International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452 Maths 2018; 3(5): 140-143 © 2018 Stats & Maths www.mathsjournal.com Received: 17-07-2018 Accepted: 18-08-2018

Sakin Demir

Soĝanli Mah. Mahmudiye Sok. No. 30 Kat 1, Osmangazi, Bursa, Turkey

Inequalities for square functions induced by operators on a Hilbert space

Sakin Demir

Abstract

Let $U: H \to H$ be a unitary operatör on a Hilbert space H and

$$A_n f = \frac{1}{n} \sum_{i=1}^n U^i f$$

for all $f \in H$. Suppose that (n_k) is a lacunary sequence with no non-trivial common divisor, then there exists a positive constant C such that

$$||f||_{H} \le C \left(\sum_{k=1}^{\infty} ||A_{n_{k+1}} f - A_{n_{k}} f||_{H}^{2} \right)^{1/2}$$

for all
$$f \in H$$
 with $\int f = 0$.

Let T be a contraction on a Hilbert space H and let

$$A_n(T)f = \frac{1}{n} \sum_{i=1}^n T^i f$$

for all $f \in H$. Suppose that (n_k) is a lacunary sequence with no non-trivial common divisor, then there exist a Hilbert space K containing H as a closed subspace, and an ortogonal projection $P:K \to H$ such that

$$\left\| P \right\| \cdot \left\| f \right\|_{H} \leq C \left(\sum_{k=1}^{\infty} \left\| A_{n_{k+1}}(T) f - A_{n_{k}}(T) f \right\|_{H}^{2} \right)^{1/2}$$

for all $f \in H$ with $\int f = 0$, where C is a positive constant.

Mathematics Subject Classification: 47A63.

Keywords: Square function, unitary operator, contraction, Hilbert space, inequality

Introduction

Let (n_k) be an increasing sequence of positive integers we say that (n_k) is lacunary if there exists a constant $\beta > 1$ such that

$$\frac{n_{k+1}}{n_k} \ge \beta$$

for all $k \ge 1$.

Our first result is the following:

Theorem 1. Let $U: H \to H$ be a unitary operator on a Hilbert space H and

Correspondence Sakin Demir Soĝanlı Mah. Mahmudiye Sok. No. 30 Kat 1, Osmangazi, Bursa, Turkey International Journal of Statistics and Applied Mathematics

$$A_n f = \frac{1}{n} \sum_{i=1}^n U^i f$$

for all $f \in H$. Suppose that (n_k) is a lacunary sequence with no non-trivial common divisor, then there exists a positive constant C such that

$$\|f\|_{H} \le C \left(\sum_{k=1}^{\infty} \|A_{n_{k+1}} f - A_{n_{k}} f\|_{H}^{2} \right)^{1/2}$$

for all $f \in H$ with $\int f = 0$.

Proof. Let

$$a_n(\alpha) = \frac{1}{n} \sum_{k=1}^n \alpha^k$$

for $\alpha \in T$. By the spectral theorem for unitral operators, it is sufficient to show that there exists a constnt c such that for all α , $|\alpha| = 1$, $\alpha \ne 1$,

$$\sum_{k=1}^{\infty} \left| a_{n_{k+1}}(\alpha) - a_{n_k}(\alpha) \right|^2 \ge c$$

The fact that the sequence (n_k) has no non-trivial common divisor guarantees that for sufficiently large N

$$\sum_{k=1}^{\infty} \left| a_{n_{k+1}}(\alpha) - a_{n_k}(\alpha) \right|^2$$

is never zero for $|\alpha|=1$ except for $\alpha=1$. Thus we only need to consider α near 1. Let $\alpha=e^{it}$ with $\pi\leq t\leq\pi$. Suppose that $\frac{1}{n_1}\geq |t|>0$. Then for some k we have $\frac{1}{n_k}\geq |t|\geq \frac{1}{n_{k+1}}$. On the other hand, it is easy to verify that

$$\left|a_{n_{k+1}}(\alpha)-a_{n_k}(\alpha)\right| = \left|\frac{\alpha^{n_{k+1}}-1}{n_{k+1}(\alpha-1)}-\frac{\alpha^{n_k}-1}{n_k(\alpha-1)}\right|$$

$$\geq \left| \frac{\sin(n_{k+1}t)}{n_{k+1}t} - \frac{\sin(n_kt)}{n_kt} \right|$$

$$\geq \gamma \left(1 - \frac{n_k}{n_{k+1}}\right)$$

$$\geq \gamma \left(1 - \frac{1}{\beta}\right)$$

for some constant γ where β is the lacunarity constant for the sequence (n_k) . Thus we have

$$\sum_{k=1}^{\infty} \left| a_{n_{k+1}}(\alpha) - a_{n_k}(\alpha) \right|^2 \ge \gamma^2 \left(1 - \frac{1}{\beta} \right)^2$$

and this completes the proof.

Corollary 2. Let X be a measure space, $U:L^2(X)\to L^2(X)$ be a unitary operator and

$$A_n f = \frac{1}{n} \sum_{i=1}^n U^i f$$

for all $f \in L^2(X)$. Suppose that (n_k) is a lacunary sequence with no non-trivial common divisor, then there exists a positive constant C such that

$$||f||_{2} \le C \left\| \left(\sum_{k=1}^{\infty} \left| A_{n_{k+1}} f - A_{n_{f}} f \right|^{2} \right)^{1/2} \right\|_{2}$$

for all $f \in L^2(X)$ with $\int f = 0$.

Proof. When $H = L^2(X)$ we clearly have

$$\left(\sum_{k=1}^{\infty} \left\| A_{n_{k+1}} f - A_{n_k} f \right\|_{H}^{2} \right)^{1/2} = \left\| \left(\sum_{k=1}^{\infty} \left| A_{n_{k+1}} f - A_{n_k} f \right|^{2} \right)^{1/2} \right\|_{2}$$

and the Corollary follows from Theorem 1.

Let T be an operator on a Hilbert space H and define

$$Sf = \left(\sum_{k=1}^{\infty} \left\| A_{n_{k+1}}(T) f - A_{n_k}(T) f \right\|_{H}^{2} \right)^{1/2}.$$

Then we have the following result:

Theorem 3. Let T be a contraction on a Hilbert space H and let

$$A_n(T)f = \frac{1}{n} \sum_{i=1}^n T^i f$$

for all $f \in H$. Suppose that (n_k) is a lacunary sequence with no non-trivial common divisor, then there exist a Hilbert space K containing H as a closed subspace, and an ortogonal projection $P: K \to H$ such that

$$||P|| \cdot ||f||_{H} \le C \left(\sum_{k=1}^{\infty} ||A_{n_{k+1}}(T)f - A_{n_{k}}(T)f||_{H}^{2} \right)^{1/2}$$

for all $f \in H$ with $\int f = 0$, where C is a positive constant.

Proof. By the dilation theorem (see Sz-Nagy and Foias [1]) there exists a Hilbert space K containing H as a closed subspace, an orthogonal projection $P:K\to H$, and a unitary operator $U:K\to K$ with $PU^if=T^if$ for all $i\geq 0$ and $f\in H$. Let now $f\in H$. Then by Theorem 1 we have

$$\sum_{k=1}^{N} \left\| A_{n_{k+1}}(T) f - A_{n_k}(T) f \right\|_{H}^{2} = \sum_{k=1}^{N} \left\| P(A_{n_{k+1}}(U) f - A_{n_k}(U) f \right\|_{H}^{2}$$

$$= \|P\|^2 \sum_{k=1}^{N} \|A_{n_{k+1}}(U)f - A_{n_k}(U)f\|_{H}^2$$

International Journal of Statistics and Applied Mathematics

$$\geq C \|f\|_{H}^{2} \|P\|^{2}$$

for some positive constant C.

Corollary 4. Let X be a measure space, T be a contraction on $L^2(X)$ and define

$$A_n(T)f = \frac{1}{n} \sum_{i=1}^n T^i f$$

for all $f \in L^2(X)$. Define

$$Sf(x) = \left(\sum_{k=1}^{\infty} \left| A_{n_{k+1}}(T) f(x) - A_{n_k}(T) f(x) \right|^2 \right)^{1/2}.$$

Suppose that (n_k) is a lacunary sequence with no non-trivial common divisor, then there exists a Hilbert space K containing $L^2(X)$ as a closed subspace, and an orthogonal projection $P:K\to L^2(X)$ such that

$$||P|| \cdot ||f||_2 \le C ||Sf||_2$$

for all $f \in L^2(X)$ with $\int f = 0$, where C is a positive constant.

Proof. When $H = L^2(X)$ we have

$$\left(\sum_{k=1}^{\infty} \left\|A_{n_{k+1}}(T)f - A_{n_k}(T)f\right\|_H^2\right)^{1/2} = \left\|\left(\sum_{k=1}^{\infty} \left|A_{n_{k+1}}(T)f - A_{n_k}(T)f\right|^2\right)^{1/2}\right\|_2.$$

Thus the Corollary follows from Theorem 3.

References

1. Sz-Nagy B, C Foias. Analyse harmonique des operateures de l'espace de Hilbert, Akad. Kiado, Budapest. Mason, paris, 1967.