ISSN: 2456-1452 Maths 2020; 5(4): 186-190 © 2020 Stats & Maths www.mathsjournal.com Received: 04-05-2020 Accepted: 06-06-2020

Dr. KL Kaushik

Associate Professor, (Head) Department of Mathematics Aggarwal College, Ballabgarh, Faridabad, Haryana, India

Invariant subspaces of bilateral shift on $L^2(S^1)$

Dr. KL Kaushik

Abstract

In this Paper, we have proved that all the invariant subspaces of the bilateral shift on $L^2(S^1)$ is of the form φH_b^2 where φ is a function in L^∞ which is equals to 1 almost everywhere.

Keywords: Measurable, essentially bounded, commutant, unitary

1. Introduction

Notation $S^1 = \{z \in \mathbb{C}: |z| = 1\}$ i.e S^1 is the circle with center origin and radius 1.

1.1 Definition ($L^2(S^1)$)

It is defined as the space of all the equivalence classes of functions [3] that are Lebesgue measurable on S^1 and square integrable on S^1 with respect to Lebesgue measure normalized such that measure of S^1 is 1.

$$L^2(S^1) = \{f: f \ is \ Lesbesgue \ measurable \ on \ \mathbb{S}^{\mathbb{M}} \ and \ \frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^2 d\theta < \infty \}$$

Inner product on $L^2(S^1)$ is given by –

$$\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \overline{g(e^{i\theta})} d\theta$$

Note $L^2(S^1)$ is an Hilbert-space with the orthonormal basis given by $\{e_n : n \in \mathbb{Z}\}$ where $e_n(e^{i\theta}) = e^{in\theta}$.

Therefore

$$L^{2}(S^{1}) = \left\{ f : f = \sum_{n = -\infty}^{n = \infty} \langle f, e_{n} \rangle e_{n} \right\}.$$

1.2 Definition (H_c^2 space)

$$H_c^2 = \{ f \in L^2(S^1) : \langle f, e_n \rangle = 0 \text{ for negative value of } n \}$$

$$(\infty)$$

$$H_c^2 = f \in L^2(S^1) : f = X < f, e_n > e_n. \ n=0$$

 $\widehat{H^2}$ is a closed subspace of $L^2(S^1)$ whose negative Fourier coefficients are 0 \therefore $\{e_n\colon n=0,1,\ldots\}$ are orthonormal basis of $\widehat{H^2}$

1.3 Wandering Subspace

A closed N of a Hilbert-Space H is said to be a Wandering subspace of a bounded linear operator T on H if N is orthogonal to $T^k(N)$ for all $k \ge 0$

Corresponding Author: Dr. KL Kaushik

Associate Professor, (Head) Department of Mathematics Aggarwal College, Ballabgarh, Faridabad, Haryana, India

1.4 The Wolde's Decomposition Theorem

Let *T* be an isometric operator on a Hilbert-Space *H* then

$$H = \bigcap_{k=0}^{\infty} T^{k}(H) \bigoplus N \bigoplus T(N) \bigoplus \dots$$

Where

 $H = T(H)^{M}N$

1.4 Definition (L^{∞})

It is defined as the Collection of all the essentially bounded measurable functions on the circle S^1 . For a function $\varphi \in L^{\infty}$ the essential norm is defined by

$$||\varphi||_{\infty}=\inf\{r:m\{e^{\iota\theta};|\varphi(e^{\iota\theta})|>r\}=0\}$$

where m is normalized lesbesgue measure.

Note

$$|\varphi(e^{i\theta}| \leq ||\varphi||_{\infty} a.e$$

1.6 Multiplication Operator by a L^{∞} function

For a function $\varphi \in L^{\infty}$ the multiplication operator on $L^2(S^1)$ is defined by $S_{\varphi}: L^2(S^1) \to L(S^1)$

$$f \rightarrow \varphi f$$

Note

$$\int_{0}^{2\pi} |\phi(e^{\iota \theta})|^{2} |f(e^{\iota \theta})|^{2} d\theta \leq ||f||^{2} ||\phi||_{\infty}^{2} < \infty \ \ since \ \ (|\phi(e^{\iota \theta})| \leq ||\phi||_{\infty} a.e)$$

$$\Rightarrow \varphi f \in L^2(S^1)$$

 $\therefore S_{\omega}$ is well defined

1.7 Bilateral Shift

Bilateral shift on $L^2(S^1)$ is an operator $B: L^2(S^1) \to L^2(S^1)$ defined by

$$Bf(ei\theta) = ei\theta f(ei\theta)$$

Note B is an isometric Unitary Operator [2] whose adjoint is the bounded linear operator $B^2: L^2 \to L^2$ given by

$$B?f(ei\theta) = e^{-i}\theta f(ei\theta)$$

i.e. $B^{?}B = I = BB^{?}$

1.8 Invariant Subspace

A Closed subspace N of a Hilbert-Space H is said to be an Invariant Subspace of s Bounded linear operator T on H if $T(N) \subseteq N$

Theorem 1.1. *N* is an invariant subspace of T iff N^{\perp} is an invariant subspace of $T^{?}$ *Proof.* Let N is an invariant subspace of T

$$\Rightarrow T(N) \subseteq N$$

Let $y \in T^{?}(N^{\perp})$ be arbitrary then $\exists x \in N^{\perp}$ such that

$$y = T^{?}(x)$$

$$\Rightarrow \langle y,n \rangle = \langle T^2(x),n \rangle = \langle x,T(n) \rangle = 0 \quad \forall n \in \mathbb{N}$$

$$(\because T(\mathbb{N}) \subseteq \mathbb{N})$$

$$\Rightarrow y \in \mathbb{N}^{\perp} \Rightarrow T^2(\mathbb{N}^{\perp}) \subseteq \mathbb{N}^{\perp}$$

 $\therefore N^{\perp}$ is an invariant subspace of $T^{?}$

Conversely

 $\overline{\text{Let } N^{\perp} \text{ is an }}$ invariant subspace of $T^{?}$

Let $y \in T(N)$ be arbitrary then $\exists x \in N$ such that

$$\Rightarrow$$
 $y = T(x)$

$$\Rightarrow \langle y, n \rangle = \langle T(x), n \rangle = \langle x, T^{?}(n) \rangle = 0 \ \forall \ n \in \mathbb{N}^{\perp}$$
 (:: $T^{?}(\mathbb{N}^{\perp}) \subseteq \mathbb{N}^{\perp}$)

 $y \in N \Rightarrow T(N) \subseteq N$

: N is an invariant subspace of T

1.9 Reducing Subspace

An invariant Subspace N of a bounded linear operator T on a Hilbert Space H if

$$T(N) \subseteq N \ and \ T(N^{\perp}) \subseteq N^{\perp}$$

i.e.
$$T(N) \subseteq N$$
 and $T^{?}(N) \subseteq N$

Theorem 1.2. If N is a reducing subspace of a unitary operator T on a hilbert space H then T(N) = N *Proof.* Since N is a reducing subspace of T

$$\Rightarrow$$
 $T(N) \subseteq N$ and $T^{?}(N) \subseteq N^{[1]}$

Since T is a Unitary Operator

$$\Rightarrow TT^? = I = T^?T$$

Then

$$N = TT^{?}(N) \subseteq T(N) \ (\because T^{?}(N) \subseteq N)$$

 $\Rightarrow T(N) = N$

Result (?) If E is a non zero Reducing Subspace of bilateral shift B on $L^2(S^1)$ then \exists a subset E of S^1 of positive measure such that

$$E = X_E L^2(S^1)$$

2. Invariant subspace of bilateral shift on $L^2(S^1)$

Theorem 2.1. Let N be an invariant(not reducing) subspace of bilateral shift B on $L^2(S^1)$ then there exist a function φ in L^∞ such that $N = \varphi H_c^2$ with essential norm 1.

Proof. Since N is an Invariant but not reducing subspace of bilateral shift $B: L^2(S^1) \to L^2(S^1)$

$$\Rightarrow$$
 B(N) (N (: Theorem 1.2)

Since B is an Isometry and N is a closed subspace of $L^2(S^1)$. Then by Wolde's Decomposition Theorem (1.3) we have

$$\begin{array}{l}
\infty \\
N = {}^{\backslash}B^{k}(N)^{M}K^{M}B(K)^{M}B^{2}(K)^{M}.....n \\
n=0
\end{array}$$

Where $N = K^{L}B(N)$ (: since B is an isometry then B(N) is a closed.) Since $K = \{0\}$ then we can find $\varphi \in N$ such that $\|\varphi\|_{L^{2}} = 1$

1. Claim : φ is a function in L^{∞} with essential norm 1

Since $\varphi \in K \subset B(N)^{\perp}$

$$\Rightarrow \phi \perp B^{k}(\phi) \text{ for all } k \in \mathbb{N} \qquad (\because B^{k}(N) \subseteq B(N))$$

$$\Rightarrow <\phi, B^{k}(\phi) >= 0 \quad \forall k \in \mathbb{N}$$

$$\Rightarrow \frac{1}{2\pi} \int_{0}^{2\pi} |\phi(e^{i\theta})|^{2} e^{ki\theta} d\theta = 0 \quad \forall k \in \mathbb{N} \qquad (1)$$

Taking conjugate of (1) we get

$$\Rightarrow \frac{1}{2\pi} \int_0^{2\pi} |\phi(e^{i\theta})|^2 e^{-k\iota\theta} d\theta = 0 \quad \forall \quad k \in \mathbb{N}$$
 (2)

Since $\varphi \in L^2 \Rightarrow |\varphi|^2 \in L^1(S^1)$ Then from (1) and (2) we have

$$< |\varphi|^2, e_k > = 0 \ \forall \ k = \pm 1, \pm 2, \dots$$

And

$$||\phi||_{L^2} = 1 \Rightarrow \frac{1}{2\pi} \int_0^{2\pi} |\phi(e^{i\theta})|^2 d\theta = 1 \Rightarrow \langle |\phi|^2, e_0 \rangle = 1$$
$$\Rightarrow |\phi(e^{i\theta})| = 1 \quad a.e.$$

 $\therefore \varphi$ is a function in L^{∞} with essential norm 1.

2. Claim: $K = \text{span}(\varphi) = \langle \varphi \rangle$

Suppose not then \exists a function $\psi \in K$ such that $\psi \perp \varphi$ and $||\psi||_L 2 = 1$

Then same as claim 1 we can also show that ψ is a function in L^{∞} with essential norm 1 Since

$$\varphi \perp \psi \Rightarrow \varphi \perp B^k(\psi) \text{ and } B^k(\varphi) \perp \psi \ \forall \ k \in \mathbb{N} \quad (\because B^K(N) \subset B(N))$$

$$\Rightarrow \frac{1}{2\pi} \int_0^{2\pi} \phi(e^{i\theta}) \overline{\psi(e^{i\theta})} e^{-ki\theta} d\theta = 0 \quad \forall \quad k = 0, \pm 1, \pm 2, \dots$$
$$\Rightarrow \phi \psi = 0$$

which is a contradiction since $|\varphi(e^{i\theta})| = 1 = |\psi(e^{i\theta})| a.e.$

$$\therefore K = span(\varphi) = <\varphi>$$

Then we have

$$N = \bigcap_{n=0}^{\infty} B^{k}(N) \bigoplus \langle \phi \rangle \bigoplus B(\langle \phi \rangle) \bigoplus B^{2}(\langle \phi \rangle) \bigoplus \dots$$

3. Claim:
$$<\phi>\bigoplus B(<\phi>)\bigoplus B^2(<\phi>)\bigoplus.....=\phi\widehat{H^2}$$

Let let $f \in L.H.S$ then

$$f = \alpha_1 \varphi + \alpha_2 \varphi e_1 + \alpha_3 \varphi e_2 + \dots \in \varphi H_c^2$$
 (: By Definition1.2)
Conversely, let $f \in \varphi H_c^2$

$$\Rightarrow f = {}^{\mathsf{X}} < f, e_n > \varphi e_n$$

n=0

which clearly lies in the L.H.S. Hence the claim Then

$$\begin{array}{l}
\infty \\
N = \ \ Bk(N)M\varphi Hc2 \\
n=0
\end{array}$$

4. Claim:
$$N=\phi \widehat{H^2}$$

Clearly

 $\backslash k$

B(N)

n=0

is a reducing subspace of bilateral shift B. Then by the Result (?) \exists an subset E of S^1 such thatt

$$\bigcap_{n=0}^{\infty} B^k(N) = X_E L^2$$

$$\Rightarrow N = X_E L^2 \bigoplus \phi \widehat{H}^2$$

$$\Rightarrow X_E \phi \perp \phi \Rightarrow \frac{1}{2\pi} \int_0^{2\pi} X_E(e^{i\theta}) |\phi(e^{i\theta})|^2 d\theta = 0$$
$$\Rightarrow \frac{1}{2\pi} \int_E |\phi(e^{i\theta})|^2 d\theta = 0$$

 $\Rightarrow |\varphi|$ is zero on E

But

$$|\varphi| = 1 \implies m(E) = 0 \ a.e.$$

Hence

$$N = \phi \widehat{H^2}$$

where φ is a function in L^{∞} of essential norm 1.

3. Conclusion

We proved the results that help to identify all the invariant subspaces of Bilateral shift on L^2 which is of the form φH_b^2 where φ is a function in L^∞ which is equals to 1 almost everywhere which results to make the study of these invariant subspaces much easier.

4. References

- 1. Erwin Kreyszig. Introductory functional analysis with applications, wiley New York, 1978, 1.
- 2. Rub'en Mart'ınez-Avendan A, Peter Rosenthal. An introduction to operators on the Hardy-Hilbert space, 237. Springer Science & Business Media, 2007.
- 3. Halsey Lawrence Royden et al. Real analysis. Prentice Hall, 2010.