International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452

Maths 2017; 2(6): 61-64
© 2017 Stats \& Maths
www.mathsjournal.com
Received: 11-09-2017
Accepted: 12-10-2017

Kamal Gupta

PG Department of Mathematics, Guru Nanak College, Ferozepur
Cantt., Punjab, India

Integration and differentiation involving the laguerre polynomial of two variable $\mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})$

Kamal Gupta

Abstract

In this paper we obtain integration and partial differentiation involving the generalized associated Laguerre Polynomial of two variables $L_{n}^{(\alpha)}(x, y)$ which are is closely related to generalized Lagguerre Polynomial of Dattoli et al. These results provide useful extensions of well-known results of Lagguere Polynomials $\mathcal{L}_{\mathrm{n}}(\mathrm{x})$

Keywords: Laguerre Polynomials, Dattoli et al., recurrence relation

1. Introduction

Two variable one index Laguerre polynomials have been given by Dattoli et al. ${ }^{[1,3]}$.
Two variable one index Laguerre polynomials defined as
$\mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})=\mathrm{n}!\sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{(-1)^{\mathrm{r}} \mathrm{x}^{\mathrm{r}} \mathrm{y}^{\mathrm{n}-\mathrm{r}}}{(\mathrm{n}-\mathrm{r})!(\mathrm{r}!)^{2}}$
$\mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})$ are linked to the ordinary Laguerre polynomials $\mathrm{L}_{\mathrm{n}}(\mathrm{x})$ by
$\mathcal{L}_{\mathrm{n}}(\mathrm{x}, 1)=\mathrm{L}_{\mathrm{n}}(\mathrm{x})$
$\mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})=\mathrm{y}^{\mathrm{n}} \mathrm{L}_{\mathrm{n}}\left(\frac{\mathrm{x}}{\mathrm{y}}\right)$.
A generalization of (1.1) provided by the following definition of the generalized associated Laguerre polyniomials
$\mathcal{L}_{\mathrm{n}}^{(\alpha)}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{(-1)^{\mathrm{r}}(1+\alpha)_{\mathrm{n}} y^{\mathrm{n}-\mathrm{r}} \mathrm{x}^{\mathrm{r}}}{(\mathrm{n}-\mathrm{r})!\mathrm{r}!(1+\alpha)_{\mathrm{r}}}$
$=\sum_{r=0}^{n} \frac{(-1)^{r}(\alpha+n)!y^{n-r} x^{r}}{r!(n-r)!(\alpha+r)!}$,
and the generating function, we get
$\sum_{\mathrm{n}=0}^{\infty} \mathcal{L}_{\mathrm{n}}^{(\alpha)}(\mathrm{x}, \mathrm{y}) \mathrm{t}^{\mathrm{n}}=(1-\mathrm{yt})^{-\alpha-1}\left(\frac{-\mathrm{xt}}{1-\mathrm{yt}}\right)$,

Now using expansion on R.H.S. in (1.5) and after some calculation, we get
$x^{n}=\sum_{r=0}^{n} \frac{(-1)^{r} n!(1+\alpha)_{n} y^{n-r}}{(n-r)!(1+\alpha)_{r}} \mathcal{L}_{r}^{(\alpha)}(\mathbf{x}, y)$
In this paper we shall give some basic relation and properties then obtain integral and differentiation involving the generalized associated Laguerre polynomials $\mathcal{L}_{\mathrm{n}}^{(\alpha)}$ (x, y)

Integral Involving Laguerre polynomials

I. To show $\int_{0}^{\infty} e^{-s t} \quad \mathcal{L}_{\mathrm{n}}(\mathrm{xt}, \mathrm{y}) \mathrm{dt}=\frac{\mathrm{y}^{\mathrm{n}}}{\mathrm{s}}\left(1-\frac{\mathrm{x}}{\mathrm{sy}}\right)^{\mathrm{n}}$

Proof: Replace x by xt in $\mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})$ and multiply by $\mathrm{e}^{- \text {st }}$ then integrating with respect to t with in Limits 0 to ∞
$\int_{0}^{\infty} \mathrm{e}^{-\mathrm{st}} \mathcal{L}_{\mathrm{n}}(\mathrm{xt}, \mathrm{y}) \mathrm{dt}=\int_{0}^{\infty} \mathrm{e}^{-\mathrm{st}} \mathrm{y}^{\mathrm{n}}$

Put $\frac{x t}{y}=z$ in R.H.S. and using [5; P. 216 (10)], we get required result (2.1)
II. To show
$\int_{0}^{\infty}(x-t)^{m} \mathcal{L}_{\mathrm{n}}(\mathrm{t}, \mathrm{y}) \mathrm{dt}=\frac{\mathrm{m}!\mathrm{n}!}{(\mathrm{m}+\mathrm{n}+1)!} \mathcal{L}_{\mathrm{n}}^{(\mathrm{m}+1)}(\mathrm{x}, \mathrm{y})$

Proof

$\int_{0}^{\infty}(x-t)^{m} \quad \mathcal{L}_{n}(t, y) d t=n!\sum_{r=0}^{n} \frac{(-1)^{r} y^{n-r}}{(n-r)!(r!)^{2}} \int_{0}^{x}(x-t)^{m} t^{r} d t$

On putting $\mathrm{t}=\mathrm{xy}$, we get
$=n!\sum_{r=0}^{n} \frac{(-1)^{r} y^{n-r} x^{m+r+1}}{(n-r)!(r!)^{2}} \int_{0}^{1}(1-u)^{m} u^{r} d u$
$=n!\sum_{r=0}^{n} \frac{(-1)^{r} y^{n-r} x^{m+r+1} m!}{(n-r)!(r!)(m+r \quad 1)!}$
$=\frac{n!m!x^{m+1}}{(m+n+1)!} \mathcal{L}_{n}^{(m+1)}(x, y)$
which is a required result
III If n is an odd in tiger then
$\int_{0}^{\mathrm{t}} \mathcal{L}_{\mathrm{n}}[\mathrm{x}(\mathrm{t}-\mathrm{x}), \mathrm{y}] \mathrm{dx}=\frac{(-1)^{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1}(\mathrm{t} / 2, y)}{2^{2 \mathrm{n}}(3 / 2)_{\mathrm{n}}}$

Proof: Taking L.H.S. of (2.3)
$\int_{0}^{t} \mathcal{L}_{\mathrm{n}}\left(\mathrm{x}(\mathrm{t}-\mathrm{x}), \mathrm{ydx}=\sum_{\mathrm{r}=0}^{\mathrm{n}} \frac{(-1)^{\mathrm{r}} \mathrm{n}!\mathrm{x}^{\mathrm{r}}(\mathrm{t}-\mathrm{x})^{\mathrm{r}} \mathrm{y}^{\mathrm{n}-\mathrm{r}}}{(\mathrm{n}-\mathrm{r})!(\mathrm{r}!)^{2}} d x\right.$
put $x=$ tu and using same procedure as [6; P. 153], we get
$=\sum \frac{(-1)^{n-r} n!y^{r} t^{2(n-r)+1}}{r!(2 n-2 r+1)!}$
$=\frac{(-1)^{n} H_{2 n+1}(1 / 2, y)}{2^{2 n}(3 / 2)_{n}}$
which is a required result (2.3)
IV. If $\mathrm{n} \geq 1$, then
$\int_{x}^{\infty} e^{-y}\left[\mathcal{L}_{n}(y, z)-(z-1) \mathcal{L}_{n-1}(y, z)\right] d y$
$=\mathrm{e}^{-\mathrm{x}}\left[\mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{z})-\mathrm{z} \mathcal{L}_{\mathrm{n}-1}(\mathrm{x}, \mathrm{z})\right]$
Proof:
Taking L.H.S. $=\int_{x}^{\infty} e^{-y}\left[\mathcal{L}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})-(\mathrm{z}-1) \boldsymbol{L}_{\mathrm{n}-1}(\mathrm{y}, \mathrm{z})\right] \mathrm{dy}$
$=\mathrm{I}_{1}+\mathrm{I}_{2}$
where $\mathrm{I}_{1}=\int \mathrm{e}^{-\mathrm{y}} \boldsymbol{L}_{\mathrm{n}}(\mathrm{y}, \mathrm{z}) \mathrm{dy}$

And $\mathrm{I}_{2}=-\int_{\mathrm{x}}^{\infty} \mathrm{e}^{-\mathrm{y}}(\mathrm{z}-1) \mathcal{L}_{\mathrm{n}-1}(\mathrm{y}, \mathrm{z}) \mathrm{dy}$
since $\mathrm{I}_{1}=\mathrm{e}^{-\mathrm{x}} \mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{z})+\int_{\mathrm{x}}^{\infty} \mathrm{e}^{-\mathrm{y}} \frac{\partial}{\partial \mathrm{y}} \mathcal{L}_{\mathrm{n}}(\mathrm{y}, \mathrm{z}) \mathrm{dy}$
Now using differential recurrence relation for $\mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})$
$\frac{\partial}{\partial \mathrm{x}} \mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})=\mathrm{y} \frac{\partial}{\partial \mathrm{x}} \mathcal{L}_{\mathrm{n}-1}(\mathrm{x}, \mathrm{y})-\mathcal{L}_{\mathrm{n}-1}(\mathrm{x}, \mathrm{y}) ; \mathrm{n} \geq 1$
using (2.6) and (2.7) and after integrating we get
$\mathrm{I}_{1}=\mathrm{e}^{-\mathrm{x}}\left[\mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{z})-\mathrm{z} \mathcal{L}_{\mathrm{n}-1}(\mathrm{x}, \mathrm{z})\right]-\mathrm{I}_{2}$
Now using (2.5), then we get required result (2.4)
Partial differentiation of $\mathcal{L}_{\mathrm{n}}(\mathbf{x}, \mathbf{y})$
Theorem - 3: If k be a positive integer then
$\left.\mathcal{L}_{\mathrm{n}}^{(\mathrm{k})}(\mathrm{x}, \mathrm{y})=(-1)^{\mathrm{k}} \frac{\partial}{\partial \mathrm{x}^{\mathrm{k}}} \boldsymbol{\mathcal { L }}_{\mathrm{n}+\mathrm{k}}(\mathrm{x}, \mathrm{y})\right]$
Proof: By Definition of $\mathcal{L}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})$
$\mathcal{L}_{\mathrm{n}+\mathrm{k}}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{r}=0}^{\mathrm{n}+\mathrm{k}} \frac{(-1)^{\mathrm{r}}(\mathrm{n}+\mathrm{k})!\mathrm{x}^{\mathrm{r}} \mathrm{y}^{\mathrm{n}+\mathrm{k}-\mathrm{r}}}{(\mathrm{r}!)^{2}(\mathrm{n}+\mathrm{k}-\mathrm{r})!}$

So that
$(-1)^{k} \frac{\partial^{k}}{\partial x^{k}} \mathcal{L}_{\mathrm{n}+\mathrm{k}}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{r}=0}^{\mathrm{n}+\mathrm{k}} \frac{(-1)^{\mathrm{r}+\mathrm{k}}(\mathrm{n}+\mathrm{k})!\mathrm{x}^{\mathrm{r}-\mathrm{k}} \mathrm{y}^{\mathrm{n}+\mathrm{k}-\mathrm{r}}}{(\mathrm{r}!)(\mathrm{n}+\mathrm{k}-\mathrm{r})!(\mathrm{r}-\mathrm{k})!}$
since $\frac{\partial^{k}}{\partial x^{k}}\left(x^{r}\right)=\frac{r!}{(r-k)!} x^{r-k}$, if the series starts from
$r=0$; then $x^{0}=1$ and $\frac{\partial^{k}}{\partial x^{k}}$ can-not be operated.
Thus $\frac{\partial^{k}}{\partial x^{k}}$ can be operated when power of $x \geq k$
i.e. the series must start from $\mathrm{r}=\mathrm{k}$,
i.e. on changing the summation by substituting
$\mathrm{s}=\mathrm{r}-\mathrm{k}$ in (3.2), we get
$(-1)^{k} \frac{\partial^{k}}{\partial x^{k}} \mathcal{L}_{n+k}(x, y)=\sum_{s=0}^{n} \frac{(-1)^{s+2 k}(n+k)!x^{s} y^{n-s}}{(s+k)!(n-s)!s!}=\mathcal{L}_{n}^{(k)}(x, y)$
which is a required result (3.1).

Special cases

I. For $\mathrm{x}=\mathrm{y}=1$, then (2.1) reduces to known result [5; P. 216 (10)]

For $\mathrm{y}=1$, then (2.2) reduces to a known result [6; P. 160 (9)]
For $\mathrm{y}=1$, then (2.3) reduces to a known result [4; P. 149 (5)] For $\mathrm{z}=1$, then (2.4) reduces to a known result [4; P. 149 (4)]
II. For $\mathrm{y}=1$, then (3.1) reduces to a known result [4; P. 151 (7.5)]

Special cases from I and II are known formulae for integral and partial differentiation for ordinary Laguerre Polynomial $\mathcal{L}_{\mathrm{n}}(\mathrm{x})$.

References

1. Dattoli G, Torre A. Operational methods and two vaiable Laguerre polynomials, Acc. Sc. Torino-Atti Sc. Fis. 1998; 132:1-7.
2. Dattoli G, Lorenzutta S, Sacchetti D. A note on operational rules for Hermite and Laguerre polynomials, operational rules and Special polynomials, Internet. J. Math. Stat. Sci. 2000; 9(2):227-238.
3. Dattoli G, Torre A. Acc. Sc. di Torino-Atti. Sc. Fis. 13, 1. Operational methods for associated laguerre polynomials have alsobeen youched in A. Wunsche, J Phys. A32. 1998, 3179.
4. Pathan MA, Kazim MA, Saksena KM. Elements of special Functionsl, P.C. Dwadash Shreni and Co. Pvt. Ltd. Aligarh, 1972.
5. Rainville ED. Special Functions. Macmillan, New York; Reprinted by Chelsea Pub. Co., Bronx, New York, 1971.
6. Saxena RK, Gokhroo DC. Special functions, J.P.H. Jaipur, 1987.
