ISSN: 2456-1452 Maths 2017; 2(6): 296-300 © 2017 Stats & Maths www.mathsjournal.com Received: 25-09-2017 Accepted: 28-10-2017

DK Thakkar

Department of Mathematics, Saurashtra University Campus, University Road, Rajkot, India

SM Badiyani

Department of Mathematics, Saurashtra University Campus, University Road, Rajkot, India

Correspondence DK Thakkar Department of Mathematics, Saurashtra University Campus, University Road, Rajkot, India

Maximum and maximal roman free functions

DK Thakkar and SM Badiyani

Abstract

In this paper we consider Maximum Roman Free Functions and Maximal Roman Free Function with minimum cardinality. We consider the change in the Roman Free Number and an rf-number of a graph when a vertex is removed from the graph. We prove a necessary and sufficient condition under which the Roman Free Number of a graph increases. Also we prove a necessary and sufficient conditions under which the rf-number of a graph increases or decreases.

Keywords: Roman Free Function, Maximal Roman Free Function, Maximum Roman Free Function, rffunction, Roman Free Number, rf- number.

1. Introduction

The concept of Roman Domination was introduced in ^[5] by Ernie J. Cockayne, T.W. Haynes, and others. A Dominating Function gives rise to a Roman Dominating Function. The concept of independence can be extended to a new concept which involves a function whose range is {0,1,2}. In ^[2] we define the concept of a Roman Free Function. We observed that every Independent set gives rise to a Roman Free Function. It is natural to define the concepts like Maximal Roman Free Function and Maximum Roman Free Function. This concepts have been studied in ^[2]. In this paper we bring Maximal Roman Free Functions to play some other role. We may note that a Maximal Independent Set in a graph is a Minimal Dominating Set. Therefore we have Independent Domination Number for graphs. Here we consider Maximal Roman Free Functions with minimum weight which are called *rf*-functions. The weight of such a function is called the *rf*-number of the graph. We state and prove necessary and sufficient conditions under which the *rf*-number increases or decreases when a vertex is removed from the graph. We also prove a necessary and sufficient condition under which the Roman Free Number of a graph decreases when a vertex is removed from the graph.

2. Preliminaries and Notations

In this paper we consider only those graphs which are simple and finite. If *G* is a graph, V(G) will denote the vertex set of graph *G* and E(G) will denote the edge set of graph *G*. If *G* is a graph and $v \in V(G)$ then G - v will denote the subgraph obtained by removing the vertex v from *G*. The Roman Domination Number of the graph *G* is denoted as $\gamma_R(G)$, whereas the Domination Number of the graph G is denoted as $\gamma(G)$. If $f:V(G) \to \{0,1,2\}$ is a function then we write,

 $V_2(f) = \{v \in V(G) / f(v) = 2\}$ $V_1(f) = \{v \in V(G) / f(v) = 1\}$ $V_0(f) = \{v \in V(G) / f(v) = 0\}$

Obviously the above sets are mutually disjoint and their union is the vertex set V(G). The weight of this function $f = \sum_{v \in V(G)} f(v)$. This number is denoted as w(f).

Definition 2.1 ^[2]: Let *G* be a graph. A function $f: V(G) \to \{0,1,2\}$ is said to be a *Roman Free Function* if for every edge $e = uv, f^*(e) = f(u) + f(v) \le 2$.

Definition 2.2^[2]: A Roman Free Function with maximum weight is called a *Maximum Roman Free Function* and its weight is called *Roman Free Number* of a graph and it is denoted as $\beta_{rf}(G)$.

Definition 2.3 ^[2]: A Roman Free Function f is said to a *Maximal Roman Free Function* if whenever $g: V(G) \rightarrow \{0,1,2\}$ is any function such that g > f then g is not a Roman Free Function.

Definition 2.4 ^[2]: A Maximal Roman Free Function with minimum weight is called *rf-function* and its weight is called the *rf-number* of a graph and it is denoted as rf(G).

Maximum Roman Free Functions

Proposition 3.1: Let *G* be a graph and $v \in V(G)$ then $\beta_{rf}(G - v) \leq \beta_{rf}(G)$. **Proof:** Let *g'* be a Maximum Roman Free Function defined on *G* - *v*. Now define *g*: *V*(*G*) \rightarrow {0,1,2} as follows: g(v) = 0 and g(w) = g'(w); *if* $w \neq v$ Obviously *g* is a Roman Free Function on *G*. Therefore $\beta_{rf}(G) \geq w(g) = w(g') = \beta_{rf}(G - v)$. i.e. $\beta_{-rf}(G - v) \leq \beta_{-rf}(G)$

i.e. $\beta_{rf}(G - v) \leq \beta_{rf}(G)$.

Now we state and prove the necessary and sufficient condition under which the Roman Free Number increases when a vertex is removed from the graph.

Theorem 3.2: Let *G* be a graph and $v \in V(G)$ then $\beta_{rf}(G - v) < \beta_{rf}(G)$ if and only if for every Maximum Roman Free Function *f* defined on $V(G) f(v) \neq 0$.

Proof: First suppose $\beta_{rf}(G - v) < \beta_{rf}(G)$.

Let *f* be a Maximum Roman Free Function defined on V(G) such that f(v) = 0. Now define $g: V(G - v) \rightarrow \{0,1,2\}$ as follows:

 $g(w) = f(w); \forall w \in V(G - v)$

Obviously g is a Roman Free Function on G - v and f(v) = 0.

Also $w(g) = w(f) = \beta_{rf}(G) > \beta_{rf}(G - v).$

i.e. $w(g) > \beta_{rf}(G - v)$; which is a contradiction.

Therefore the condition is satisfied by every Maximum Roman Free Function on G.

Conversely suppose there is a Maximum Roman Free Function f defined on V(G) such that $f(v) \neq 0$. Suppose $\beta_{rf}(G - v) = \beta_{rf}(G)$.

Let g be a Maximum Roman Free Function defined on V(G - v).

Define $g': V(G) \rightarrow \{0,1,2\}$ as follows: g'(v) = 0 and

$$g'(w) = g(w); if w \neq v$$

Then obviously g' is a Maximum Roman Free Function on G with g'(v) = 0; which contradicts the hypothesis. Therefore $\beta_{rf}(G) > \beta_{rf}(G - v)$.

Example 3.3: Consider the following example in which the vertex set is $\{v_1, v_2, v_3, v_4\}$.

Fig 1: (GRAPH G)

Let $f: V(G) \rightarrow \{0,1,2\}$ be any function such that $f(v_1) = 2, f(v_2) = 0, f(v_3) = 0$ and $f(v_4) = 2$

Then *f* is a Maximal Roman Free Function and $\beta_{rf}(G) = 4$. Now consider the graph $G - v_3$.

The Roman Free Number of $V(G - v_3) = 4$ i.e. $\beta_{rf}(G - v_3) = 4$.

Thus we have $\beta_{rf}(G - v_3) = \beta_{rf}(G)$.

Example 3.4: Consider the Cycle graph $G = C_5$ with vertices $\{v_1, v_2, v_3, v_4, v_5\}$.

Fig 2: (GRAPH G)

Define $f: V(G) \rightarrow \{0,1,2\}$ as follows: $f(v_i) = 1, \forall i = 1,2,3,4,5$

Obviously *f* is Maximal Roman Free Function and $\beta_{rf}(G) = 5$.

Now consider the graph $G - v_5$ which is a path graph P_4 with vertices $\{v_1, v_2, v_3, v_4\}$.

Then clearly $\beta_{rf}(G - v_5) = 4$. Thus $\beta_{rf}(G - v_5) < \beta_{rf}(G)$.

Maximal Roman Free Functions

We proved the following theorem in [2].

Theorem 4.1: Let *G* be a graph and $f:V(G) \rightarrow \{0,1,2\}$ be a Roman Free Function then *f* is a Maximal Roman Free Function if and only if whenever f(v) < 2 there is a vertex *u* adjacent to *v* such that f(u) + f(v) = 2. \square Now we consider Maximal Roman Free Functions with minimum cardinality which are defined as *rf*-functions. It is obvious that every *rf*-function is a Roman Dominating Function. Here we also consider the operation of removing the vertex from the graph on the *rf*-number of the graph.

Proposition 4.2: Let *G* be a graph and $v \in V(G)$. If there is an *rf*-function *f* on G - v such that f(w) = 2 for some $w \in N(v)$ then $rf(G - v) \ge rf(G)$. **Proof:** Let *f* be an *rf*-function on G - v such that f(w) = 2for some $w \in N(v)$. Define $g: V(G) \to \{0,1,2\}$ as follows: g(v) = 0 and $g(w) = f(w); \forall w \neq v$ Then *g* is a Maximal Roman Free Function. Therefore $rf(G) \le w(g) = w(f) = rf(G - v)$.

i.e. $rf(G) \leq rf(G - v)$.

Proposition 4.3: Let *G* be a graph and *v* be an isolated vertex of *G*. If *f* is a Maximal Roman Free Function on *G* then f(v) = 2.

Proof: Consider f be a Maximal Roman Free Function with f(v) = 0 or 1.

Define $g: V(G) \rightarrow \{0,1,2\}$ as follows:

$$g(v) = 2$$
 and

 $g(w) = f(w); \forall w \neq v$

Then *g* is a Roman Free Function on *G* and f < g; which contradicts the maximality of *f*.

Thus f(v) = 2.

Now we state and prove the necessary and sufficient conditions under which the *rf*-number increases when a vertex is removed from the graph.

Theorem 4.4: Let G be a graph and $v \in V(G)$ then rf(G - v) > rf(G) if and only if the following conditions are satisfied:

i) v is not an isolated vertex in G.

ii) f(v) = 2 for every *rf*-function *f* on *G*.

iii) There is no Maximal Roman Free Function g on G - v such that $w(g) \le rf(G)$ and $V_2(g)$ is a subset of V(G) - N[v].

Proof: Suppose rf(G - v) > rf(G)

i) Suppose v is an isolated vertex, then for every Maximal Roman Free Function f on G, f(v) = 2.

Define $g: V(G - v) \rightarrow \{0,1,2\}$ as follows:

 $g(w) = f(w); \forall w \in V(G - v)$

Then g is a Maximal Roman Free Function.

Therefore $rf(G - v) \le w(g) \le w(f) = rf(G)$.

i.e. $rf(G - v) \le rf(G)$; which is a contradiction.

Therefore v is not isolated vertex in G.

ii) Suppose for some *rf*-function f on G, f(v) = 0 then v cannot be an isolated vertex on G.

Now define g on G - v as follows:

 $g(w) = f(w); \forall w \in V(G - v)$

Then obviously g is a Maximal Roman Free Function on G - v.

Also $rf(G - v) \le w(g) = w(f) = rf(G)$; which is a contradiction.

Now suppose for some *rf*-function f on G, f(v) = 1.

Now define g on G - v as follows:

a) If w is a neighbour of v such that for every neighbour x of w in G - v, f(x) = 0 or w is an isolated vertex in G - v then define g(w) = 2.

b) If w is a neighbour of v such that for every neighbour x of w in G - v, f(x) = 1 then define g(w) = 1.

c) For all other vertices t, define g(t) = f(t).

Then *g* is a Maximal Roman Free Function on G - v.

Also $rf(G - v) \le w(g) \le w(f) = rf(G)$; which is again a contradiction. Thus f(v) = 1 is also not possible for any *rf*-function *f* on *G*.

Hence f(v) = 2 for every *rf*-function *f* on *G*.

iii) Suppose there is a Maximal Roman Free Function g on G - v with $w(g) \le rf(G)$ and $V_2(g)$ is a subset of V(G) - N[v].

Then obviously $rf(G - v) \le w(g) \le rf(G)$; which is a contradiction.

Conversely suppose conditions (i), (ii) and (iii) are satisfied.

Suppose rf(G - v) = rf(G). Let f be an *rf*-function on G - v.

Now define $g: V(G) \rightarrow \{0,1,2\}$ as follows:

$$g(v) = 0$$
 and
 $g(w) = f(w); \forall w \neq v$

Then g is a Roman Free Function on G.

Case-I: Suppose there is a neighbour x of v such that g(x) = 2. Then g is a Maximal Roman Free Function on G. Since w(g) = w(f) = rf(G) and also we have rf(G) = rf(G - v), g is an rf-function on G with g(v) = 0.

Case-II: For every neighbour w of $v, f(w) \neq 2$. Then $g(w) \neq 2$. Then $V_2(g)$ is a subset of V(G) - N[v] and g is a Maximal Roman Free Function on G - v such that $w(f) \leq rf(G)$; which contradicts condition (iii). Thus rf(G - v) = rf(G) is not possible.

Suppose rf(G - v) < rf(G). Let g be an *rf*-function on G - v.

Now define
$$f: V(G) \to \{0,1,2\}$$
 as follows:

$$f(v) = 0$$
 and

 $f(w) = g(w); \forall w \neq v$

Then *f* is a Roman Free Function on *G*. If there is a neighbour *x* of *v* such that f(x) = g(x) = 2 then *f* is a Maximal Roman Free Function on *G*. This implies $rf(G) \le w(f) = w(g) = rf(G - v)$.

i.e. $rf(G) \le rf(G - v)$; which is a contradiction.

Therefore for every neighbour x of v such that $f(x) = g(x) \neq 2$.

Thus there is a Maximal Roman Free Function g on G - vsuch that $V_2(g)$ is a subset of V(G) - N[v] and $w(g) \le rf(G)$; this again contradicts the condition (iii).

Thus rf(G - v) < rf(G) is also not possible.

Hence rf(G - v) > rf(G).

Example 4.5: Consider the following example in which the vertex set is $\{v_1, v_2, v_3, v_4\}$.

Fig 3: (GRAPH G)

A CON

Define $f: V(G) \rightarrow \{0,1,2\}$ be any function such that $f(v_1) = 0, f(v_2) = 0, f(v_3) = 2$ and $f(v_4) = 0$ Then f is an rf-function and rf(G) = 2. Now consider the graph $G - v_3$ and define g on $G - v_3$ as follows: $g(v_1) = 2, g(v_2) = 0$ and $g(v_4) = 2$ Then g is an rf-function and $rf(G - v_3) = 4$ Thus $rf(G - v_3) > rf(G)$.

Corollary 4.6: Let *G* be a graph and $u, v \in V(G)$ such that rf(G - u) > rf(G) and rf(G - v) > rf(G) then *u* and *v* are non-adjacent vertices.

Proof: Let *f* be any *rf*-function on *V*(*G*) then f(v) = 2 and f(u) = 2 by the theorem 4.4. If *u* and *v* are adjacent then f(u) + f(v) = 2 + 2 > 2; which contradicts the fact that *f* is a Roman Free Function. So *u* and *v* can not be adjacent vertices.

Remark 4.7: From the above corollary it follows that the set of all vertices for which rf(G - v) > rf(G) is an Independent set.

Now we state and prove the necessary and sufficient conditions under which the *rf*-number decreases when a vertex is removed from the graph.

Theorem 4.8: Let *G* be a graph and $v \in V(G)$ then rf(G - v) < rf(G) if and only if for every *rf*-function *g* on G - v there is an *rf*-function *h* on *G* such that the restriction of *h* on G - v is equal to *g* and h(v) = 1 or 2.

Proof: First suppose that the condition is satisfied. Let *g* be an *rf*-function on G - v then there is an *rf*-function *h* on *G* such that h(v) = 1 or 2 and the restriction of *h* on G - v is equal to *g*.

Then rf(G - v) = w(g) < w(h) = rf(G).

i.e. rf(G - v) < rf(G).

Conversely suppose rf(G - v) < rf(G). Let g be an *rf*-function on G - v.

Define $h': V(G) \rightarrow \{0,1,2\}$ as follows:

 $h'^{(v)} = 0$ and $h'(w) = g(w); \forall w \neq v$

Then obviously h' is a Roman Free Function on G. But h' cannot be a Maximal Roman Free Function on G because it would imply that $rf(G) \le w(h') = w(g) = rf(G - v)$; which is not true.

Therefore there is a Maximal Roman Free Function h'' on G such that h' < h''. Therefore there is a vertex x in G such that h'(x) < h''(x).

If $x \neq v$ then this would imply that g(x) < g'(x) where g' is the restriction of h'' on G - v. This means g is not a Maximal Roman Free Function on G - v which is a contradiction.

Therefore x = v.

Thus h'(v) < h''(v). Therefore h''(v) = 1 or 2. Suppose h''(v) = 1.

Since rf(G - v) < rf(G), h'' is an *rf*-function on *G* with h''(v) = 1 and the restriction of h'' on G - v is equal to *g*.

Suppose h''(v) = 2.

Then again by the similar argument h'' is an *rf*-function on *G* with h''(v) = 2 and the restriction of h'' on G - v is equal to *g*. Thus the theorem.

Example 4.9: Consider the graph $G = C_4$ with vertices $\{v_1, v_2, v_3, v_4\}$.

Now consider the graph $G - v_4$ which is a path graph P_3 with vertices $\{v_1, v_2, v_3\}$.

Fig 4: (GRAPH G)

Define g on $G - v_4$ as follows: $g(v_1) = 0, g(v_2) = 2$ and $g(v_3) = 0$ Then g is an rf-function on $G - v_4$ and $rf(G - v_4) = 2$ Now define h on G as follows:

$$h(v_4) = 2$$
 and
 $h(w) = g(w); \forall w \neq v_4$

Then *h* is an *rf*-function on *G* and rf(G) = 4. Further the restriction of *h* on $G - v_4$ is equal to *g* with $h(v_4) = 2$. Thus $rf(G - v_4) < rf(G)$.

Corollary 4.10: Let G be a graph and $u, v \in V(G)$ such that rf(G-u) < rf(G) and rf(G-v) > rf(G) then u and v are non adjacent vertices.

Proof: Let *g* be an *rf*-function on G - u.

Since rf(G - u) < rf(G) there is an *rf*-function *f* on *G* such that f(u) = 1 or 2 and restriction of *f* on G - u is equal to *g*. Since rf(G - v) > rf(G), f(v) = 2.

If u and v are adjacent then either $f^*(uv) = f(u) + f(v) = 3$ or 4; which contradicts the fact that f is a Roman Free Function.

Therefore u and v cannot be adjacent vertices.

5. Concluding Remarks

The restriction of a Roman Free Function on its subgraph is a Roman Free Function. However the restriction of a Maximal Roman Free Function on its subgraph need not be a Maximal Roman Free Function. Thus we may consider the following problem:

Problem 1: Under what conditions the restriction of a Maximal Roman Free Functions on its subgraph is a Maximal Roman Free Functions?

In particular we may consider the following problem:

Problem 2: Let v be a vertex of the graph G. Under what conditions the restriction of a Maximal Roman Free Function on G - v is a Maximal Roman Free Function.

Further the similar problem can be asked for *rf*-functions also. There is a scope for investigation in this direction.

6. References

- 1. Revelle CS, Rosing KE. Defenders Imperium Romanum: a classical problem in military strategy, Amer. Math. Monthly. 2000; 107(7):585-594.
- 2. Thakkar DK, Badiyani. Roman Free Functions In Graphs communicated.
- Stewart I. Defend the Roman Empire!, Sci. Amer. 1999; 281(6):136-139.
- 4. Paul Andrew Dreyer. Jr. Dissertation Director: Fred S Roberts, Application and Variations of domination in graphs, New Brunswick, New Jersey, 2000.
- 5. Haynes TW, Hedetniemi ST, Slater PJ. Fundamental of Domination In graphs, Marcel Dekker, New York, 1998.
- 6. Haynes TW, Hedetniemi ST, Slater PJ. Domination In graphs Advanced Topics, New York, 1998.s