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Abstract
In this paper we obtain integration and partial differentiation involving the generalized
associated Laguerre Polynomial of two variables Z(n“) (X, y) which are is closely related to

generalized Lagguerre Polynomial of Dattoli et al. These results provide useful extensions of
well-known results of Lagguere Polynomials £n(x)

Keywords: Laguerre Polynomials, Dattoli et al., recurrence relation
1. Introduction

Two variable one index Laguerre polynomials have been given by Dattoli et al. I 31,
Two variable one index Laguerre polynomials defined as

L, (x,y):n!iM .. (L.D)
r=o (N =r)(rh)

Ly (%, y) are linked to the ordinary Laguerre polynomials L, (x) by

Lo (X, 1) =L (X) ...(1.2)

Lo (X, y)=y" Ln{ij. ...(1L3)

A generalization of (1.1) provided by the following definition of the generalized associated
Laguerre polyniomials

r

£ (x, y) - z”: (-)"@+a), vy 'x (1.4)
o S (-t a), T
(-1 (@ +n)y" "x'
=2
=0 rr(n—=r)! (o + r)!
and the generating function, we get
" - xt
L9 ()" = -y | L (1S)
> L
n=0 l—yt
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Now using expansion on R.H.S. in (1.5) and after some calculation, we get

MU (-1) nl(l+oa),y £ (x,y) ... (1.6)

r—0 (n-r'@d+a),

In this paper we shall give some basic relation and properties then obtain integral and differentiation involving the generalized
associated Laguerre polynomials £ {*) (x, y)

Integral Involving Laguerre polynomials

n

L. Toshow [e ™ 2, (xt, y)dt - y—(l— LJ 2

o s sy

Proof: Replace x by xt in £, (X, y) and multiply by e then integrating with respect to t with in Limits 0 to o

© ©

Iefst L (%, y)dt = J'efs{ y

0 0

n

xt
Put — = z in R.H.S. and using [5; P.216 (10)], we get required result (2.1)

y
I1. To show
K m m!n! (m+1)
J' (x-t)" £, (t,y)dt =———— £ (x,y) ...(22)
0 (m +n + 1)
Proof
N m _ ! (_1)f yn*f ) m r
I (x-t)" L (t,y)dt =nt} —ZJ' (x —t)" t dt
0 =0 (N =) (rh) 0
On putting t = xy, we get

n 1 r n-r m+r+1 1
=ty S X2 | @-u)" u' du

r=0 (n = n)t(rt) 0

n (_1)r yn—r Xm+r+1 m!
=n!

o (N =) () (m+r 1)

ntmtx ™t
=— /L (x,y)
(m+ n + 1!
which is a required result (2.2)
11 If nisan odd in tiger then
t n
-1) H Y
I L‘n [X(t— X), y] dx = ( ) zn2n+l (A y)
0 2°" (%),
Proof: Taking L.H.S. of (2.3)
n _1r I r t— r n-r

J’Ot L (x(t=x), ydx = (71) nix (t=x) y dx

(n-n)rn’

put X = tu and using same procedure as [6; P. 153], we get
g2~
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(71)n—r ni yr t2(n—r)+1
rr(2n — 2r +1)!
n
(1" Hou (4.Y)

22n (%)n

which is a required result (2.3)

=2

IV. Ifn>1, then

}Oe’y [£n (v, 2) = (2 1) Lna (y, 2)] dy

e [0 (% 2) — 2 Los (X, 2)] .. (2.4)
Proof:

Taking LH.S. = }Oe*y (£ (Y, 2) - (z-1) Loa (y, 2)] dy

=1+ 1 X

.. (2.5)

where Iy = [e™” Lu(y, z) dy

X

Andl=-["e™ (z-1) L (y,2) dy

. " o
since l1=e> Ly (x, z) + je‘y — L (y, 2) dy ...(2.6)
x oy

Now using differential recurrence relation for £, (X, y)

0 0
— LX) =Y —La (X Y) - L1 (X, Y);n>1 .27
oX oX

using (2.6) and (2.7) and after integrating we get
lh=e>[Ln (X, 2) ~Z Ln1 (X, 2)] - I2
Now using (2.5), then we get required result (2.4)

Partial differentiation of £Zn (X,y)
Theorem — 3: If k be a positive integer then

0

£ (x,y)=(-1" Lo (%, Y)] G

E}xk

Proof: By Definition of £, (x, y)

r n+k-r

nrk(-1)" k)!
Loy -y EY (2+ nx"y
r=0 rM" (n+k-=r)

So that

k r+k r—k n+k-r

K= (n+ k) x
Lo, (X, y)=> .. (32)
o (D) (n+ k=r) I (r—k)!

~g3~
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since

r=0

Thus

k
r! _ . i
x K , if the series starts from

—(x")

ox (- K)!

; then x° =1 and can-not be operated.
oX

k

—can be operated when power of x > k
oX

i.e. the series must start fromr = k,
i.e. on changing the summation by substituting

S=Tr1

(-1)F

—kin (3.2), we get
ak n (_1)s+2k (n+k)!XS yn—s
L (V) =Y =2 (x.y)
0X s=0 (s+ k) (n—s)ls!

which is a required result (3.1).

Special cases

I. Forx=y=1,then (2.1) reduces to known result [5; P.216 (10)]
Fory =1, then (2.2) reduces to a known result [6; P.160 (9)]
Fory =1, then (2.3) reduces to a known result [4; P. 149 (5)]
For z = 1, then (2.4) reduces to a known result [4; P. 149 (4)]

Il. Fory=1,then (3.1) reduces to a known result [4; P. 151 (7.5)]

Special cases from I and Il are known formulae for integral and partial differentiation for ordinary Laguerre Polynomial £n(X).
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