A subgraph of conjugacy class graph of finite groups

Qingjun Kong and Shuai Wang

Abstract
Let G be a finite group and let G^{*} be the set of elements of prime power order of G. Let $\Gamma(G^{*})$ denote the prime graph built on the set of conjugacy class sizes of G^{*}. In this paper, we consider the situation when $\Gamma(G^{*})$ has some special vertices, and our aim is to investigate the influence of this property on the group structure of G.

Mathematics Subject Classification: 20D15, 20E45

Keywords: Finite group, conjugacy class sizes, graphs

1. Introduction
Throughout the following, G always denotes a finite group. For an element g of a group G we denote by g^{*} the conjugacy class containing g. Let $cs(G)=\{||g^{*}|||g\in G\}$ be the set of the sizes of the conjugacy classes of G and $V(G)=\{p$ prime $| p$ divides $n, n\in cs(G)\}$. In other words, $V(G)$ is the set of the primes dividing the size of some conjugacy class of G. The notation suggests that $V(G)$ is the set of vertices, a graph which we call $\Gamma(G^{*})$ the conjugacy class graph of G. The rest of our notation and terminology are standard.

It is well known that there is a strong relation between the structure of a group and the sizes of its conjugacy classes. Many results are extensively studied by many authors (see, [1]-[7], [9]). For instance, a classical remark (see [9, Theorem 33.4]) concerning the influence of $cs(G)$ on the group structure of G is the following:

Theorem A. Let G be a group and p a prime number. Then $p\not\in V(G)$ if and only if G has a central Sylow p-subgroup.

In view of that, one can ask whether particular subsets of $cs(G)$ still encode nontrivial information on the structure of G. For instance, let G^{*} be the set of elements of prime power orders of G. In this note, we study the interplay between the structure of a finite group G and the set $cs(G^{*})$, a subset of $cs(G)$. We still use $V(G^{*})$ to denote the sets of vertices, a graph $\Gamma(G^{*})$ which we call a sub graph of conjugacy class graph of G and obtain a complete extension of Theorem A. Our main result is the following:

Theorem B. Let G be a group and p a prime number. Then $p\not\in V(G^{*})$ if and only if G has a Central Sylow p-subgroup.

2. Preliminaries
The following Lemma is one application of the Classification of the Finite Simple Groups, which is useful for our main results.

Lemma 2.1 ([8, Theorem 1]) Let G be a transitive permutation group on a set Ω with $|\Omega|>1$. Then there exist a prime p and an element $x\in G$ of order a power of p such that x acts without fixed points on Ω.
3. Proof of the Main Theorem

Proof of Theorem B. If a Sylow p-subgroup P of G is the center of G, then \(P \leq C_G(x) \) for all \(x \in G \) and \(p \not\in \mathbb{V}(G) \).

Conversely, suppose that \(p \) is a prime such that \(p \not\in \mathbb{V}(G) \) and let \(P \in \text{Syl}_p(G) \), we prove that \(P \leq Z(G) \). At first we conclude that P is a unique Sylow p-subgroup of G, that is, \(P \lhd G \). Let \(\Omega = \text{Syl}_p(G) \). If \(|\Omega|=1 \), we are done. Assume that \(|\Omega|>1 \). We consider the conjugacy action of G on \(\Omega \). By Sylow Theorems we know that G acts transitively on \(\Omega \). Thus by Lemma 2.1, there exists a prime \(r \) and an \(r \)-element \(g \in G \) such that \(g \) acts without fixed point on \(\Omega \), that is, for any \(P \in \text{Syl}_r(G) \), \(P \neq P^g \). Suppose \(r \neq p \).

Then \(p \) does not divide \(|g^G| = |G: C_G(g)| \) according to the previous argument. So there exists an element \(w \in G \) such that \(P^w \leq C_G(g) \) by Sylow Theorems, which implies that \((P^w)^f = P^w \), a contradiction. If \(r=p \), also by Sylow Theorems, there exists an element \(z \in G \) such that \(g \in P^z \), which implies that, \(P^z = P^g \) again a contradiction. Now by Schur-Zassenhaus Theorem, there exists a Hall \(p^r \)-subgroup K of G such that \(G=PK \) and all Hall \(p^r \)-subgroup of G are conjugate. Let \(x \) be an element of prime power order of K. Then \(p \) does not divide \(|x^K| \) by the previous argument. Hence \(P \leq C_G(x) \). Since K can be generated by elements of prime power orders, we have that \(P \leq C_G(x) \). So \(G=P \times K \).

In the following we only need to prove P is abelian. For any element \(y \in P \), then \(p \) does not divide \(|y^K| = |G: C_G(y)| \) according to the hypotheses. Thus \(P \leq C_G(x) \) and P is abelian. Thus G has a central Sylow p-subgroup.

4. Acknowledgements

The research is supported by the NNSF of China (11301138). The paper is dedicated to Professor Xiuyun Guo for his 60th birthday.

5. References

2. Beltran A, Felipe MJ. Variations on a theorem by Alan Camina on conjugacy class sizes, J. Algebra 2006; 296:253-266.