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Abstract 

In this paper we just extend the previous result of asymptotic expansion of wavelet transform by using 

Ashish Pathak, Prabhat Yadav and M.M. Dixit technique. Here we find (𝑊∅
− 𝑓) (𝑡, 𝑠) separately by 

recall earlier result and accumulate (𝑊∅
+𝑓) (t, s) and(𝑊∅

− 𝑓)(𝑡, 𝑠), in order to find asymptotic 

approximation of continuous wavelet transform (𝑊∅ 𝑓) (𝑡, 𝑠) for large value of dilation parameter. 
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Introduction 

The concept of wavelet transform and asymptotic expansion can be seen as the synthesis of 

various ideas originating from different disciplines such as mathematics and other fields like 

physics and engineering etc.  

As so many mathematicians have investigated in the field of an asymptotic expansion and 

wavelet transform like [1, 5, 6, 9-19] etc. Recently by using Mellin transform technique of Lopez 

and Pagola and an asymptotic expansion of the Fourier transform of the function and the 

wavelet, Pathak, Yadav, Dixit [2, 3, 4] obtained the asymptotic expansion of the continuous 

wavelet transform for large and small values of dilation and translation parameter and Jose L. 

Lopez [5] derived asymptotic expansion of Mellin convolutions by means of analytic 

continuation instead of distribution technique. 

The continuous wavelet transform of a function 𝑓 ∈ 𝐿2(𝑅) with respect to the wavelet ∅ ∈
 𝐿2(𝑅) is defined by [1]. 

 

(𝑊∅ 𝑓) (𝑡, 𝑠) = 
1

√𝑆
 ∫ 𝑓(𝑢)

∞

−∞
 ∅(𝑢−𝑡

𝑠
)̅̅ ̅̅ ̅̅ ̅̅  𝑑𝑢, 𝑠 > 0, 𝑡 ∈ 𝑅,         (1) 

 

Provided the integral exists. The asymptotic expansion for Mellin convolution  

 

𝐼(υ) =∫ 𝑓(𝑢)𝑔(υ𝑢)𝑑𝑢 
∞

0
, as υ → 0+,              (2) 

 

Was proposed by Pathak, Yadav and Dixit [1] under dyadic conditions on 𝑓 and 𝑔. As 

asymptotic behaviour of 𝑔(𝑢) and 𝑓(𝑢) at 𝑢 → 0+ and 𝑢 → +∞ has satisfied [(3), (4), (5), (6) 

and (7) of [1]. 

Let us remind earlier results (8), (9), (10), of Theorem 1 [1]. The asymptotic expansion of (2) at 

the origin is given below by the following three cases of Theorem 1[1] as:  

 

Case I: For any 𝑛 = 1,2,3, … and 𝑚 = 𝑛 + ⌊𝑝 + 𝑞⌋ with +𝑞 ∉ 𝑍, we have 

 

∫ 𝑓(𝑢)
∞

0
𝑔(υ𝑢)𝑑𝑢 = ∑ 𝑡𝑖

𝑛−1
𝑖=0 𝑀[ 𝑔(𝑢); 1 − 𝑖 − 𝑞] υ𝑖+𝑞−1+ ∑ 𝑠𝑖

𝑚−1
𝑖=0 𝑀[ 𝑓(𝑢); 1 + 𝑖 − 𝑝] υ𝑖−𝑝  

+ O ( υ𝑛+𝑞−1).                   (3) 

 

Case II: For any 𝑛 = 1,2,3, … and 𝑚 = 𝑛 + 𝑝 + 𝑞 − 1 with 𝑝 + 𝑞 ∈ 𝑁, we have  

∫ 𝑓(𝑢)
∞

0
𝑔(υu)𝑑𝑢 = ∑ 𝑠𝑖

𝑝+𝑞−2
𝑖=0 𝑀[ 𝑓(𝑢) ; 1 + 𝑖 − 𝑝]υ𝑖−𝑝 



 

~108~ 

International Journal of Statistics and Applied Mathematics 
 

 

+ ∑ υ𝑖−𝑞−1𝑛−1
𝑖=0 {−𝑡𝑖 𝑠𝑖+𝑝+𝑞−1  log υ} 

+ lim
z→0

[𝑡𝑖 𝑀[𝑔(𝑢) ; 𝑧 + 1 − 𝑖 − 𝑞]  

+ 𝑠𝑖+𝑝+𝑞−1 𝑀[ 𝑓(𝑢); 𝑧 + 𝑖 + 𝑞] ] + O (υ𝑚−𝑝  log υ).                  (4) 

 

Case III: For any 𝑚 = 1,2,3, … and 𝑛 = 𝑚 + 1 − 𝑝 − 𝑞 with 1 − 𝑝 − 𝑞 ∈ 𝑁, we have 

 ∫ 𝑓(𝑢)
∞

0
𝑔(υu)𝑑𝑢 = ∑  𝑡𝑖 

−𝑝−𝑞
𝑖=0  𝑀[ 𝑔(𝑢) ;  1 − 𝑖 − 𝑞]υ𝑖+𝑞−1  

+ ∑  υ𝑖−𝑝𝑚−1
𝑖=0 {− 𝑠𝑖 𝑡𝑖+1−𝑝−𝑞  log υ  

+ lim
z→0

 [ 𝑡𝑖+1−𝑝−𝑞 𝑀[ 𝑔(𝑢) ; 𝑧 + 𝑝 − 𝑖]  

+ 𝑠𝑖  𝑀[ 𝑓(𝑢) ; 𝑧 + 𝑖 + 1 − 𝑝] ] }  

+ O (υ𝑚−𝑝  log υ).                          (5) 

 

By using aforesaid techniques (3), (4) and (5), we derive asymptotic approximation of continuous wavelet transform (𝑊∅ 𝑓) (𝑡, 𝑠) 

for large value of 𝑠, by recall Pathak, Yadav and Dixit technique. 

 

Asymptotic Approximation of Continuous Wavelet Transform for Large Value of 𝑠. 

In this section, we obtain asymptotic approximation of the continuous wavelet transform (1), when s→ +∞. Now, let us rewrite 

(1) in the form [1]: 

  

(𝑊∅ 𝑓) (𝑡, 𝑠) = 𝜗
1

2 ∫ 𝑓(𝑢 + 𝑡)
∞

−∞
 ∅(𝜗𝑢)̅̅ ̅̅ ̅̅ ̅̅  𝑑𝑢  

= 𝜗
1

2 { ∫ 𝑓(𝑢 + 𝑡)
∞

0
 ∅(𝜗𝑢)̅̅ ̅̅ ̅̅ ̅̅  𝑑𝑢 + ∫ 𝑓(−𝑢 + 𝑡)

∞

0
 ∅(−𝜗𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑑𝑢}               (6)  

= (𝑊∅
+𝑓)(t, s) + (𝑊∅

−𝑓)(t, s),                       (7) 

 

where, ϑ =  
1

S
 and 𝑡 is assumed to be a fixed real number. Setting 𝑓(𝑢 + 𝑡) = 𝜒(𝑢) and assume that 𝜒(𝑢) and ∅(𝑢)̅̅ ̅̅ ̅̅  are locally 

integrable on (0, ∞). Further assume that asymptotic approximation of the form [1]:  

 

∅(𝑢)̅̅ ̅̅ ̅̅  = ∑ 𝑠𝑖
𝑛−1
𝑖=0  𝑢𝑖−𝑝 +  ∅𝑛 (𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅, as 𝑢 → 0+,                    (8) 

 

𝜒(𝑢) = ∑ 𝑡𝑖
𝑛−1
𝑖=0  𝑢−𝑖−𝑞 + 𝜒𝑛 (𝑢)̅̅ ̅̅ ̅̅ ̅̅ , as 𝑢 → +∞.                   (9) 

 

Also assume that  

∅(𝑢)̅̅ ̅̅ ̅̅  = O (𝑢−𝜏), as 𝑢 → +∞, 𝜏 ∈ 𝑅,                      (10)  

 

and 𝜒(𝑢) = O (𝑢−𝜌), as 𝑢 → 0+, 𝜌 ∈ 𝑅.                     (11) 

 

With parameters 𝑝, 𝑞, 𝜏 and 𝜌 satisfying the following condition [1]: 

𝑝 + 𝜏 < 1 < 𝑞 + 𝜌, 𝜏 < 𝑞 and < 𝜌.                     (12) 

 

Then by using aforesaid techniques (3), (4) and (5), we obtain asymptotic approximation of (𝑊∅ 𝑓) (𝑡, 𝑠) for large value of 

dilation parameter when 𝑠 → +∞ as [1]:  

Case I: When 𝑛 = 1,2,3, … and 𝑚 = 𝑛 + ⌊𝑝 + 𝑞⌋ with +𝑞 ∉ 𝑍, we have  

(𝑊∅
+𝑓)(t, s) = ∑ 𝑡𝑖

𝑛−1
𝑖=0 𝑀[ ∅(𝑢)̅̅ ̅̅ ̅̅  ; 1 − 𝑖 − 𝑞]𝑠−𝑖−𝑞+

1

2 

+ ∑ 𝑠𝑖
𝑛−1
𝑖=0 𝑀[ 𝜒(𝑢); 1 + 𝑖 − 𝑝] 𝑠−𝑖+𝑝−1/2  

+ O (𝑠−𝑛−𝑞+1/2).                         (13)  

 

Similarly on setting 𝜒(𝑢) = 𝜒(−𝑢) and ∅(𝑢)̅̅ ̅̅ ̅̅  = ∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ to obtain (𝑊∅
−𝑓)(t, s), we have  

(𝑊∅
−𝑓)(t, s) = ∑ (−1)−𝑖−𝑞 𝑡𝑖

𝑛−1 
𝑖=0 𝑀[∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ ; 1 − 𝑖 − 𝑞] 𝑠−𝑖−𝑞+

1

2 

+ ∑  (−1)−𝑖−𝑝 𝑠𝑖
𝑛−1
𝑖=0 𝑀[ 𝜒(−𝑢); 1 + 𝑖 − 𝑝] 𝑠−𝑖+𝑝−1/2  

+ O (𝑠−𝑛−𝑞+1/2).                         (14)  

 

From (13) and (14) in (7), we get the required asymptotic approximation of wavelet transform (𝑊∅ 𝑓) (𝑡, 𝑠), when 𝑠 → +∞ as:  

(𝑊∅ 𝑓) (𝑡, 𝑠) = ∑ 𝑡𝑖  [𝑀[ ∅(𝑢)̅̅ ̅̅ ̅̅  ; 1 − 𝑖 − 𝑞] + (−1)−𝑖−𝑞 𝑀[ ∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ ; 1 − 𝑖 − 𝑞] ]𝑛−1
𝑖=0 𝑠−𝑖−𝑞+

1

2 

+ ∑  𝑠𝑖 
𝑛−1
𝑖=0 [𝑀[ 𝜒(𝑢); 1 + 𝑖 − 𝑝]  + (−1)−𝑖−𝑝 𝑀[ 𝜒(−𝑢); 1 + 𝑖 − 𝑝] ] ×  𝑠−𝑖+𝑝−1/2+O(𝑠−𝑛−𝑞+1/2).      (15)  

 

Case II: When 𝑛 = 1,2,3, … and 𝑚 = 𝑛 + 𝑝 + 𝑞 − 1 with 𝑝 + 𝑞 ∈ 𝑁, we have  

(𝑊∅
+𝑓) (𝑡, 𝑠) = ∑ 𝑠𝑖

𝑝+𝑞−2
𝑖=0 𝑀[ 𝜒(𝑢) ; 1 + 𝑖 − 𝑝] 𝑠−𝑖−𝑝+1/2  

+ ∑ 𝑠−𝑖−𝑞+1/2𝑛−1
𝑖=0  { −𝑡𝑖  𝑠𝑖+𝑝+𝑞−1 log(1/𝑠)  

+ lim
z→0

 [𝑡𝑖 𝑀[∅(𝑢)̅̅ ̅̅ ̅̅  ; 𝑧 + 1 − 𝑖 − 𝑞] + 𝑠𝑖+𝑝+𝑞−1 𝑀[ 𝜒(𝑢); 𝑧 + 𝑖 + 𝑞 ] ] } 

+ O (𝑠−𝑚+𝑝−1/2  log(1\𝑠)).                       (16)  
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Similarly on setting 𝜒(𝑢) = 𝜒(−𝑢) and ∅(𝑢)̅̅ ̅̅ ̅̅  = ∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ in order to obtain (𝑊∅
−𝑓)(t, s), we have  

(𝑊∅
−𝑓) (𝑡, 𝑠) = ∑  (−1)𝑖−𝑝 𝑠𝑖

𝑝+𝑞−2
𝑖=0 𝑀[ 𝜒(−𝑢) ; 1 + 𝑖 − 𝑝] 𝑠−𝑖+𝑝−1/2  

+ ∑ 𝑠−𝑖−𝑞+1/2𝑛−1
𝑖=0  { − (−1)−𝑖−𝑞+𝑖+ 𝑝+𝑞−1−𝑝 𝑡𝑖 𝑠𝑖+𝑝+𝑞−1 log(1/𝑠)  

+ lim
z→0

 [ (−1)−𝑖−𝑞 𝑡𝑖 𝑀[∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ ; 𝑧 + 1 − 𝑖 − 𝑞] + (−1)𝑖+𝑝+𝑞−1−𝑝  

×  𝑠𝑖+𝑝+𝑞−1 𝑀[ 𝜒(−𝑢); 𝑧 + 𝑖 + 𝑞 ] ] } 

+ O (𝑠−𝑚+𝑝−1/2  log(1\𝑠)).                       (17) 

 

From (16) and (17) in (7), we get the required asymptotic approximation of wavelet transform (𝑊∅ 𝑓) (𝑡, 𝑠), when 𝑠 → +∞ as:  

(𝑊∅ 𝑓) (𝑡, 𝑠) = ∑ 𝑠𝑖
𝑝+𝑞−2
𝑖=0  [ 𝑀[ 𝜒(𝑢) ; 1 + 𝑖 − 𝑝] + (−1)𝑖−𝑝 𝑀[ 𝜒(−𝑢) ; 1 + 𝑖 − 𝑝] ]  ×  𝑠−𝑖+𝑝−1/2 + ∑ 𝑠−𝑖−𝑞+1/2𝑛−1

𝑖=0  { lim
z→0

 [𝑡𝑖 

𝑀[  ∅(𝑢)̅̅ ̅̅ ̅̅ ̅ ; 𝑧 + 1 − 𝑖 − 𝑞] + (−1)−𝑖−𝑞  𝑀[ ∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ ; 𝑧 + 1 − 𝑖 − 𝑞] + 𝑠𝑖+𝑝+𝑞−1 [ 𝑀[ 𝜒(𝑢); 𝑧 + 𝑖 + 𝑞 ] 

+ (−1)𝑖+𝑞−1 𝑀[ 𝜒(−𝑢); 𝑧 + 𝑖 + 𝑞 ] ] ] } 

+ O (𝑠−𝑚+𝑝−1/2  log(1\𝑠)).                        (18) 

 

Case III: When 𝑚 = 1,2,3, … and 𝑛 = 𝑚 + 1 − 𝑝 − 𝑞 with 1 − 𝑝 − 𝑞 ∈ 𝑁, we have  

(𝑊∅
+𝑓) (𝑡, 𝑠) = ∑  𝑡𝑖 

−𝑝−𝑞
𝑖=0  𝑀[  ∅(𝑢)̅̅ ̅̅ ̅̅ ̅ ;  1 − 𝑖 − 𝑞] 𝑠−𝑖−𝑞+1/2 + ∑ 𝑠−𝑖+𝑝−1/2𝑚−1

𝑖=0   

{− 𝑠𝑖  𝑡𝑖+1−𝑝−𝑞   log(1\𝑠) +  lim
z→0

 [ 𝑡𝑖+1−𝑝−𝑞 𝑀[  ∅(𝑢)̅̅ ̅̅ ̅̅ ̅ ; 𝑧 + 𝑝 − 𝑖]  

+ 𝑠𝑖  𝑀[ 𝜒(𝑢) ; 𝑧 + 1 + 𝑖 − 𝑝]] } 

+ O (𝑠−𝑚+𝑝−1/2  log(1\𝑠)).                        (19) 

 

Similarly on setting 𝜒(𝑢) = 𝜒(−𝑢) and ∅(𝑢)̅̅ ̅̅ ̅̅  = ∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ in order to obtain (𝑊∅
−𝑓)(t, s), we have 

(𝑊∅
−𝑓) (𝑡, 𝑠) = ∑  (−1)−𝑖−𝑞 𝑡𝑖 

−𝑝−𝑞
𝑖=0  𝑀[  ∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ ;  1 − 𝑖 − 𝑞]𝑠−𝑖−𝑞+1/2 + ∑ 𝑠−𝑖+𝑝−1/2𝑚−1

𝑖=0   

{− (−1)𝑖−𝑝−𝑖−1+ 𝑝+𝑞−𝑞  𝑠𝑖  𝑏𝑖+1−𝑝−𝑞  log(1\𝑠)  

+  lim
z→0

 [ (−1)−𝑖−1+𝑝+𝑞−𝑞  𝑡𝑖+1−𝑝−𝑞 𝑀[  ∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ ; 𝑧 + 𝑝 − 𝑖]  

+ (−1)𝑖−𝑝 𝑠𝑖  𝑀[ 𝜒(−𝑢) ; 𝑧 + 1 + 𝑖 − 𝑝]] } 

+ O (𝑠−𝑚+𝑝−1/2  log(1\𝑠)).                       (20) 

 

From (19) and (20) in (7), we get the required asymptotic approximation of wavelet transform (𝑊∅ 𝑓) (𝑡, 𝑠), when 𝑠 → +∞ as:  

 

(𝑊∅ 𝑓) (𝑡, 𝑠) = ∑  𝑡𝑖 
−𝑝−𝑞
𝑖=0 [ 𝑀[  ∅(𝑢)̅̅ ̅̅ ̅̅ ̅ ;  1 − 𝑖 − 𝑞] + (−1)−𝑖−𝑞 𝑀[  ∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ ;  1 − 𝑖 − 𝑞] ] ×  𝑠−𝑖−𝑞+1/2 + ∑ 𝑠−𝑖+𝑝−1/2𝑚−1

𝑖=0  {  lim
z→0

 

[ 𝑡𝑖+1−𝑝−𝑞 [𝑀[  ∅(𝑢)̅̅ ̅̅ ̅̅ ̅ ; 𝑧 + 𝑝 − 𝑖] 

+ [ [ (−1)−𝑖−1+𝑝 𝑀[  ∅(−𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅ ; 𝑧 + 𝑝 − 𝑖] ] + 𝑠𝑖 [ 𝑀[ 𝜒(𝑢) ; 𝑧 + 1 + 𝑖 − 𝑝] 

+ (−1)𝑖−𝑝 𝑀[ 𝜒(−𝑢) ; 𝑧 + 1 + 𝑖 − 𝑝]]] }      

+ O (𝑠−𝑚+𝑝−1/2  log(1\𝑠)).                       (21)  

 

Conclusion 

In this paper we can easily calculate the approximation terms with their exact error terms. The result obtained in the previous 

paper Asymptotic Expansion of Wavelet Transform [1] is little different from the result obtaining in the present paper. In the 

Previous paper [1], we obtained asymptotic expansion of wavelet transform for (𝑊∅
+𝑓)(t, s) only, whereas in the present paper we 

obtaining asymptotic approximations of both (𝑊∅
+𝑓)(t, s) and (𝑊∅

−𝑓) (𝑡, 𝑠) in order to derive asymptotic approximation of the 

continuous wavelet transform (𝑊∅ 𝑓) (𝑡, 𝑠) (7) for large value of dilation parameter 𝑠. By using aforesaid results (3), (4) and (5) 

and remind Pathak, Yadav and Dixit technique, we get the following results (15), (18) and (21) respectively.  
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