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Abstract 

In this paper we consider Maximum Roman Free Functions and Maximal Roman Free Function with 

minimum cardinality. We consider the change in the Roman Free Number and an rf-number of a graph 

when a vertex is removed from the graph. We prove a necessary and sufficient condition under which the 

Roman Free Number of a graph increases. Also we prove a necessary and sufficient conditions under 

which the rf-number of a graph increases or decreases. 

 

Keywords: Roman Free Function, Maximal Roman Free Function, Maximum Roman Free Function, rf- 

function, Roman Free Number, rf- number. 

 

1. Introduction 

The concept of Roman Domination was introduced in [5] by Ernie J. Cockayne, T.W. Haynes, 

and others. A Dominating Function gives rise to a Roman Dominating Function. The concept 

of independence can be extended to a new concept which involves a function whose range 

is {0,1,2}. In [2] we define the concept of a Roman Free Function. We observed that every 

Independent set gives rise to a Roman Free Function. It is natural to define the concepts like 

Maximal Roman Free Function and Maximum Roman Free Function. This concepts have been 

studied in [2]. In this paper we bring Maximal Roman Free Functions to play some other role. 

We may note that a Maximal Independent Set in a graph is a Minimal Dominating Set. 

Therefore we have Independent Domination Number for graphs. Here we consider Maximal 

Roman Free Functions with minimum weight which are called rf-functions. The weight of 

such a function is called the rf-number of the graph. We state and prove necessary and 

sufficient conditions under which the rf-number increases or decreases when a vertex is 

removed from the graph. We also prove a necessary and sufficient condition under which the 

Roman Free Number of a graph decreases when a vertex is removed from the graph. 

 

2. Preliminaries and Notations 

In this paper we consider only those graphs which are simple and finite. If 𝐺 is a graph, 𝑉(𝐺) 

will denote the vertex set of graph 𝐺 and 𝐸(𝐺) will denote the edge set of graph 𝐺. If 𝐺 is a 

graph and 𝑣 ∈ 𝑉(𝐺) then 𝐺 − 𝑣 will denote the subgraph obtained by removing the 

vertex 𝑣 from 𝐺. The Roman Domination Number of the graph 𝐺 is denoted as 𝛾𝑅(𝐺), whereas 

the Domination Number of the graph G is denoted as 𝛾(𝐺). If 𝑓: 𝑉(𝐺) → {0,1,2} is a function 

then we write, 

 𝑽𝟐(𝒇) = {𝑣 ∈ 𝑉(𝐺) / 𝑓(𝑣) = 2}  

 𝑽𝟏(𝒇) = {𝑣 ∈ 𝑉(𝐺) / 𝑓(𝑣) = 1}  

 𝑽𝟎(𝒇) = {𝑣 ∈ 𝑉(𝐺) / 𝑓(𝑣) = 0} 

Obviously the above sets are mutually disjoint and their union is the vertex set V(G). The 

weight of this function 𝑓 = ∑ 𝑓(𝑣)𝑣∈𝑉(𝐺) . This number is denoted as 𝑤(𝑓).  
 

Definition 2.1 [2]: Let 𝐺 be a graph. A function 𝑓: 𝑉(𝐺) → {0,1,2} is said to be a Roman Free 

Function if for every edge 𝑒 = 𝑢𝑣, 𝑓∗(𝑒) = 𝑓(𝑢) + 𝑓(𝑣) ≤ 2. 

 

Definition 2.2 [2]: A Roman Free Function with maximum weight is called a Maximum Roman 

Free Function and its weight is called Roman Free Number of a graph and it is denoted 

as 𝛽𝑟𝑓(𝐺).. 
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Definition 2.3 [2]: A Roman Free Function 𝑓 is said to a 

Maximal Roman Free Function if whenever 𝑔: 𝑉(𝐺) →
{0,1,2} is any function such that 𝑔 > 𝑓 then 𝑔 is not a Roman 

Free Function.  

 

Definition 2.4 [2]: A Maximal Roman Free Function with 

minimum weight is called rf-function and its weight is called 

the rf-number of a graph and it is denoted as 𝑟𝑓(𝐺). 
 

Maximum Roman Free Functions 

Proposition 3.1: Let 𝐺 be a graph and 𝑣 ∈ 𝑉(𝐺) 

then 𝛽𝑟𝑓(𝐺 − 𝑣) ≤  𝛽𝑟𝑓(𝐺). 

Proof: Let 𝑔′ be a Maximum Roman Free Function defined 

on 𝐺 − 𝑣. 

Now define 𝑔: 𝑉(𝐺) → {0,1,2} as follows:  

 𝑔(𝑣) = 0 and  
𝑔(𝑤) = 𝑔′(𝑤); 𝑖𝑓 𝑤 ≠ 𝑣 

Obviously 𝑔 is a Roman Free Function on 𝐺. 

Therefore 𝛽𝑟𝑓(𝐺) ≥ 𝑤(𝑔) = 𝑤(𝑔′) =  𝛽𝑟𝑓(𝐺 − 𝑣). 

i. e.  𝛽𝑟𝑓(𝐺 − 𝑣) ≤  𝛽𝑟𝑓(𝐺).        

 

Now we state and prove the necessary and sufficient 

condition under which the Roman Free Number increases 

when a vertex is removed from the graph.     

 

Theorem 3.2: Let 𝐺 be a graph and 𝑣 ∈ 𝑉(𝐺) then 𝛽𝑟𝑓(𝐺 −

𝑣) <  𝛽𝑟𝑓(𝐺) if and only if for every Maximum Roman Free 

Function 𝑓 defined on 𝑉(𝐺) 𝑓(𝑣) ≠ 0. 

 

Proof: First suppose 𝛽𝑟𝑓(𝐺 − 𝑣) <  𝛽𝑟𝑓(𝐺). 

Let 𝑓 be a Maximum Roman Free Function defined on 𝑉(𝐺) 

such that 𝑓(𝑣) = 0. Now define 𝑔: 𝑉(𝐺 − 𝑣) → {0,1,2} as 

follows:  

𝑔(𝑤) = 𝑓(𝑤); ∀ 𝑤 ∈ 𝑉(𝐺 − 𝑣) 

Obviously 𝑔 is a Roman Free Function on 𝐺 − 𝑣 and 𝑓(𝑣) =
0. 

Also 𝑤(𝑔) = 𝑤(𝑓) =  𝛽𝑟𝑓(𝐺) >  𝛽𝑟𝑓(𝐺 − 𝑣). 

i.e. 𝑤(𝑔) >  𝛽𝑟𝑓(𝐺 − 𝑣); which is a contradiction. 

Therefore the condition is satisfied by every Maximum 

Roman Free Function on 𝐺. 
Conversely suppose there is a Maximum Roman Free 

Function 𝑓 defined on 𝑉(𝐺) such that 𝑓(𝑣) ≠ 0. 

Suppose 𝛽𝑟𝑓(𝐺 − 𝑣) =  𝛽𝑟𝑓(𝐺). 

Let 𝑔 be a Maximum Roman Free Function defined on 𝑉(𝐺 −
𝑣). 

Define 𝑔′: 𝑉(𝐺) → {0,1,2} as follows:  

𝑔′(𝑣) = 0 and 

𝑔′(𝑤) = 𝑔(𝑤); 𝑖𝑓 𝑤 ≠ 𝑣 

Then obviously 𝑔′ is a Maximum Roman Free Function on 𝐺 

with 𝑔′(𝑣) = 0; which contradicts the hypothesis. 

Therefore 𝛽𝑟𝑓(𝐺) >  𝛽𝑟𝑓(𝐺 − 𝑣).       

 

Example 3.3: Consider the following example in which the 

vertex set is {v1, v2, v3, v4}. 

 
 

Fig 1: (GRAPH G) 

 

Let 𝑓: 𝑉(𝐺) → {0,1,2} be any function such that 𝑓(𝑣1) =
2, 𝑓(𝑣2) = 0, 𝑓(𝑣3) = 0 𝑎𝑛𝑑 𝑓(𝑣4) = 2 

Then 𝑓 is a Maximal Roman Free Function and 𝛽𝑟𝑓(𝐺) = 4.  

Now consider the graph 𝐺 − 𝑣3.  

The Roman Free Number of 𝑉(𝐺 − 𝑣3) = 4 i.e.𝛽𝑟𝑓(𝐺 −

𝑣3) = 4. 

Thus we have 𝛽𝑟𝑓(𝐺 − 𝑣3) = 𝛽𝑟𝑓(𝐺).       

 

Example 3.4: Consider the Cycle graph 𝐺 = 𝐶5 with vertices 

{v1, v2, v3, v4, v5}. 

 

 
 

Fig 2: (GRAPH G) 

 

Define 𝑓: 𝑉(𝐺) → {0,1,2} as follows: 

𝑓(𝑣𝑖) = 1, ∀𝑖 = 1,2,3,4,5 

Obviously 𝑓 is Maximal Roman Free Function and 𝛽𝑟𝑓(𝐺) =

5.  

Now consider the graph 𝐺 − 𝑣5 which is a path graph 𝑃4 with 

vertices {v1, v2, v3, v4}. 

Then clearly 𝛽𝑟𝑓(𝐺 − 𝑣5) = 4. 

Thus  𝛽𝑟𝑓(𝐺 − 𝑣5) <  𝛽𝑟𝑓(𝐺).         

 

Maximal Roman Free Functions 
We proved the following theorem in [2]. 

 

Theorem 4.1: Let 𝐺 be a graph and 𝑓: 𝑉(𝐺) → {0,1,2} be a 

Roman Free Function then 𝑓 is a Maximal Roman Free 

Function if and only if whenever 𝑓(𝑣) < 2 there is a 

vertex 𝑢 adjacent to 𝑣 such that 𝑓(𝑢) + 𝑓(𝑣) = 2.     

Now we consider Maximal Roman Free Functions with 

minimum cardinality which are defined as rf-functions. It is 

obvious that every rf-function is a Roman Dominating 

Function. Here we also consider the operation of removing 

the vertex from the graph on the rf-number of the graph.  
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Proposition 4.2: Let 𝐺 be a graph and 𝑣 ∈ 𝑉(𝐺). If there is 

an rf-function 𝑓 on 𝐺 − 𝑣 such that 𝑓(𝑤) = 2 for some 𝑤 ∈
𝑁(𝑣) then 𝑟𝑓(𝐺 − 𝑣) ≥ 𝑟𝑓(𝐺). 
Proof: Let 𝑓 be an rf-function on 𝐺 − 𝑣 such that 𝑓(𝑤) = 2 

for some 𝑤 ∈ 𝑁(𝑣). 

Define 𝑔: 𝑉(𝐺) → {0,1,2} as follows:  

 𝑔(𝑣) = 0 and  
 𝑔(𝑤) = 𝑓(𝑤); ∀ 𝑤 ≠ 𝑣 

Then 𝑔 is a Maximal Roman Free Function.  

Therefore 𝑟𝑓(𝐺) ≤ 𝑤(𝑔) = 𝑤(𝑓) = 𝑟𝑓(𝐺 − 𝑣). 

i.e. 𝑟𝑓(𝐺) ≤ 𝑟𝑓(𝐺 − 𝑣).         

 

Proposition 4.3: Let 𝐺 be a graph and 𝑣 be an isolated vertex 

of 𝐺. If 𝑓 is a Maximal Roman Free Function on 𝐺 

then 𝑓(𝑣) = 2. 
Proof: Consider 𝑓 be a Maximal Roman Free Function 

with 𝑓(𝑣) = 0 𝑜𝑟 1. 

Define 𝑔: 𝑉(𝐺) → {0,1,2} as follows:  

 𝑔(𝑣) = 2 and  
 𝑔(𝑤) = 𝑓(𝑤); ∀ 𝑤 ≠ 𝑣 

Then 𝑔 is a Roman Free Function on 𝐺 and 𝑓 < 𝑔; which 

contradicts the maximality of 𝑓. 

Thus 𝑓(𝑣) = 2.        

Now we state and prove the necessary and sufficient 

conditions under which the rf-number increases when a vertex 

is removed from the graph. 

 

Theorem 4.4: Let 𝐺 be a graph and 𝑣 ∈ 𝑉(𝐺) then 𝑟𝑓(𝐺 −
𝑣) > 𝑟𝑓(𝐺) if and only if the following conditions are 

satisfied:  

i)  𝑣 is not an isolated vertex in 𝐺. 
ii) 𝑓(𝑣) = 2 for every rf- function 𝑓 on 𝐺. 
iii) There is no Maximal Roman Free Function 𝑔 on 𝐺 − 𝑣 

such that 𝑤(𝑔) ≤ 𝑟𝑓(𝐺) and  𝑉2(𝑔) is a subset of 𝑉(𝐺) −
𝑁[𝑣]. 
 

Proof: Suppose 𝑟𝑓(𝐺 − 𝑣) > 𝑟𝑓(𝐺)  

i) Suppose 𝑣 is an isolated vertex, then for every Maximal 

Roman Free Function 𝑓 on 𝐺, 𝑓(𝑣) = 2. 

Define 𝑔: 𝑉(𝐺 − 𝑣) → {0,1,2} as follows:  

𝑔(𝑤) = 𝑓(𝑤); ∀ 𝑤 ∈ 𝑉(𝐺 − 𝑣) 

Then 𝑔 is a Maximal Roman Free Function. 

Therefore 𝑟𝑓(𝐺 − 𝑣) ≤ 𝑤(𝑔) ≤ 𝑤(𝑓) = 𝑟𝑓(𝐺). 

i.e. 𝑟𝑓(𝐺 − 𝑣) ≤ 𝑟𝑓(𝐺); which is a contradiction. 

Therefore 𝑣 is not isolated vertex in 𝐺. 

ii) Suppose for some rf-function 𝑓 on 𝐺, 𝑓(𝑣) = 0 then 𝑣 

cannot be an isolated vertex on 𝐺. 

Now define 𝑔 on 𝐺 − 𝑣 as follows:  

𝑔(𝑤) = 𝑓(𝑤); ∀ 𝑤 ∈ 𝑉(𝐺 − 𝑣) 

Then obviously 𝑔 is a Maximal Roman Free Function on 𝐺 −
𝑣.  

Also 𝑟𝑓(𝐺 − 𝑣) ≤ 𝑤(𝑔) = 𝑤(𝑓) = 𝑟𝑓(𝐺); which is a 

contradiction. 

Now suppose for some rf- function 𝑓 on 𝐺, 𝑓(𝑣) = 1. 

Now define 𝑔 on 𝐺 − 𝑣 as follows: 

a) If 𝑤 is a neighbour of 𝑣 such that for every neighbour 𝑥 of 

𝑤 in 𝐺 − 𝑣, 𝑓(𝑥) = 0 or 𝑤 is an isolated vertex in 𝐺 − 𝑣 then 

define 𝑔(𝑤) = 2. 

b) If 𝑤 is a neighbour of 𝑣 such that for every neighbour 𝑥 of 

𝑤 in 𝐺 − 𝑣, 𝑓(𝑥) = 1 then define 𝑔(𝑤) = 1. 

c) For all other vertices t, define 𝑔(𝑡) = 𝑓(𝑡). 

Then 𝑔 is a Maximal Roman Free Function on 𝐺 − 𝑣. 

Also 𝑟𝑓(𝐺 − 𝑣) ≤ 𝑤(𝑔) ≤ 𝑤(𝑓) = 𝑟𝑓(𝐺); which is again a 

contradiction. Thus 𝑓(𝑣) = 1 is also not possible for any rf-

function 𝑓 on 𝐺. 

Hence 𝑓(𝑣) = 2 for every rf- function 𝑓 on 𝐺. 

iii) Suppose there is a Maximal Roman Free Function 𝑔 

on 𝐺 − 𝑣 with 𝑤(𝑔) ≤ 𝑟𝑓(𝐺) and  𝑉2(𝑔) is a subset 

of 𝑉(𝐺) − 𝑁[𝑣]. 
Then obviously 𝑟𝑓(𝐺 − 𝑣) ≤ 𝑤(𝑔) ≤ 𝑟𝑓(𝐺); which is a 

contradiction. 

Conversely suppose conditions (i), (ii) and (iii) are satisfied.  

Suppose 𝑟𝑓(𝐺 − 𝑣) = 𝑟𝑓(𝐺). Let 𝑓 be an rf-function on 𝐺 −
𝑣.  

Now define 𝑔: 𝑉(𝐺) → {0,1,2} as follows:  

 𝑔(𝑣) = 0 and  
𝑔(𝑤) = 𝑓(𝑤); ∀ 𝑤 ≠ 𝑣 

Then 𝑔 is a Roman Free Function on 𝐺.  

 

Case-I: Suppose there is a neighbour 𝑥 of 𝑣 such that 𝑔(𝑥) =
2. Then 𝑔 is a Maximal Roman Free Function on 𝐺. 

Since 𝑤(𝑔) = 𝑤(𝑓) = 𝑟𝑓(𝐺) and also we have 𝑟𝑓(𝐺) =
𝑟𝑓(𝐺 − 𝑣), 𝑔 is an rf-function on 𝐺 with 𝑔(𝑣) = 0.  

 

Case-II: For every neighbour 𝑤 of 𝑣, 𝑓(𝑤) ≠ 2. 

Then 𝑔(𝑤) ≠ 2. Then 𝑉2(𝑔) is a subset of 𝑉(𝐺) −
𝑁[𝑣] and 𝑔 is a Maximal Roman Free Function on 𝐺 − 𝑣 such 

that 𝑤(𝑓) ≤ 𝑟𝑓(𝐺); which contradicts condition (iii).  

Thus 𝑟𝑓(𝐺 − 𝑣) = 𝑟𝑓(𝐺) is not possible. 

Suppose 𝑟𝑓(𝐺 − 𝑣) < 𝑟𝑓(𝐺). Let 𝑔 be an rf-function on 𝐺 −
𝑣. 

Now define 𝑓: 𝑉(𝐺) → {0,1,2} as follows:  

 𝑓(𝑣) = 0 and  
𝑓(𝑤) = 𝑔(𝑤); ∀ 𝑤 ≠ 𝑣 

Then 𝑓 is a Roman Free Function on 𝐺. 

If there is a neighbour 𝑥 of 𝑣 such that 𝑓(𝑥) = 𝑔(𝑥) = 2 

then 𝑓 is a Maximal Roman Free Function on 𝐺. This 

implies 𝑟𝑓(𝐺) ≤ 𝑤(𝑓) = 𝑤(𝑔) = 𝑟𝑓(𝐺 − 𝑣). 

i.e. 𝑟𝑓(𝐺) ≤ 𝑟𝑓(𝐺 − 𝑣); which is a contradiction.  

Therefore for every neighbour 𝑥 of 𝑣 such that 𝑓(𝑥) =
𝑔(𝑥) ≠ 2. 

Thus there is a Maximal Roman Free Function 𝑔 on 𝐺 − 𝑣 

such that  𝑉2(𝑔) is a subset of 𝑉(𝐺) − 𝑁[𝑣] and 𝑤(𝑔) ≤
𝑟𝑓(𝐺); this again contradicts the condition (iii).  

Thus 𝑟𝑓(𝐺 − 𝑣) < 𝑟𝑓(𝐺) is also not possible. 

Hence 𝑟𝑓(𝐺 − 𝑣) > 𝑟𝑓(𝐺).        

 

Example 4.5: Consider the following example in which the 

vertex set is {v1, v2, v3, v4}. 

 

 
 

Fig 3: (GRAPH G) 
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Define 𝑓: 𝑉(𝐺) → {0,1,2} be any function such that 𝑓(𝑣1) =
0, 𝑓(𝑣2) = 0, 𝑓(𝑣3) = 2 𝑎𝑛𝑑 𝑓(𝑣4) = 0 

Then 𝑓 is an rf-function and 𝑟𝑓(𝐺) = 2.  
Now consider the graph 𝐺 − 𝑣3 and define 𝑔 on 𝐺 − 𝑣3 as 

follows: 

𝑔(𝑣1) = 2, 𝑔(𝑣2) = 0 𝑎𝑛𝑑 𝑔(𝑣4) = 2  

Then 𝑔 is an rf-function and 𝑟𝑓(𝐺 − 𝑣3) = 4 

Thus 𝑟𝑓(𝐺 − 𝑣3) > 𝑟𝑓(𝐺).         

 

Corollary 4.6: Let 𝐺 be a graph and 𝑢, 𝑣 ∈ 𝑉(𝐺) such 

that 𝑟𝑓(𝐺 − 𝑢) > 𝑟𝑓(𝐺) and 𝑟𝑓(𝐺 − 𝑣) > 𝑟𝑓(𝐺) then 𝑢 

and 𝑣 are non-adjacent vertices. 

 

Proof: Let 𝑓 be any rf-function on 𝑉(𝐺) then 𝑓(𝑣) = 2 

and 𝑓(𝑢) = 2 by the theorem 4.4. If 𝑢 and 𝑣 are adjacent 

then 𝑓(𝑢) + 𝑓(𝑣) = 2 + 2 > 2; which contradicts the fact 

that 𝑓 is a Roman Free Function. So 𝑢 and 𝑣 can not be 

adjacent vertices.        

 

Remark 4.7: From the above corollary it follows that the set 

of all vertices for which 𝑟𝑓(𝐺 − 𝑣) > 𝑟𝑓(𝐺) is an 

Independent set.         

Now we state and prove the necessary and sufficient 

conditions under which the rf-number decreases when a 

vertex is removed from the graph.  

 

Theorem 4.8: Let 𝐺 be a graph and 𝑣 ∈ 𝑉(𝐺) then 𝑟𝑓(𝐺 −
𝑣) < 𝑟𝑓(𝐺) if and only if for every rf-function 𝑔 on 𝐺 − 𝑣 

there is an rf-function ℎ on 𝐺 such that the restriction 

of ℎ on 𝐺 − 𝑣 is equal to 𝑔 and ℎ(𝑣) = 1 or 2.  

 

Proof: First suppose that the condition is satisfied. Let 𝑔 be 

an rf-function on 𝐺 − 𝑣 then there is an rf-function ℎ on 𝐺 

such that ℎ(𝑣) = 1 or 2 and the restriction of ℎ on 𝐺 − 𝑣 is 

equal to 𝑔. 

Then 𝑟𝑓(𝐺 − 𝑣) = 𝑤(𝑔) < 𝑤(ℎ) = 𝑟𝑓(𝐺). 

i.e. 𝑟𝑓(𝐺 − 𝑣) < 𝑟𝑓(𝐺). 

Conversely suppose 𝑟𝑓(𝐺 − 𝑣) < 𝑟𝑓(𝐺). Let 𝑔 be an rf-

function on 𝐺 − 𝑣. 

Define ℎ′: 𝑉(𝐺) → {0,1,2} as follows: 

ℎ′(𝑣) = 0 and ℎ′(𝑤) = 𝑔(𝑤); ∀ 𝑤 ≠ 𝑣 

Then obviously ℎ′is a Roman Free Function on 𝐺. But ℎ′ 
cannot be a Maximal Roman Free Function on 𝐺 because it 

would imply that 𝑟𝑓(𝐺) ≤ 𝑤(ℎ′) = 𝑤(𝑔) = 𝑟𝑓(𝐺 − 𝑣); 

which is not true. 

Therefore there is a Maximal Roman Free Function ℎ′′on 𝐺 

such that ℎ′ < ℎ′′. Therefore there is a vertex 𝑥 in 𝐺 such 

that ℎ′(𝑥) < ℎ′′(𝑥). 

If 𝑥 ≠ 𝑣 then this would imply that 𝑔(𝑥) < 𝑔′(𝑥) where 𝑔′ is 
the restriction of ℎ′′ on 𝐺 − 𝑣. This means 𝑔 is not a Maximal 

Roman Free Function on 𝐺 − 𝑣 which is a contradiction.  

Therefore 𝑥 = 𝑣. 

Thus ℎ′(𝑣) < ℎ′′(𝑣). Therefore ℎ′′(𝑣) = 1 or 2. 

Suppose ℎ′′(𝑣) = 1. 

Since 𝑟𝑓(𝐺 − 𝑣) < 𝑟𝑓(𝐺), ℎ′′ is an rf-function on 𝐺 

with ℎ′′(𝑣) = 1 and the restriction of ℎ′′ on 𝐺 − 𝑣 is equal 

to 𝑔. 

Suppose ℎ′′(𝑣) = 2. 

Then again by the similar argument ℎ′′ is an rf-function on 𝐺 

with ℎ′′(𝑣) = 2 and the restriction of ℎ′′ on 𝐺 − 𝑣 is equal 

to 𝑔. Thus the theorem.         

 

Example 4.9: Consider the graph 𝐺 = 𝐶4 with vertices 

{v1, v2, v3, v4}. 

Now consider the graph 𝐺 − 𝑣4 which is a path graph 𝑃3 with 

vertices {v1, v2, v3}. 

 

 
 

Fig 4: (GRAPH G) 

 

Define 𝑔 on 𝐺 − 𝑣4 as follows: 

𝑔(𝑣1) = 0, 𝑔(𝑣2) = 2 𝑎𝑛𝑑 𝑔(𝑣3) = 0  

Then 𝑔 is an rf-function on 𝐺 − 𝑣4 and 𝑟𝑓(𝐺 − 𝑣4) = 2 

Now define ℎ on 𝐺 as follows: 

ℎ(𝑣4) = 2 and 

 ℎ(𝑤) = 𝑔(𝑤); ∀𝑤 ≠ 𝑣4 

Then ℎ is an rf-function on 𝐺 and 𝑟𝑓(𝐺) = 4.  

Further the restriction of ℎ on 𝐺 − 𝑣4 is equal to 𝑔 

with ℎ(𝑣4) = 2. 

Thus 𝑟𝑓(𝐺 − 𝑣4) < 𝑟𝑓(𝐺). 

 

Corollary 4.10: Let 𝐺 be a graph and 𝑢, 𝑣 ∈ 𝑉(𝐺) such 

that 𝑟𝑓(𝐺 − 𝑢) < 𝑟𝑓(𝐺) and 𝑟𝑓(𝐺 − 𝑣) > 𝑟𝑓(𝐺) then 𝑢 

and 𝑣 are non adjacent vertices. 

 

Proof: Let 𝑔 be an rf-function on 𝐺 − 𝑢.  

Since 𝑟𝑓(𝐺 − 𝑢) < 𝑟𝑓(𝐺) there is an rf-function 𝑓 on 𝐺 such 

that 𝑓(𝑢) = 1 or 2 and restriction of 𝑓on 𝐺 − 𝑢 is equal to 𝑔. 

Since 𝑟𝑓(𝐺 − 𝑣) > 𝑟𝑓(𝐺), 𝑓(𝑣) = 2. 

If 𝑢 and 𝑣 are adjacent then either 𝑓∗(𝑢𝑣) = 𝑓(𝑢) + 𝑓(𝑣) =
3 or 4; which contradicts the fact that 𝑓 is a Roman Free 

Function. 

Therefore 𝑢 and 𝑣 cannot be adjacent vertices.   

 

5. Concluding Remarks 

The restriction of a Roman Free Function on its subgraph is a 

Roman Free Function. However the restriction of a Maximal 

Roman Free Function on its subgraph need not be a Maximal 

Roman Free Function. Thus we may consider the following 

problem: 

 

Problem 1: Under what conditions the restriction of a 

Maximal Roman Free Functions on its subgraph is a Maximal 

Roman Free Functions? 

In particular we may consider the following problem: 

 

Problem 2: Let 𝑣 be a vertex of the graph 𝐺. Under what 

conditions the restriction of a Maximal Roman Free Function 

on 𝐺 − 𝑣 is a Maximal Roman Free Function.  

Further the similar problem can be asked for rf-functions also. 

There is a scope for investigation in this direction. 
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