ISSN: 2456-1452 Maths 2018; 3(2): 45-47 © 2018 Stats & Maths

www.mathsjournal.com Received: 15-01-2018 Accepted: 23-02-2018

Anita Pruthi

PG Department of Mathematics, D.A.V. College, Abohar, Punjab,

On the property of properness in the extended tripleerror-correcting BCH codes

Anita Pruthi

DOI: https://doi.org/10.22271/maths.2018.v3.i2a.602

Abstract

The undetected error probability $p_u(\varepsilon)$ for the primitive triple-error-correcting BCH codes of blocklength 2^m-1 on a BSC with cross-over probability $\varepsilon \le 1/2$ has been widely studied. In this correspondence, extended triple-error-correcting BCH codes of blocklength 2^m are studied and the results presented in are supported and strengthened but with a different approach i.e., it is proved that the extended triple-errorcorrecting BCH codes of blocklength 2^m don't satisfy the properties of proper codes for even $m \ge 6$, m integer.

Keywords: Proper codes, undetected error probability

1. Introduction

Proper codes are studied extensively, specifically in [3]. Performance of proper codes is good in error controlling. A code is said to be proper if its undetected error probability $p_u(\varepsilon)$ is an increasing function of ε . Proper codes perform good in error control [4]. When a codeword from a code is transmitted over a channel and some error occurs during transmission and if the received vector is not a codeword then errors are detected. But it may also happen than errors are so combined that the received vector is also one of the codewords. In such a case there is no way to detect that received codeword is not the sent codeword and in this way there arises an undetected error.

- **2.** Claim: The extended triple-error-correcting BCH codes of blocklength 2^m are not proper for even $m \ge 6$, m integer.
- **3. Proof:** For a code to be proper its undetected error probability $p_n(\varepsilon)$ should increase as ε (Bit error rate) increases.

Now $p_u(\varepsilon)$ for an (n, k) code can be calculated from the weight distribution of its dual by using the MacWilliams identity and its expression is given by

$$p_{\nu}(\varepsilon) = 2^{-(n-k)}B(1-2p) - (1-p)^n$$

where $(1-2p) = \sum_{i=0}^{n} B_i (1-2p)^i$, $B_i, 0 \le i \le n$, represents weight distribution of dual code, p is the transition probability of the BSC.

Although, $p_u(\varepsilon)$ can be calculated not only by the wright distribution of the dual of the code but also by the weight distribution of the code itself. So in this claim, $p_u(\varepsilon)$ is calculated by using weight distribution of the dual of extended triple-error-correcting BCH codes of Blocklength 2^m .

The weight distribution ^[5] of the dual of the code is as follows:

PG Department of Mathematics, D.A.V. College, Abohar, Punjab,

Corresponding Author:

Anita Pruthi

India

Number of Vectors Bi Weight i $0, 2^{m}$

 $2^{m-1} \pm 2^{(m+2)/2}$ $2^{m}(2^{m}-1)(2^{m}-4)/960$ $7.2^m(2^m-1)/48$

 $2^{m-1} \pm 2^{m/2}$ $2^{m-1} \pm 2^{(m-2)/2}$ $2.2^m(2^m-1)(3.2^m+8)/15$

(i)

$$\begin{aligned} &2^{m-1} & (2^m-1)(2^9.2^{2^m}-4.2^m+64)/32 \\ &\text{Putting } l = 2^{(m-2)/2} \text{ and } p = 3m+1 \text{ we have} \\ &p_u(\varepsilon) = 2^{-3m-1} \sum_{i=0}^n B_i \left(1-2\varepsilon\right)^i - (1-\varepsilon)^n \\ &= \frac{1}{128l^6} \Big\{ \Big[1+1(1-2\varepsilon)^{2^m}\Big] + (1-2\varepsilon)^{2^{m-1}+2^{(m+2)/2}} \Big[2^m(2^m-1)(2^m-4)/960\Big] + \\ & (1-2\varepsilon)^{2^{m-1}-2^{(m+2)/2}} \Big[2^m(2^m-1)(2^m-4)/960\Big] + (1-2\varepsilon)^{2^{m-1}+2^{m/2}} \Big[7.2^{2^m}(2^m-1)/48\Big] + (1-2\varepsilon)^{2^{m-1}-2^{m/2}} \Big[7.2^{2^m}(2^m-1)/48\Big] + (1-2\varepsilon)^{2^{m-1}+2^{(m-2)/2}} \Big[2.2^m(2^m-1)/3.2^m+8)/15\Big] + \\ & (1)(3.2^m+8)/15\Big] + (1-2\varepsilon)^{2^{m-1}-2^{(m-2)/2}} \Big[2.2^m(2^m-1)(3.2^m+8)/15\Big] + \\ & (1-2\varepsilon)^{2^{m-1}} \Big[(2^m-1)(2^9.2^{2^m}-4.2^m+64)/32\Big]\Big\} - (1-\varepsilon)^{2^m} \\ & = \frac{1}{128l^6} \Big\{ \Big[1+1(1-2\varepsilon)^{4l^2}\Big] + (1-2\varepsilon)^{2l^2+4l} \Big[4l^2(4l^2-1)(4l^2-4)/960\Big] + (1-2\varepsilon)^{2l^2-4l} \Big[4l^2(4l^2-1)(4l^2-4)/960\Big] + (1-2\varepsilon)^{2l^2-2l} \Big[7.16l^4(4l^2-1)/48\Big] + \\ & (1-2\varepsilon)^{2l^2-2l} \Big[7.16l^4(4l^2-1)/48\Big] + (1-2\varepsilon)^{2l^2+l} \Big[2.4l^2(4l^2-1)(3.4l^2+8)/15\Big] + \\ & (1-2\varepsilon)^{2l^2-l} \Big[2.4l^2(4l^2-1)(3.4l^2+8)/15\Big] + (1-2\varepsilon)^{2l^2} \Big[(4l^2-1)(29.16l^4-4.4l^2+64)/32\Big] \Big\} - (1-\varepsilon)^{4l^2} \end{aligned}$$

On differentiating $p_u(\varepsilon)$ w.r.t.,

$$\begin{split} &\frac{d}{d\varepsilon}p_{u}(\varepsilon) = \frac{-2}{128l^{6}}\Big\{4l^{2}(1-2\varepsilon)^{4l^{2}-1} + [4l^{2}(4l^{2}-1)(4l^{2}-4)/960]\Big((2l^{2}+4l)(1-2\varepsilon)^{2l^{2}+4l-1} + (2l^{2}-4l)(1-2\varepsilon)^{2l^{2}-4l-1}\Big) + [7.16l^{4}(4l^{2}-1)/48]((2l^{2}+2l)(1-2\varepsilon)^{2l^{2}+2l-1} + (2l^{2}-2l)(1-2\varepsilon)^{2l^{2}-2l-1}\Big) + [2.4l^{2}(4l^{2}-1)(3.4l^{2}+8)/15]((2l^{2}+l)(1-2\varepsilon)^{2l^{2}+l-1} + (2l^{2}-l)(1-2\varepsilon)^{2l^{2}-l-1}\Big) + [(4l^{2}-1)(29.16l^{4}-4.4l^{2}+l)(1-2\varepsilon)^{2l^{2}+l-1} + (2l^{2}-l)(1-2\varepsilon)^{2l^{2}-l-1}\Big) + [(4l^{2}-1)(29.16l^{4}-4.4l^{2}+l)(1-2\varepsilon)^{2l^{2}+l-1}\Big) + [(4l^{2}-1)(4l^{2}-4)/960]\Big((2l^{2}+4l)(1-2\varepsilon)^{2l^{2}+4l-1} + (2l^{2}-4l)(1-2\varepsilon)^{2l^{2}-4l-1}\Big) + [7.4l^{2}(4l^{2}-1)/48]((2l^{2}+2l)(1-2\varepsilon)^{2l^{2}+2l-1} + (2l^{2}-2l)(1-2\varepsilon)^{2l^{2}-2l-1}\Big) + [2(4l^{2}-1)(3.4l^{2}+8)/15]((2l^{2}+l)(1-2\varepsilon)^{2l^{2}+l-1} + (2l^{2}-l)(1-2\varepsilon)^{2l^{2}-l-1}\Big) + [(4l^{2}-1)(29.8l^{2}-8l^{2}+32)/32](1-2\varepsilon)^{2l^{2}-1}\Big\} + 4l^{2}(1-\varepsilon)^{4l^{2}-1} \end{split}$$
(iii)

Using Equations (i) and (ii), we have the following table:-

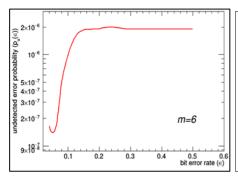
Table 1: Values of undetected error probability $p_u(\varepsilon)$ for given ε , for $6 \le m \le 16$.

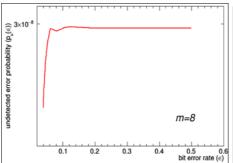
S. No.	m	l	ε	$p_u(\varepsilon)$	$d/_{d\varepsilon}p_{u}(\varepsilon)$
	6	4	0.1	9.837993990569e-07	-8.250700739498e-02
			0.2	1.918934366274e-06	-4.945716694417e-05
1.			0.3	1.907454876543e-06	-1.898542817751e-08
			0.4	1.907348626480e-06	-4.937333414117e-13
			0.5	1.907348632812e-06	1.084202172486e-19
	8	8	0.1	2.980232365649e-08	-5.470128317751e-10
			0.2	2.980232238770e-08	-8.624408683311e-23
2.			0.3	2.980232238770e-08	-1.222599721827e-39
			0.4	2.980232238770e-08	-8.834101051736e-184
			0.5	2.980232238770e-08	0.00000000000e+00
		16	0.1	4.656612873077e-10	-2.212545631085e-44
	10		0.2	4.656612873077e-10	-1.066902703526e-233
3.			0.3	4.656612873077e-10	0.0
			0.4	4.656612873077e-10	0.0
			0.5	4.656612873077e-10	0.0

4.	12	32	0.1	7.275957614183e-12	0.0
			0.2	7.275957614183e-12	0.0
			0.3	7.275957614183e-12	0.0
			0.4	7.275957614183e-12	0.0
			0.5	7.275957614183e-12	0.0
5.	14	64	0.1	1.136868377216e-13	0.0
			0.2	1.136868377216e-13	0.0
			0.3	1.136868377216e-13	0.0
			0.4	1.136868377216e-13	0.0
			0.5	1.136868377216e-13	0.0
	16	128	0.1	1.776356839400e-15	0.0
6.			0.2	1.776356839400e-15	0.0
			0.3	1.776356839400e-15	0.0
			0.4	1.776356839400e-15	0.0
			0.5	1.776356839400e-15	0.0

Table 2: Comparison of $p_u(\varepsilon_{max})$ and 2^{-p}

m	$p_u(arepsilon_{max})$	2^{-p}
6	1.907348632812446e-06	1.907348632812500e-06
8	2.980232238769531e-08	2.980232238769531e-08
10	4.656612873077393e-10	4.656612873077393e-10
12	7.275957614183426e-12	7.275957614183426e-12
14	1.136868377216160e-13	1.136868377216160e-13
16	1.776356839400250e-15	1.776356839400250e-15





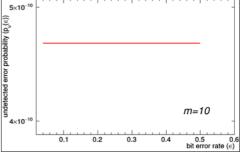


Fig 1: Undetected error probability for m = 6.8 and 10.

4. Conclusion

Table 2 shows that $p_u(\varepsilon)$ doesn't satisfies $p_u(\varepsilon_{max}) < 2^{-p}$ bound except for m = 6. For $m = 8, 10, 12, 14, \dots$ the bound is exactly equal to $p_u(\varepsilon_{max})$. Also Figure 1 and Table 1 represents that the undetected error probability is not always monotonically increasing as required for proper code. Moreover, for $m \ge 10$, it becomes constant.

Also, on calculating $dp_u(\varepsilon)/d\varepsilon$ is not always found positive for given range of ε and different values of m as shown in Table 1. For $m \ge 12$, as $p_u(\varepsilon)$ attains constant value, $dp_u(\varepsilon)/d\varepsilon$ vanishes. Due to the above mentioned observations, the code doesn't exhibit the property of properness. This completes the proof that the extended primitive triple-error-correcting BCH codes of Blocklength 2^m are not proper for even $m \ge 6$, m integer.

5. References

- Ong CT, Leung C. On the undetected error probability of triple-error-correcting BCH codes, IEEE Trans. Inform. Theory 1991;37(3):673-678.
- Patrick Perry, Necessary condition for good error detection, IEEE Trans. Inform. Theory 1991;37(2):375-378.
- Leung-Yan-Cheong SK, Barnes ER, Friedman DU. On some properties of the undetected error probability of

- linear codes, IEEE Trans. Inform. Theory 1979;25(1):110-112.
- 4. Dodunekova R, Dodunekov SM, Nikolova E, A survey on proper codes, Discrete Applied Mathematics 2008;156(9):1499-1509.
- Mac Williams, Sloane NJA. Theory of error correcting codes, North-Holland Publishing Company, New York 1977.