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Integration and differentiation involving the laguerre 

polynomial of two variable Ln (x, y) 

 
Kamal Gupta 

 
Abstract 

In this paper we obtain integration and partial differentiation involving the generalized 

associated Laguerre Polynomial of two variables L )(

n


(x, y) which are is closely related to 

generalized Lagguerre Polynomial of Dattoli et al. These results provide useful extensions of 

well-known results of Lagguere Polynomials Ln(x) 
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1. Introduction 

Two variable one index Laguerre polynomials have been given by Dattoli et al. [1, 3].  

Two variable one index Laguerre polynomials defined as  

 

L 









n

0r
2

rnrr

n

)!r()!rn(

yx)1(
!n)y,x(             … (1.1) 

 
Ln (x, y) are linked to the ordinary Laguerre polynomials Ln (x) by  

 
Ln (x, 1) = Ln (x)                 … (1.2) 

Ln (x, y) = yn Ln 
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A generalization of (1.1) provided by the following definition of the generalized associated 

Laguerre polyniomials  
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and the generating function, we get  
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Now using expansion on R.H.S. in (1.5) and after some calculation, we get  
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In this paper we shall give some basic relation and properties then obtain integral and differentiation involving the generalized 

associated Laguerre polynomials L )y,x(
)(

n


 

 

Integral Involving Laguerre polynomials 

 

I. To show 
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Proof: Replace x by xt in L n (x, y) and multiply by e-st then integrating with respect to t with in Limits 0 to  
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Put .S.H.Rinz
y

xt
  and using [5; P.216 (10)], we get required result (2.1) 

II. To show 
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Proof 
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On putting t = xy, we get  
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which is a required result                        (2.2)  

III If n is an odd in tiger then  
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Proof: Taking L.H.S. of (2.3) 
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put x = tu and using same procedure as [6; P. 153], we get  
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which is a required result (2.3) 

 

IV. If n  1, then  
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= e-x [L n (x, z) – z Ln-1 (x, z)]                      … (2.4) 

 

Proof:  

Taking L.H.S. = 
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                            … (2.5) 

where I1 = 
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 Ln (y, z) dy                 … (2.6) 

 

Now using differential recurrence relation for Ln (x, y)  
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Ln (x, y) = y 

x


Ln-1 (x, y) - Ln-1 (x, y); n  1                 … (2.7) 

 

using (2.6) and (2.7) and after integrating we get  

 

I1 = e-x [Ln (x, z) –z Ln-1 (x, z)] – I2 

 

Now using (2.5), then we get required result (2.4)  

 

Partial differentiation of Ln (x,y) 

Theorem – 3: If k be a positive integer then  
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  Ln+k (x, y)]                   … (3.1) 

 

Proof: By Definition of Ln (x, y) 
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since ,x
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 if the series starts from  
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i.e. the series must start from r = k, 

i.e. on changing the summation by substituting  

s = r – k in (3.2), we get  
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which is a required result (3.1). 

 

Special cases 
I. For x = y = 1, then (2.1) reduces to known result [5; P.216 (10)] 

 For y = 1, then (2.2) reduces to a known result [6; P.160 (9)] 

 For y = 1, then (2.3) reduces to a known result [4; P. 149 (5)] 

 For z = 1, then (2.4) reduces to a known result [4; P. 149 (4)] 

II. For y = 1, then (3.1) reduces to a known result [4; P. 151 (7.5)] 

 

Special cases from I and II are known formulae for integral and partial differentiation for ordinary Laguerre Polynomial Ln(x). 
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