Z, then $(gof)^{-1}(\{b,c,d\}) = f^{-1}(g^{-1}(\{b,c,d\})) = f^{-1}(\{a,b,c\}) = \{a,b,d\}$ is not a βwg-closed set in X.
Remark 3.26: The following two examples will show that the concept of βwg-continuity and contra βwg-continuity are independent from each other.

Example 3.27: Let $X = Y = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a, b, c\}, \{a, b, c, d\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\}$. Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = d$, $f(b) = a$, $f(c) = b$ and $f(d) = c$. Then f is contra βwg-continuous but f is not βwg-continuous, since $\{a, d\}$ is a closed set in Y, $f^{-1}(\{a, d\}) = \{a, b\}$ is not a βwg-closed set in X.

Example 3.28: Let $X = Y = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b, c\}, \{a, b, c, d\}\}$. Define a function $f: X \rightarrow Y$ by $f(a) = c$, $f(b) = a$, $f(c) = b$ and $f(d) = d$. Then f is βwg-continuous but f is not contra βwg-continuous, since $\{a, c, d\}$ is an open set in Y, $f^{-1}(\{a, c, d\}) = \{a, b, d\}$ is not a βwg-closed set in X.

Theorem 3.29: If $f: X \rightarrow Y$ is a contra βwg -continuous function and $g: Y \rightarrow Z$ is a continuous function then $g \circ f: X \rightarrow Z$ is contra βwg-continuous.

Proof: Let U be an open set in Z. Then $g^{-1}(U)$ is open in Y. Since f is contra βwg-continuous, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is βwg-closed in X. Therefore $g \circ f: X \rightarrow Z$ is contra βwg-continuous.

Theorem 3.30: If $f: X \rightarrow Y$ is a βwg-irresolute function and $g: Y \rightarrow Z$ is a contra βwg-continuous function then $g \circ f: X \rightarrow Z$ is contra βwg-continuous function.

Proof: Let G be an open set in Z. Then $g^{-1}(G)$ is βwg-closed in Y. Since f is βwg-irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is βwg-closed in X. Therefore $g \circ f: X \rightarrow Z$ is contra βwg-continuous function.

Theorem 3.31: If $f: X \rightarrow Y$ is a βwg-irresolute function and $g: Y \rightarrow Z$ is a contra continuous function then $g \circ f: X \rightarrow Z$ is contra βwg-continuous.

4. Approximately βwg- Continuous Maps

Now, we define the following

Definition 4.1: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be approximately-βwg-continuous (briefly, ap-βwg-continuous) if $\beta cl (F) \subseteq f^{-1}(U)$ whenever U is an open subset of Y and F is a βwg-closed subset of X such that $F \subseteq f^{-1}(U)$.

Definition 4.2: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be approximately-βwg - closed (briefly, ap-βwg-closed) function if $f(F) \subseteq \beta int(V)$ whenever V is an open subset of Y and F is a βwg-closed subset of X such that $F \subseteq f^{-1}(V)$.

Definition 4.3: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be approximately-βwg-open (briefly, ap-βwg-open) if $\beta cl (F) \subseteq f(U)$ whenever U is an open subset of X, F is a βwg - closed subset of Y and $F \subseteq f(U)$.

Definition 4.4: A function $f: X \rightarrow Y$ is said to be contra βwg-closed (resp. contra βwg-open) if $f(U)$ is βwg-open (resp βwg-closed) in Y for each closed (resp. open) set U of X.

Theorem 4.6: Let $f: X \rightarrow Y$ be a function then
1. If f is contra precontinuous, then f is an ap-βwg-continuous.
2. If f is contra preclosed, then f is ap-βwg-closed.
3. If f is contra preopen, then f is ap-βwg-open.

Proof: (i) Let $F \subseteq f^{-1}(U)$ where U is a open subset in Y and F is a βwg-closed subset of X. Then $\beta cl (F) \subseteq pcl (f^{-1}(U))$. Since f is contra precontinuous, $\beta cl (F) \subseteq pcl (f^{-1}(U)) = f^{-1}(U)$. This implies f is ap-βwg-continuous.
(ii) Let $f(F) \subseteq V$, where F is a closed subset of X and V is a βwg-open subset of Y. Therefore $f(F) = \beta int(f(F)) \subseteq \beta int(V)$. Hence f is ap-βwg-closed.
(iii) Let $F \subseteq f(U)$ where F is a βwg-closed subset of Y and U is an open subset of X. Since f is contra preopen, $f(U)$ is preclosed in Y for each open set U of X. Thus $\beta cl (F) \subseteq pcl(f(U)) = f(U)$. Therefore f is ap-βwg-open.

Theorem 4.7: If a function $f: X \rightarrow Y$ is ap-βwg-continuous and preclosed function, then the image of each βwg-closed set in X is βwg-closed set in Y.

Proof: Let F be a βwg-closed subset of X. Let $f(F) \subseteq V$ where V is an open subset of Y. Then $F \subseteq f^{-1}(V)$. Since F is ap-βwg-continuous, $\beta cl (F) \subseteq f^{-1}(V)$. Thus $f(\beta cl(F)) \subseteq V$. Therefore, we have $\beta cl (f(F)) \subseteq \beta cl(f(\beta cl(F))) = f(\beta cl(F)) \subseteq V$. Hence $f(F)$ is βwg-closed set in Y.

Definition 4.8: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called a contra βwg-irresolute if $f^{-1}(V)$ is βwg-closed in X for each βwg-open set V in Y.

Definition 4.9: A space (X, τ) is said to be βwg-Lindelof if every cover of X by βwg-open sets has a countable sub cover.
Theorem 4.10: Let f: X → Y and g: Y → Z be two functions such that gof: X → Z.
1. If g is βwg-continuous and f is contra βwg-irresolute then gof is contra βwg-continuous.
2. If g is βwg-irresolute and f is contra βwg-irresolute, then gof is contra βwg-irresolute.

Proof: (i) Let V be closed set in Z. Then g⁻¹(V) is βwg-closed in Y. Since f is contra βwg-irresolute, f⁻¹(g⁻¹(V)) is βwg-open in X. Hence gof is contra βwg-continuous.
(ii) Let V be βwg-closed in Z. Then g⁻¹(V) is βwg-closed in Y. Since f is contra βwg-irresolute, f⁻¹(g⁻¹(V)) is βwg-open in X. Hence gof is contra βwg-irresolute.

Theorem 4.11: Let f: (X, τ) → (Y, σ) and g: (Y, η) → (Z, η) be two functions such that g o f: (X, τ) → (Z, η).
1. If f is closed and g is ap-βwg-closed then gof is ap-βwg-closed.
2. If f is βwg-closed and g is βwg-open and g⁻¹ preserves βwg-openclosed then gof is ap-βwg-closed.
3. If f is ap-βwg-continuous and g is continuous then gof is ap-βwg-continuous.

Proof: (i) Suppose B is an arbitrary closed subset in X and A is a βwg-open subset of Z for which (g o f)(B) ⊆ A. Then f(B) is closed in Y because f is closed. Since g is ap-βwg-closed, g(f(B)) ⊆ βint(A). This implies gof is ap-βwg-closed.
(ii) Suppose B is an arbitrary closed subset of X and A is a βwg-open subset of Z for which (gof)(B) ⊆ A. Hence f(B) ⊆ βint(g⁻¹(A)). Then F(B) ⊆ βint(g⁻¹(A)) because g⁻¹(A) is βwg-open and f is ap-βwg-continuous. Hence (gof)(B) = g(f(B)) ⊆ βint(g⁻¹(A)) ⊆ βint(g⁻¹(A)). This implies that gof is ap-βwg-continuous.
(iii) Suppose F is arbitrary βwg-closed subset of X and U is open in Z for which F ⊆ (g⁻¹)(U). Then g⁻¹(U) is open in Y, because g is continuous. Since f is ap-βwg-continuous then we have β Cl(F) ⊆ βint(g⁻¹(U)) = (gof)(U). This shows that gof is ap-βwg-continuous.

Next, we define almost contra βwg-continuous functions in the followings.

Definition 4.12: A function f: X → Y is called almost contra βwg-continuous if f⁻¹(U) is βwg-closed set in X for every regular open set U in Y.

Example 4.13: Let X = Y = \{a, b, c, d\}, τ = \{X, {a}, \varnothing\} and σ = \{\varnothing, \{a\}, \{b, c\}, \{a, b, c\}, Y\}. βwgC(X) = \{X, \varnothing, \{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\} and regular open (Y) = \{Y, \varnothing, \{a\}, \{b, c\}\}. Now, define a function f: X → Y by f(a) = a, f(b) = b, f(c) = d and f(d) = c. Then f is almost contra βwg-continuous function.

Theorem 4.14: Every contra βwg-continuous function is almost contra βwg-continuous but not conversely.

Proof: Let G be a regular open set in Y. Since every regular open set is open then G is an open set in Y. Since f is contra βwg-continuous function then f⁻¹(G) is βwg-closed set in X. Therefore f is almost contra βwg-continuous.

Example 4.15: In above Example 4.13, f is almost contra βwg-continuous but not contra βwg-continuous. Since \{a, b, c\} is an open set in Y, f⁻¹(\{a, b, c\}) = \{a, b, d\} is not a βwg-closed set in X.

Theorem 4.16: Let f: (X, τ) → (Y, σ) be for a function. Then the following statements are equivalent:
1. F is almost contra βwg-continuous.
2. F⁻¹(F) ∈ βwg O(X, τ) for every F ∈ RC(Y, σ).
3. F⁻¹(βint (G)) ∈ βwgC (X, τ) for every open subset G of Y.
4. F⁻¹(βint (F)) ∈ βwgO (X, τ) for every closed subset F of Y.

Proof: (i) ⇒ (ii) Let F ∈ RC(Y, σ). Then Y-F ∈ RO(Y, σ) by assumption.
Hence f⁻¹(Y-F) = X-f⁻¹(F) ∈ βwgC(X, τ). This implies that f⁻¹(F) ∈ βwgO(X, τ).
(ii) ⇒ (i) Let V ∈ RO(Y, σ). Then by assumption (Y-V) ∈ RC(Y, σ).
Hence f⁻¹(Y-V) = X-f⁻¹(F) ∈ βwgO(X, τ). This implies that f⁻¹(F) ∈ βwgC(X, τ).
(i) ⇒ (iii) Let G be a open subset of Y. Since int (βint (G)) is regular open then by (i), f⁻¹(int (βint (G))) ∈ βwg-C(X, τ).
(ii) ⇒ (i) Let V ∈ RO(Y, σ). Then V is open in Y. By (ii), f⁻¹(int (βint (G))) ∈ βwgC (X, τ).
This implies that f⁻¹(V) ∈ βwg C(X, τ)
(ii) ⇒ (iv) is similar as (i) ⇒ (iii).

Theorem 4.17: If f: X → Y is an almost contra βwg-continuous function and A is a open subset of X, then the restriction f/A : A→Y is almost contra βwg-continuous.

Proof: Let F ∈ RC(Y). Since f is almost contra βwg-continuous, f⁻¹(F) ∈ βwg -O(X).Since A is open, it follows that (f/A)⁻¹(F) = A ∩ f⁻¹(F) ∈ βwgO(A).Therefore f/A is an almost contra βwg-continuous.

Definition 4.18: A function f: (X, τ) → (Y, σ) is called regular set connected if f⁻¹(U) is clopen in X for every regular open set U in Y.

"144"
Theorem 4.19: If a function \(f: (X, \tau) \rightarrow (Y, \sigma) \) is almost contra \(\beta_{wg} \)-continuous and almost continuous then \(f \) is regular set connected.

Proof: Let \(U \) be a regular open set in \(Y \). Since \(f \) is almost contra \(\beta_{wg} \)-continuous and almost continuous then \(f^{-1}(U) \) is \(\beta_{wg} \)-closed and open. Hence \(f^{-1}(U) \) is clopen. Therefore, \(f \) is regular set connected.

Theorem 4.20: Let \(f: X \rightarrow Y \) and \(g: Y \rightarrow Z \) be two functions. Then the following properties hold.
1. If \(f \) is almost contra \(\beta_{wg} \)-continuous and \(g \) is regular set connected, then \(gof: X \rightarrow Z \) is almost contra \(\beta_{wg} \)-continuous and almost \(\beta_{wg} \)-continuous.
2. If \(f \) is almost contra \(\beta_{wg} \)-continuous and \(g \) is perfectly continuous, then \(gof: X \rightarrow Z \) is \(\beta_{wg} \)-continuous and contra \(\beta_{wg} \)-continuous.

Proof:
(i) Let \(U \) be regular open in \(Z \). Since \(g \) is regular set connected, \(g^{-1}(U) \) is clopen in \(Y \). Since \(f \) is almost contra \(\beta_{wg} \)-continuous, \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U) \) is \(\beta_{wg} \)-open and \(\beta_{wg} \)-closed. Therefore \((g \circ f)\) is almost contra \(\beta_{wg} \)-continuous and almost \(\beta_{wg} \)-continuous.

(ii) Let \(G \) be open in \(Z \). Since \(g \) is perfectly continuous, \(g^{-1}(G) \) is clopen in \(Y \). Since \(f \) is almost contra \(\beta_{wg} \)-continuous, \(f^{-1}(g^{-1}(G)) = (gof)^{-1}(G) \) is \(\beta_{wg} \)-open and \(\beta_{wg} \)-closed. Hence \(gof \) is contra \(\beta_{wg} \)-continuous and \(\beta_{wg} \)-continuous function.

5. Conclusion
In this research article, we have focused on contra \(\beta_{wg} \)-continuity and its characteristics and contra \(\beta_{wg} \)-irresolute in topological spaces. Further with help these functions almost contra \(\beta_{wg} \)-continuous functions, contra \(\beta_{wg} \)-closed functions were studied.

6. Acknowledgement
The authors would like to gratefully thank the referees for their useful comments and suggestions.

7. References
15. Govinappa Navalagi, Kantappa Bhavikatti M. On \(\beta_{wg} \)-Continuous and \(\beta_{wg} \)-Irresolute Functions in Topological Spaces, IJMTT., (May), 2018; 57(1):9-20.