Almost periodic points and minimal sets in topological spaces

Dr. Satya Prakash Gupta

Abstract
This paper we characterize in this paper, we need the following terminology and concepts. Let \(N = \{0,1,2,\ldots\} \) be the set of natural numbers and let \(Z = \{0, \pm 2, \ldots\} \) be the set of integers. For a set \(A, |A| \) denotes the cardinality of the set \(A \). If \(f : X \to X \) is a continuous function of a topological space \(X \), then \(f_0 = \text{Id} \) \((n \geq 1) \) denotes the composition with itself \(n \) times. The orbit of a point \(x \in X \) under \(f \), denoted by \(O(x, f) \), is the set \(\{f^n(x) \mid n \in \mathbb{N}\} \). Also if \(f : X \to X \) is a homeomorphism, then we put \(f^{-n} (f^{-1}) = n (n \geq 1) \), where \(f^{-1} \) is the inverse of \(f \). The two-sided orbit of a point \(x \in X \) under \(f \), denoted by \(O(x, f) \), is the set \(\{f^n(x) \mid n \in \mathbb{Z}\} \). A point \(x \in X \) is called a periodic point of \(f \) if there exists a positive number \(N \in \mathbb{N} \) such that \(f^n(x) = x \). A point \(x \in X \) is called an almost periodic point of \(f \) provided that for any neighborhood \(U \) of \(x \) in \(X \), there exists \(N \in \mathbb{N} \) such that \(\{f^n(x) \mid n \in \mathbb{Z}\} \). We denote the set of all almost periodic points of \(f \) by \(\text{AP}(f) \). A subjet of \(X \) is a compact minimal set if \(W \) is a closed invariant set of \(f \) and \(W \) does not contain any proper closed invariant set. A map \(f : X \to X \) is minimal if \(X \) is a minimal set. It is well known that if \(f : S^1 \to S^1 \) is an irrational rotation of the unit circle \(S^1 \), then \(f \) is minimal.

Keywords: Periodic points, minimal, topological

Introduction
A topological space \(X \) is a \(T_1 \)-space if for any distinct point \(x \) and \(y \) in \(X \), there exist open sets \(U \) and \(V \) such that \(x \in U \), \(y \in V \) and \(x \notin V \). A topological space \(X \) is Hausdorff space if for any distinct points \(x \) and \(y \) in \(X \), there exist disjoint open sets \(U \) and \(V \) such that \(x \in U \) and \(y \in V \). A topological space \(X \) is regular space if for any closed subset \(W \) of \(X \), any point \(x \in X \) and \(W \), there exist disjoint open sets \(U \) and \(V \) such that \(x \in U \) and \(W \subseteq V \). A topological space \(X \) is an \(! \)-regular space if for any closed subset \(W \) of \(X \), any point \(x \in X \) and \(W \), and any countable subset \(A \) of \(W \), there exist disjoint open sets \(U \) and \(V \) such that \(x \in U \) and \(A \subseteq V \) [1, 2, 3].

Now we assert and prove the main theorem on compact minimal set in topological dynamics.

Theorem:-
Let \(E \) be a compact minimal set in \(X \). The set \(E \) is almost periodic minimal if and only if the flow \(\pi \) is equicontinuous on \(E \).

Proof:-
Let us assume \(E \) be almost periodic minimal set and let \(\pi = H(x) \), where \(x \) is and almost periodic point. We claim that the flow \(\pi \) is equicontinuous on \(E \).

We first show that \(\pi \) is equicontinuous on \(y(x) \). Let an index \(a \in A \) be preassigned and select \(b \in A \), so by the uniformity condition if follows that \(X_i \in V_b(x_i+1), i = 1,2,3 \)

\[x_i \in V_b(x_i) \quad \ldots \quad \ldots \quad \ldots \quad (1) \]

Let \(L \) be an inclusion interval for the relatively dense set \(E (b, \pi x) \).

Since the continuity of \(\pi \) restricted to the compact set \(Ex \) is uniform, for every \(b \in A \) there exists and index \(c \) such that for \(y, z \in y \in V_c(z) \) implies that,

\[\pi(y, t) \in V_b(\pi(z, t)) \quad \text{for all} \quad t \in R \quad \ldots \quad \ldots \quad (2) \]
In order to show that π is equicontinuous on $\gamma(x)$ for any tow points $\pi(x, t_1)$ and $\pi(x, t_2)$ of $\gamma(x), \pi(x, t_1 + t) \in V_2(\pi(x, t_2 + t))$ whenever $\pi(x, t_1 + t) \in V_2(\pi(x, t_2 + t))$ for all $t \in \mathbb{R}.$ Let $t \in \mathbb{R}$ be fixed. Then there exists a $T \in E(b, \pi x)$ such that $0 \leq t + r \leq L.$ From the definition of b-displacement of $\pi x,$ it follows that, $\pi(x, t + t_1) \in V_1(\pi(x, t_1 + t))$ and $\pi(x, t + t_1 + t) \in V_2(\pi(x, t_2 + t))$

Applying the condition (2) of uniform continuity one has $\pi(x, t_1 + t) \in V_2(\pi(x, t_2 + t))$ whenever $\pi(x, t_1) \in V_2(\pi(x, t_2))$ i.e., the equicontinuity of π on $\gamma(x)$ follows.

In order to show that π is equicontinuous on $E,$ let $a \in A$ be any index. Then there $b \in A$ in consistent with the uniformity condition (i). By using the equicontinuity of π on $\gamma(x)$ we can choose $C \in A$ such that $\pi(x, t_1 + t) \in V_a(\pi(x, t_2 + t))$ whenever $\pi(x, t_1) \in V_a(\pi(x, t_2))$

Now let us choose d so that $x_i \in V_a(x_i) + \epsilon_i, i = 1, 2, 3$

We will now show that if y, z are points in $E = H(x)$ with $y \in V_2(z),$ then $\pi^n(y) \in V_3(\pi^n(z)),$ i.e., $\pi(y, t) \in V_3(\pi(z, t)).$

Since $y, z \in E = H(x),$ there are nets $\{\pi(x, t_n)\}$ and $\pi(x, S_n)$ in $\gamma(x)$ with $\pi(x, t_n) \to y$ and $\pi(x, S_n) \to z$ without the loss of generality. $\pi(x, t_n) \in V_2(y)$ and $\pi(x, S_n) \in V_2(z).

Since $y \in V_2(z) \Rightarrow \pi(x, S_n + t) \in V_2(\pi(x, t_n))$ for all n all $t \in \mathbb{R}.$ Thus we have two convergent nets $\{\pi(x, S_n + t)\}$ and $\{\pi(x, S_n + t)\}$ in the compact hull $H(x) = E,$ so they are uniformly convergent.

Now for the index $b \in A,$ there exists no such that $\pi(x, S_n + t) \in V_2(x, t) \text{and} \pi(x, t_n + t) \in V_2(y, t)$ for all $n \geq m_0$ and $t \in R.$ Finally, for the uniformity condition (1) where $x_1 = \pi(y, t)x_2 = \pi(x, t_1 + t)$ and $x_3 = \pi(x, S_n + t)$ and $x_4 = \pi(z, t),$ it follows that $\pi(y, t) \in V_3(\pi(z, t)).$

Conversely, let us assume that the flow π is equicontinuous on $E.$ We show that E is almost periodic minimal. Since E is compact minimal, then by Birkhoff recurrence theorem every motion in E is recurrent. Therefore, for any $x \in E$ and any index by the set $E(b, \pi x) = \{t: \pi(x, t) \in V_2(x)\}$ is relatively dense in $E.$ Let the index a be preassigned, then the resists $b \in A$ for the equicontinuity of $\pi.$ Thus we have $E(b, \pi x, t) \in V_2(x)$ for all $t \in R.$

Assuring the almost periodicity of $\pi x.$ Therefore, E is almost periodic minimal.

References