Concircular curvature tensor in Kenmotsu manifold

Showkat Ahmad Rather and Riyaz Ahmad Shah

Abstract
In this paper we study Concircular curvature tensor in Kenmotsu manifolds. We consider curvature tensor, scalar curvature in a Kenmotsu manifold admitting concircular curvature tensor and prove the condition for concircular curvature tensor to be shrinking, steady and expanding.

Keywords: Curvature tensor, scalar curvature, Ricci tensor, Einstein, Kenmotsu manifold

Introduction
The Concircular curvature Ĉ on Kenmostu manifolds of dimensional n is defined by

\[
\tilde{C}(X, Y)\zeta = R(X, Y)\zeta - r \frac{n}{n-1} [g(Y, \zeta)X - g(X, \zeta)Y]
\]

for any vector fields X, Y, Z where R is the curvature tensor and r is the scalar curvature.

In an n-dimensional Kenmotsu manifold, we have

\[
\eta(R(X, Y)Z) = g(X, Z) \eta(Y) - g(Y, Z) \eta(X),
\]

(1.2)

\[
R(X, Y)\xi = \eta(X)Y - \eta(Y)X,
\]

(1.3)

\[
R(\xi, X)Y = \eta(Y)X - g(X, Y)\xi,
\]

(1.4)

\[
R(\xi, X)\xi = X - \eta(X)\xi,
\]

(1.5)

where R is the Riemannian curvature tensor.

Taking Z = \xi in equation (1.1) and using equation (1.3), we get

\[
\tilde{C}(X, Y)\xi = R(X, Y)\xi - \frac{r}{n(n-1)} [g(Y, \xi)X - g(X, \xi)Y]
\]

⇒ \tilde{C}(X, Y)\xi = \left[1 + \frac{r}{n(n-1)}\right] [\eta(X)Y - \eta(Y)X].

(1.6)

Taking inner product of equation (1.1) with \xi, we get

\[
\eta(\tilde{C}(X, Y)Z) = \eta(R(X, Y)Z) - \frac{r}{n(n-1)} [g(Y, Z)\eta(X) - g(X, Z)\eta(Y)].
\]

(1.7)

Using equation (1.2) in above equation, we get

\[
\eta(\tilde{C}(X, Y)Z) = \left[1 + \frac{r}{n(n-1)}\right] [g(X, Z)\eta(Y) - g(Y, Z)\eta(X)]
\]

(1.8)

2.2 Preliminaries
An n-dimensional differential manifold M is said to be an almost contact metric manifold \[^3\]. If it admits an almost contact metric structure (\phi, \xi, \eta, g) consisting of a tensor field \phi of type
(1, 1) a vector field \(\xi \), a 1 - form \(\eta \), and a Riemannian metric \(g \) compatible with \((\phi, \xi, \eta, g)\) satisfying.

\[
\phi \xi = -1 + \mathcal{L}_\xi \phi, \eta (\xi) = 1, \tag{2.1}
\]

\[
\eta \ast \phi = 0, \phi \xi = 0 \tag{2.2}
\]

\[
g(\phi X, \phi Y) = g(X, Y) - \eta (X) \eta (Y), \ g(\xi, \xi) = \eta (X). \tag{2.3}
\]

for all vector fields \(X, Y \) on \(M \).

An almost contact metric manifold \((\phi, \xi, \eta, g) \) is said to be Kenmotsu manifold if

\[
(\nabla_X \phi) Y = g(\phi X, Y) \xi - \eta (X) \phi Y. \tag{2.4}
\]

From equation (2.4), we have

\[
\nabla_X \xi = X - \eta (X), \tag{2.5}
\]

where \(\nabla \) denotes the Riemannian connection of \(g \).

Let \((g, V, \lambda)\) be a Ricci soliton an \(n \)- dimensional Kenmotsu manifold \(M \).

From equation (2.5), we have

\[
\left(\mathcal{L}_\xi g \right)(X, Y) = 2[g(X, Y) - \eta (X) \eta (Y)], \tag{2.6}
\]

From equations (2.1) and (2.6), we have

\[
S(X, Y) = -(\lambda + 1)g(X, Y) + \eta (X) \eta (Y), \tag{2.7}
\]

\[
S(\phi X, \phi Y) = S(X, Y) + \lambda \eta (X) \eta (Y) \tag{2.8}
\]

From equation (2.8), we have

\[
QX = -(\lambda + 1)X + \eta (X) \xi, \tag{2.9}
\]

\[
S(X, \xi) = -\lambda \eta (X), \tag{2.10}
\]

\[
r = -\lambda n - (n - 1), \tag{2.11}
\]

where \(S \) is the Ricci tensor, \(Q \) is the Ricci operator and \(r \) is the scalar curvature on \(M \).

Theorem 3.1: A Concircular curvature tensor \(\tilde{C} \) in Kenmostu manifold satisfying \(R(\xi, X). \tilde{C} = 0 \) is expanding.

Proof: Let us suppose \((R(\xi, X), \tilde{C}) (U, V)W = 0\)

\[
\Rightarrow R(\xi, X) \tilde{C} (U, V) W - \tilde{C}(R(\xi, X) U, V) W - \tilde{C}(U, R(\xi, X) V) W - \tilde{C}(U, V) R(\xi, X) W = 0. \tag{3.1}
\]

Using equation (2.2-8) in above equation, we get

\[
\eta(\tilde{C}(U, V) W) X - g(X, \tilde{C}(U, V) W) \xi - \tilde{C}(\eta(U) X - g(X, U) \xi, V) W - \tilde{C}(U, \eta(V) X - g(X, V) \xi) W - \tilde{C}(U, V) (\eta(W) X - (X, W) \xi) = 0, \tag{3.2}
\]

\[
\Rightarrow \eta(\tilde{C}(U, V) W) X - g(X, \tilde{C}(U, V) W) \xi - \tilde{C}(\eta(U) X - g(X, U) \xi, V) W - \tilde{C}(U, \eta(V) X - g(X, V) \xi) W - \tilde{C}(U, V) (\eta(W) X - (X, W) \xi) = 0. \tag{3.3}
\]

Now taking an inner product of above equation with \(\xi \), we get

\[
\Rightarrow \eta(\tilde{C}(U, V) W) \eta(X) - g(X, \tilde{C}(U, V) W) \eta(X) - g(X, \til{C}(U, V) W) \eta(U) \eta(\til{C}(\xi, V) W) + g(X, U) \eta(\til{C}(U, V) X) + g(X, W) \eta(\til{C}(U, V) \xi) = 0. \tag{3.3}
\]

Using equation (2.1.6) and (1.7) in above equation, we get

\[
[1 + \frac{r}{n(n-1)}] [g(U, W) \eta(V) - g(X, W) \eta(U)] \eta(X) - g(X, \til{C}(U, V) W) \eta(U) \left[1 + \frac{r}{n(n-1)} \right] [g(X, W) \eta(V) - g(U, W) \eta(U)] \eta(V) \left[1 + \frac{r}{n(n-1)} \right] \tag{3.3}
\]
\[[g(U, W) \eta(X) - g(X, W)\eta(U)] + g(X, V)\left[1 + \frac{r}{n(n-1)}\right] [g(U, W) \eta(\xi) - g(\xi, W)\eta(U)] - \eta(W)\left[1 + \frac{r}{n(n-1)}\right] [g(U, W) \eta(V) - g(V, W)\eta(U)] + g(X, W)\left[1 + \frac{r}{n(n-1)}\right] [g(U, W) \eta(\xi) - g(\xi, W)\eta(U)] = 0, \]

\[\Rightarrow [1 + \frac{r}{n(n-1)}] [g(U, W) \eta(X)V - g(V, W)\eta(U)\eta(X) - g(X, W) \eta(V)\eta(U)] + g(V, W)\eta(X)\eta(U) + g(X, W) \eta(V)\eta(U) = 0, \]

\[\Rightarrow X = U = e^i, \] in above equation and summing over \(i \), \(1 \leq i \leq n \), we get

\[-g(X, \tilde{C}(U, V)W) + [1 + \frac{r}{n(n-1)}] [g(X, V) g(U, W) - g(X, U) g(V, W)] = 0. \] \(\text{(3.4)} \)

In view of equation (1.1), above equation takes the form

\[-g(X, R(U, V)W) - \frac{r}{n(n-1)} [g(X, V) g(U, W) - g(X, U) g(V, W)] + [1 + \frac{r}{n(n-1)}] [g(X, V) g(U, W) - g(X, U) g(V, W)] = 0, \]

\[\Rightarrow -g(X, R(U, V)W) - \frac{r}{n(n-1)} [g(X, V) g(U, W) - g(X, U) g(V, W)] + [1 + \frac{r}{n(n-1)}] [g(X, V) g(U, W) - g(X, U) g(V, W)] = 0 \]

\[\Rightarrow g(X, R(U, V)W) + [g(X, V) g(U, W) - g(X, U) g(V, W)] = 0. \] \(\text{(3.5)} \)

Taking \(X = U = e^i \), in above equation and summing over \(i \), \(1 \leq i \leq n \), we get

\[-R(e^i, V, W, e^j) + [g(e^i, V) g(e^j, W) - g(e^j, e^i) g(V, W)] = 0 \]

\[\Rightarrow -S(V, W) + [g(V, W) - ng(V, W)] = 0. \] \(\text{(3.6)} \)

Taking \(V = W = \xi \), in above equation, we get

\[-S(\xi, \xi) + [g(\xi, \xi) - g(\xi, \xi)] = 0 \]

\[\Rightarrow \lambda + (1 - n) = 0 \]

\[\Rightarrow \lambda = n - 1. \]

This shows that \(\lambda \) is positive, it means that the concircular curvative tensor \(\tilde{C} \) in Kenmostu manifold satisfying \(R(\xi, X)\tilde{C} = 0 \) is expanding. This completes the proof.

References