International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452 Maths 2016; 1(3): 34-35 © 2016 Stats & Maths www.mathsjournal.com Received: 08-07-2016 Accepted: 09-08-2016

Qingjun Kong

Department of Mathematics, Tianjin Polytechnic University, Tianjin, People's Republic of China

Shuai Wang

Department of Mathematics, Tianjin Polytechnic University, Tianjin, People's Republic of China

A subgraph of conjugacy class graph of finite groups

Qingjun Kong and Shuai Wang

Abstract

Let G be a finite group and let G^* be the set of elements of prime power order of G. Let $\Gamma(G^*)$ denote the prime graph built on the set of conjugacy class sizes of G^* . In this paper, we consider the situation when $\Gamma(G^*)$ has some special vertices, and our aim is to investigate the influence of this property on the group structure of G.

Mathematics Subject Classification: 20D15, 20E45

Keywords: Finite group, conjugacy class sizes, graphs

1. Introduction

Throughout the following, G always denotes a finite group. For an element g of a group G we denote by g^G the conjugacy class containing g. Let $cs(G) = \{|g^G| | g \in G\}$ be the set of the sizes of the conjugacy classes of G and $V(G) = \{p \text{ prime } | p \text{ divides n, n} \in cs(G)\}$. In other words, V (G) is the set of the primes dividing the size of some conjugacy class of G. The notation suggests that V (G) is the set of vertices, a graph which we $call_{\Gamma(G^*)}$ the conjugacy class graph of G. The rest of our notation and terminology are standard.

It is well known that there is a strong relation between the structure of a group and the sizes of its conjugacy classes. Many results are extensively studied by many authors (see, [1]-[7], [9]). For instance, a classical remark (see [9, Theorem 33.4]) concerning the influence of cs (G) on the group structure of G is the following:

Theorem A. Let G be a group and p a prime number. Then $p \notin V(G)$ if and only if G has a central Sylow p-subgroup.

In view of that, one can ask whether particular subsets of cs (G) still encode nontrivial information on the structure of G. For instance, let G^* be the set of elements of prime power orders of G. In this note, we study the interplay between the structure of a finite group G and the set cs (G^*) , a subset of cs (G). We still use V (G^*) to denote the sets of vertices, a graph $\Gamma(G^*)$ which we call a sub graph of conjugacy class graph of G and obtain a complete extension of Theorem A. Our main result is the following:

Theorem B. Let G be a group and p a prime number. Then $p \notin V(G^*)$ if and only if G has a Central Sylow p-subgroup.

2. Preliminaries

The following Lemma is one application of the Classification of the Finite Simple Groups, which is useful for our main results.

Lemma 2.1 ([8, Theorem 1]) Let G be a transitive permutation group on a set Ω with $|\Omega| > 1$. Then there exist a prime p and an element $x \in G$ of order a power of p such that x acts without fixed points on Ω .

Correspondence: Qingjun Kong

Department of Mathematics, Tianjin Polytechnic University, Tianjin, People's Republic of China

3. Proof of the Main Theorem

Proof of Theorem B. If a Sylow p-subgroup P of G is the center of G, then $P \le C_G(x)$ for all $x \in G$ and $p \notin V(G)$.

Conversely, suppose that p is a prime such that $p \notin V(G^*)$ and let $P \in Syl_p(G)$, we prove that $P \le Z(G)$. At first we conclude that P is a unique Sylow p-subgroup of G, that is, $P \triangleleft G$. Let $\Omega = Syl_p(G)$. If $|\Omega| = 1$, we are done. Assume that $|\Omega| > 1$. We consider the conjugacy action of G on Ω . By Sylow Theorems we know that G acts transitively on Ω . Thus by Lemma 2.1, there exists a prime r and an r-element $g \in G$ such that g acts without fixed point on Ω , that is, for any $P \in Syl_p(G)$, $P^s \ne P$. Suppose $r \ne p$. Then p does not divide $|g^G| = |G: C_G(g)|$ according to the previous argument. So there exists an element $w \in G$ such that $P^w \le C_G(g)$ by Sylow Theorems, which implies that $(P^w)^s = P^w$, a contradiction. If v = p, also by Sylow Theorems, there exists an element $v \in G$ such that $v \in G$

In the following we only need to prove P is abelian. For any element $y \in P$, then p does not divide $|y^G| = |G:C_G(y)|$ according to the hypotheses. Thus $P \le C_G(x)$ and P is abelian. Thus G has a central Sylow p-subgroup.

4. Acknowledgements

The research is supported by the NNSF of China (11301138). The paper is dedicated to Professor Xiuyun Guo for his 60th birthday.

5. References

- 1. Baer R. Group elements of prime power index, Trans. Amer. Math. Soc. 1953; 75:20-47.
- 2. Beltran A, Felipe MJ. Variations on a theorem by Alan Camina on conjugacy class sizes, J. Algebra 2006; 296:253-266.
- 3. Bertram E, Herzog M, Mann A. On a graph related to conjugacy classes of groups, Bull. Lond. Math. Soc. 1990; 22:569-575.
- 4. Camina AR, Camina RD. Implications of conjugacy class size, J. Group Theory, 1998; 1:257-269.
- 5. Casolo C, Dolfi S, Pacifici E, Sanus L. Groups whose prime graph on conjugacy class sizes has few complete vertices, J. Algebra. 2012; 364:1-12.
- Casolo C, Dolfi S. Products of primes in conjugacy class sizes and irreducible character degrees, Israel J. of Math. 2009; 174:403-418.
- 7. Dolfi S, Pacifici E, Sanus L. Groups whose vanishing class sizes are not divisible by a given prime, Arch. Math. 2010; 94:311-317.
- 8. Fein B, Kantor WM, Schacher M. Relative Brauer Groups II. J. Reine Angew. Math. 1981; 328:39-57.
- 9. Huppert B. Character Theory of Finite Groups, De Gruyter, Berlin, 1998.