
 

~101~ 

International Journal of Statistics and Applied Mathematics 2019; 4(6): 101-107 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISSN: 2456-1452 

Maths 2019; 4(6): 101-107 

© 2019 Stats & Maths 

www.mathsjournal.com 

Received: 04-09-2019 

Accepted: 08-10-2019 

 

Conlet Biketi Kikechi 

School of Mathematics, College 

of Biological and Physical 

Sciences, University of Nairobi, 

Nairobi, Kenya 

 

Richard Onyino Simwa 

School of Mathematics, College 

of Biological and Physical 

Sciences, University of Nairobi, 

Nairobi, Kenya 

 

Ganesh Prasad Pokhariyal 

School of Mathematics, College 

of Biological and Physical 

Sciences, University of Nairobi, 

Nairobi, Kenya 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Conlet Biketi Kikechi 

School of Mathematics, College 

of Biological and Physical 

Sciences, University of Nairobi, 

Nairobi, Kenya 

 
 

 

 

 

 

 
 

 

 

On prediction based robust estimators of finite 

population totals 

 
Conlet Biketi Kikechi, Richard Onyino Simwa and Ganesh Prasad 

Pokhariyal 

 
Abstract 

In this article, we present results on nonparametric regression for estimating unknown finite population 

totals in a model based framework. Consistent robust estimators of finite population totals are derived 

using the procedure of local polynomial regression and their robustness properties studied (See Kikechi 

et al. (2017), Kikechi et al. (2018) and Kikechi and Simwa (2018)). Results of the bias show that the 

Local Polynomial estimators dominate the Horvitz-Thompson estimator for the linear, quadratic, bump 

and jump populations. Further, the biases under the model based Local Polynomial approach are much 

lower than those under the design based Horvitz-Thompson approach in different populations. The MSE 

results show that the Local Linear Regression estimators are performing better than the Horvitz-

Thompson and Dorfman estimators, irrespective of the model specification or misspecification. Results 

further indicate that the confidence intervals generated by the model based Local Polynomial procedure 

are much tighter than those generated by the design based Horvitz-Thompson method, regardless of 

whether the model is specified or misspecified. It has been observed that the model based approach 

outperforms the design based approach at 95% coverage rate. In terms of their efficiency, and in 

comparison with other estimators that exist in the literature, it is observed that the Local Polynomial 

Regression estimators are robust and are the most efficient estimators. Generally, the Local Polynomial 

Regression estimators are not only superior to the popular Kernel Regression estimators, but they are also 

the best among all linear smoothers including those produced by orthogonal series and spline methods. 

The estimators adapt well to bias problems at boundaries and in regions of high curvature and they do not 

require smoothness and regularity conditions required by other methods such as the boundary Kernels. 

 

Keywords: Finite population, local polynomial regression, model based framework, nonparametric 

regression, robust estimators, survey sampling 

 

Introduction 
The idea of nonparametric regression is introduced by Nadaraya (1964) [14] and Watson (1964) 
[19]. Several types of nonparametric regression methods such as the boundary kernels, 
penalized splines and orthogonal series are in existence (see Dorfman (1992) [3], Hardle (1989) 
[7] and Zheng & Little (2003)) [20]. In many estimation problems, the sample is used to describe 
and analyze the target population from which it was selected by estimating population 
parameters and other descriptive and analytic inferences such as correlations. Some common 

parameters of interest for the finite population 𝑌 = (𝑥1, 𝑥2, … , 𝑥𝑁)/ are the finite population 

total, the finite population mean, the finite population variance and the finite population 
proportion respectively given by, 
 

𝑇 = ∑ 𝑥𝑖
𝑁
𝑖=1  (1) 

𝑇̅ =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1  (2) 

𝑉(𝑥) =
1

𝑁
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1  (3) 

𝑃 =
𝐴

𝑁
 (4) 

 

Inferences may explore properties of the process that generate the population values (see 

Bolfarine and Zacks (1991)) [1]. We assume that the finite population has been generated by a 

super population model 𝜉 = 𝑓(𝑥, 𝑦, 𝜑) and we are interested in estimating the population  



 

~102~ 

International Journal of Statistics and Applied Mathematics http://www.mathsjournal.com 
 

parameters 𝜑 = (𝛼, 𝛽), where 𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖. The super population model can be applied to predict the unobserved values 𝑦𝑖′𝑠 

after obtaining estimates of 𝛼 and 𝛽 using the known auxiliary information 𝑥𝑖, 𝑖 = 1,2 … , 𝑁 (see Montanari & Ranalli (2005) [12] 

and Sanchez Borrego (2009)) [16]. Using the model ξ, the nonparametric estimator of totals, 𝑇 has been derived by Dorfman (1992) 

[3] who has been able to prove the asymptotic unbiasedness and MSE consistency of this estimator. The estimator, however suffers 

from sparse sample problem, and more work needs to be done to come up with another technique that can overcome this problem. 

This is where the local polynomial procedure comes in (see Kikechi et al. (2017) [9], Kikechi et al. (2018) [10] and Kikechi and 

Simwa (2018)) [10].  

This study therefore considers a model based approach to robust finite population total estimation using the procedure of local 

polynomial regression. It is typically of interest to estimate 𝑚(𝑥), using Taylor’s expansion of the form:  

 

𝑚(𝑥) ≈ 𝑚(𝑥0) + (𝑥 − 𝑥0)𝑚′(𝑥0) +
(𝑥−𝑥0)2

2!
𝑚′′(𝑥0) + ⋯ +

(𝑥−𝑥0)𝑝

𝑝!
𝑚𝑝(𝑥0) (5) 

 

Then the estimate of 𝑚(𝑥) at any value of 𝑥 is obtained by the minimization problem, 

 

min
𝛽

∑ {𝑌𝑖 − 𝛽0 − 𝛽1(𝑥𝑖 − 𝑥) − 𝛽2(𝑥𝑖 − 𝑥)2 − ⋯ − 𝛽𝑝(𝑥𝑖 − 𝑥)𝑝}
2

𝐾𝑏(𝑥 − 𝑥𝑖)
𝑛
𝑖=1  (6) 

 

With respect to 𝛽0, 𝛽1, … , 𝛽𝑝, where 𝛽 denotes the vector of coefficients 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)
/
. The result is therefore a weighted 

least squares estimator with weights 𝐾𝑏(𝑥 − 𝑥𝑖).  

Using the notations, 

 

𝑋 = [

 1 𝑥 − 𝑥1  … (𝑥 − 𝑥1)𝑝 

1 𝑥 − 𝑥2 ⋯ (𝑥 − 𝑥2)𝑝

⋮ ⋱ ⋮
1 𝑥 − 𝑥𝑛 ⋯ (𝑥 − 𝑥𝑛)𝑝

] ,  𝑌 = (

𝑌1

𝑌2

⋮
𝑌𝑛

)  

 

And 

 

𝑊 = [

𝐾𝑏(𝑥 − 𝑥1) 0 …  0 

 0 𝐾𝑏(𝑥 − 𝑥2) ⋯ 0
⋮ ⋱ ⋮

0 0 0 ⋯ 𝐾𝑏(𝑥 − 𝑥𝑛)

],  

 

we can compute 𝛽̅ which minimizes (6) by usual formula for a weighted least squares estimator, 

 

𝛽̅(𝑥) = (𝑋/𝑊𝑋)
−1

𝑋/𝑊𝑌 (7) 

 

Then, the local polynomial estimator of the regression function 𝑚(𝑥) is, 

 

𝑚̅(𝑥) = 𝛽̅0(𝑥) = 𝑒1
/
(𝑋/𝑊𝑋)

−1
𝑋/𝑊𝑌  (8) 

 

Where 𝑒1 is the 𝑛 × 1 vector having 1 in the first entry and 0 elsewhere? 

The weighted least squares principle to be explored in the local polynomial approximation procedure, opens a wealth of statistical 

knowledge and thus providing easy computations and generalizations (see Fan and Gijbels (1996)) [6]. The local polynomial 

regression is one of the most successfully applied design adaptive non parametric regression. This estimation procedure is an 

attractive choice due to its flexibility and asymptotic performance. Because of its simplicity, it can be tailored to work for many 

different distributional assumptions. It does not require smoothness and regularity conditions required by other methods such as 

boundary kernels. The procedure has also the advantage of adapting well to bias problems at boundaries and in regions of high 

curvature. Furthermore, it is easy to understand and interpret. The estimate is also linear in the response, provided the fitting 

criterion is least squares and model selection does not depend on the response. See Stone (1977), Fan (1992) [4], Fan (1993) [5] and 

Ruppert and Wand (1994) [15] among others. 

In this article, we combine and present results from simulation experiments carried out by Kikechi et al. (2017) [9], Kikechi et al. 

(2018) [10] and Kikechi and Simwa (2018) [11]. 

 

2. The proposed robust estimators 

Using the procedure of local polynomial regression, the super population model considered for estimating the finite population 

total estimators is given by, 

 

𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜎(𝑋𝑖)𝜀𝑖 (9) 

 

Specifically, the following assumptions hold for the model considered in the nonparametric regression estimation of 𝑚(𝑥𝑖): 

 

𝐸(𝑌𝑖\𝑋𝑖 = 𝑥𝑖) = 𝑚(𝑥𝑖)  

http://www.mathsjournal.com/
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𝐶𝑜𝑣(𝑌𝑖 , 𝑌𝑗\𝑋𝑖 = 𝑥𝑖 , 𝑋𝑗 = 𝑥𝑗) = {
𝜎2(𝑥𝑖), 𝑖 = 𝑗

 0, 𝑖 ≠ 𝑗 
 𝑖 = 1, 2, 3, … . , 𝑁 𝑗 = 1,2,3, … , 𝑁.  (10) 

 

The properties of the error are given by, 

 

𝐸(𝜀𝑖\𝑋𝑖 = 𝑥𝑖) = 𝑚(𝑥𝑖)  

𝐶𝑜𝑣(𝜀𝑖 , 𝜀𝑗\𝑋𝑖 = 𝑥𝑖 , 𝑋𝑗 = 𝑥𝑗) = {
𝜎2(𝑥𝑖), 𝑖 = 𝑗

 0, 𝑖 ≠ 𝑗 
 𝑖 = 1, 2, 3, … . , 𝑁 𝑗 = 1,2,3, … , 𝑁.  (11) 

 

 

The functions 𝑚(𝑥𝑖) and 𝜎2(𝑥𝑖) are assumed to be smooth and strictly positive. 

Consider the Taylor series expansion of 𝑚(𝑥𝑖) expressed as, 

 

𝑚(𝑥𝑖) = 𝑚(𝑥𝑗 + ℎ𝑡) = 𝑚(𝑥𝑗) + ℎ𝑡𝑚′(𝑥𝑗) +
ℎ2𝑡2

2
𝑚′′(𝑥𝑗) +

ℎ3𝑡3

3
𝑚′′′(𝑥𝑗) + ⋯  

 = 𝑚(𝑥𝑗) + (𝑥𝑖 − 𝑥𝑗)𝑚′(𝑥𝑗) +
(𝑥𝑖−𝑥𝑗)

2

2!
𝑚′′(𝑥𝑗) +

(𝑥𝑖−𝑥𝑗)
3

3!
𝑚′′′(𝑥𝑗) (12) 

 

The Taylor series expansion is written in a general form expressed as, 

 

𝑦𝑖 = 𝛼 + (𝑥𝑖 − 𝑥𝑗)𝛽 + 𝜀𝑖 (13) 

 

Where 𝑥𝑖 lies in the interval [𝑥𝑗 − ℎ, 𝑥𝑗 + ℎ] and 

 

 𝜀𝑖 =
(𝑥𝑖 − 𝑥𝑗)

2

2!
𝑚′′(𝑥𝑗) +

(𝑥𝑖 − 𝑥𝑗)
3

3!
𝑚′′′(𝑥𝑗) + ⋯  

 

The constants 𝛼 and 𝛽 are solved using the least squares procedure by making 𝜀𝑖 the subject of the formulae, squaring both sides, 

summing over all possible sample values and applying the weights to obtain a solution to the weighted least squares problem of 

the form 

 

∑ 𝜀𝑖
2

𝑖∈𝑆 = ∑ (𝑦𝑖 − 𝛼 − 𝛽(𝑥𝑖 − 𝑥𝑗))
2

𝑖∈𝑆 𝐾 (
𝑥𝑖−𝑥𝑗

ℎ
) (14) 

 

The robust estimators for the mean regression functions and for the finite population totals as derived by Kikechi et al. (2017) [9], 

Kikechi et al. (2018) [10] and Kikechi and Simwa (2018) [11] are defined as; 

 

𝑚̅0(𝑥𝑗) = ∑ {
(𝑆2(𝑥𝑗;ℎ)−𝑆1(𝑥𝑗;ℎ)(𝑥𝑖−𝑥𝑗))

𝑆0(𝑥𝑗;ℎ)𝑆2(𝑥𝑗;ℎ)−(𝑆1(𝑥𝑗;ℎ))
2 𝐾 (

𝑥𝑖−𝑥𝑗

ℎ
) 𝑦𝑖} 𝑖∈𝑆   

 = ∑ 𝑤𝑖(𝑥𝑗)𝑦𝑖𝑖∈𝑆  (15) 

 

Where 

 

𝑤𝑖(𝑥𝑗) =
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
)  

 

Implying that the local constant regression estimator of finite population total can be estimated using, 

  

𝑇̅0 = ∑ 𝑦𝑖𝑖∈𝑆 + ∑ 𝑚̅0(𝑥𝑗) 𝑗∈𝑅   

 = ∑ 𝑦𝑖𝑖∈𝑆 + ∑ {∑ {
(𝑆2(𝑥𝑗;ℎ)−𝑆1(𝑥𝑗;ℎ)(𝑥𝑖−𝑥𝑗))

𝑆0(𝑥𝑗;ℎ)𝑆2(𝑥𝑗;ℎ)−(𝑆1(𝑥𝑗;ℎ))
2 𝐾 (

𝑥𝑖−𝑥𝑗

ℎ
) 𝑦𝑖} 𝑖∈𝑆 }𝑗∈𝑅   (16) 

 

𝑀̅1(𝑥𝑗) = ∑ {
(𝑆2(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑗}

𝑖∈𝑆

  

+(𝑥𝑖 − 𝑥𝑗) ∑ {
(𝑆0(𝑥𝑗; ℎ) − 𝑆1(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗))

𝑆0(𝑥𝑗; ℎ)𝑆2(𝑥𝑗; ℎ) − (𝑆1(𝑥𝑗; ℎ))
2 𝐾 (

𝑥𝑖 − 𝑥𝑗

ℎ
) 𝑦𝑗}

𝑖∈𝑆

  

 = ∑ 𝑤𝑖(𝑥𝑗)𝑖∈𝑆 𝑦𝑗 + (𝑥𝑖 − 𝑥𝑗) ∑ 𝑤𝑖
′(𝑥𝑗)𝑖∈𝑠 𝑦𝑗   (17) 

 

Where, 

http://www.mathsjournal.com/
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𝑤𝑖(𝑥𝑗) =
(𝑆2(𝑥𝑗;ℎ)−𝑆1(𝑥𝑗;ℎ)(𝑥𝑖−𝑥𝑗))

𝑆0(𝑥𝑗;ℎ)𝑆2(𝑥𝑗;ℎ)−(𝑆1(𝑥𝑗;ℎ))
2 𝐾 (

𝑥𝑖−𝑥𝑗

ℎ
) (18) 

 

and, 

 

𝑤𝑖
′(𝑥𝑗) =

(𝑆0(𝑥𝑗;ℎ)−𝑆1(𝑥𝑗;ℎ)(𝑥𝑖−𝑥𝑗))

𝑆0(𝑥𝑗;ℎ)𝑆2(𝑥𝑗;ℎ)−(𝑆1(𝑥𝑗;ℎ))
2 𝐾 (

𝑥𝑖−𝑥𝑗

ℎ
) (19) 

 

Implying that the local linear regression estimator of finite population total can be estimated using,  

 

𝑇̅𝐿𝐿 = ∑ 𝑦𝑖 + ∑ 𝑚̅𝐿𝐿(𝑥𝑗) 𝑗∈𝑅𝑖∈𝑆   

= ∑ 𝑦𝑖 + ∑ {∑ {
(𝑆2(𝑥𝑗;ℎ)−𝑆1(𝑥𝑗;ℎ)(𝑥𝑖−𝑥𝑗))

𝑆0(𝑥𝑗;ℎ)𝑆2(𝑥𝑗;ℎ)−(𝑆1(𝑥𝑗;ℎ))
2 𝐾 (

𝑥𝑖−𝑥𝑗

ℎ
) 𝑦𝑖}𝑖∈𝑆 } 𝑗∈𝑅𝑖∈𝑆   

 + ∑ {(
𝑥𝑖−𝑥𝑗

𝑆0(𝑥𝑗;ℎ)𝑆2(𝑥𝑗;ℎ)−(𝑆1(𝑥𝑗;ℎ))
2) ∑ {(𝑆0(𝑥𝑗; ℎ)(𝑥𝑖 − 𝑥𝑗) − 𝑆1(𝑥𝑗; ℎ)) 𝑘 (

𝑥𝑖−𝑥𝑗

ℎ
) 𝑦𝑖}𝑖∈𝑆 }𝑗∈𝑅   (20) 

 

3. Properties of model based robust estimators 

Considering the fixed equally spaced design model, the following assumptions stated in Fan (1993) [5] and Ruppert and Wand 

(1994) [15] are used to investigate the properties of the model based robust estimators of finite population totals: 

i) The 𝑥𝑗 variables lie in the interval (0, 1). 

ii) The function 𝑚′′(. ) is bounded and continuous on (0, 1). 

iii) The kernel 𝐾(𝑡) is symmetric and supported on (−1, 1). Also 𝐾(𝑡) is bounded and continuous satisfying the following: 

∫ 𝐾(𝑥)
∞

−∞
𝑑𝑥 = 1, ∫ 𝑥𝐾(𝑥)

∞

−∞
𝑑𝑥 = 0, ∫ 𝑥2𝐾(𝑥)

∞

−∞
𝑑𝑥 > 0, ∫ 𝐾2𝑥

∞

−∞
𝑑𝑥 < ∞, 𝑑𝑘 = ∫ 𝐾2(𝑡)

∞

−∞
𝑑𝑡 

iv) The bandwidth ℎ is a sequence of values which depend on the sample size 𝑛 and satisfying ℎ → 0 and 𝑛ℎ → ∞, as 𝑛 → ∞. 

v) The point 𝑥𝑗 at which the estimation is taking place satisfies ℎ < 𝑥𝑗 < 1 − ℎ. 

 

The expectation, the bias, the variance, the MSE, the unbiasedness and efficiency and the asymptotic relative efficiency of the 

model based robust estimators have been derived. See Kikechi et al. (2017) [9], Kikechi et al. (2018) [10] and Kikechi and Simwa 

(2018) [11].  

 

4. Simulation study 

4.1 Description of the data sets 

Simulation experiments are carried out to evaluate the performances of the estimators. The data are generated from the super 

population model of the form, 

 

𝑌𝑖 = 𝑚(𝑋𝑖) + 𝜎(𝑋𝑖)𝜀𝑖 𝑖 = 1,2, … , 𝑛 (21) 

  

The data sets are obtained by simulation using specific models having relations 𝑦𝑖 = 1 + 2(𝑥 − 0.5) + 𝜀𝑖, 𝑦𝑖 = 1 + 2(𝑥 −
0.5)2 + 𝜀𝑖 and 𝑦𝑖 = 1 + 2(𝑥 − 0.5) + exp (−200(𝑥 − 0.5)2 + 𝜀𝑖 and 𝑦𝑖 = 1 + 2(𝑥 − 0.5)𝐼(𝑥≤0.65) + 0.65𝐼(𝑥>0.65) for the linear, 

quadratic, bump and jump populations respectively. The 𝑥𝑖′𝑠 are generated as independent and identically distributed (iid) 

uniform (0, 1) random variables. The errors are assumed to be independent and identically distributed (iid) random variables with 

mean 0 and constant variance. The comparisons of the estimators of 𝑇 according to their performances is based on Horvitz 

Thompson, Cochran, Dorfman and the local polynomial regression estimators 𝑇̅0 and 𝑇̅1 among others. 

The Epanechnikov kernel given by 𝐾(𝑡) =
3

4√5
(1 −

1

5
𝑡2) , |𝑡| < √5 is used for kernel smoothing on each of the functions due to 

its simplicity and easy computations using well designed computer programs. In Silverman (1986) [17], the search for optimal 

bandwidth is done within the interval, 
𝜎

4𝑛
1

5⁄
≤ ℎ ≤

3𝜎

2𝑛
1

5⁄
 where 𝜎 is the standard deviation of the 𝑥𝑖′𝑠. In this study, the bandwidths 

are data driven and are determined by the least squares cross validation method. For each of the four artificial populations of size 

200, samples are generated by simple random sampling without replacement using sample size 𝑛 = 60. For each combination of 

mean function, standard deviation and bandwidth, 500 replicate samples are selected and the estimators calculated. 

 
Table 1: Notation for the estimators used for comparison in the simulation study 

 

𝑇̅𝐻𝑇 𝐻𝑜𝑟𝑣𝑖𝑡𝑧 − 𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛 𝐻𝑜𝑟𝑣𝑖𝑡𝑧 𝑎𝑛𝑑 𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛 (1952)  

𝑇̅𝑅𝐸𝐺  𝐿𝑖𝑛𝑒𝑎𝑟 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑐ℎ𝑟𝑎𝑛 (1977) 

𝑇̅𝐷𝑂𝑅𝐹  𝐷𝑜𝑟𝑓𝑚𝑎𝑛 𝐷𝑜𝑟𝑓𝑚𝑎𝑛 (1992) 

𝑇̅𝐿𝑃 𝐿𝑜𝑐𝑎𝑙 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑅𝑜𝑏𝑢𝑠𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 

 
Table 2: Formulae for computing the estimator of finite population total 

 

Estimator   Formulae 

𝐻𝑜𝑟𝑣𝑖𝑡𝑧 − 𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛, 𝑇̅𝐻𝑇 𝑇̅𝐻𝑇 = ∑
𝑦𝑖

𝜋𝑖

𝑛
𝑖=1   

𝐿𝑖𝑛𝑒𝑎𝑟 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝑇̅𝑅𝐸𝐺   𝑇̅𝑅𝐸𝐺 = ∑ 𝑦𝑖 + ∑ (𝛼̅ + 𝛽̅𝑥𝑖)𝑖∈𝑅𝑖∈𝑆   
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 𝐷𝑜𝑟𝑓𝑚𝑎𝑛, 𝑇̅𝐷𝑂𝑅𝐹   𝑇̅𝐷𝑂𝑅𝐹 = ∑ 𝑌𝑖𝑆 + ∑ 𝑚̅𝑃−𝑠 (𝑥𝑗)  

𝐿𝑃𝑅𝐸, 𝑇̅0 𝑇̅0 = ∑ 𝑌𝑖𝑖∈𝑆 + ∑ 𝑚̅0𝑗∈𝑅 (𝑥𝑗)  

𝐿𝑃𝑅𝐸, 𝑇̅1  𝑇̅1 = ∑ 𝑌𝑖𝑖∈𝑆 + ∑ 𝑚̅1𝑗∈𝑅 (𝑥𝑗)  

   
 

Fig 1: Scatter Diagram for the Linear Relationship   Fig 2: Scatter Diagram for the Quadratic Relationship 

 

   
 

Fig 3: Scatter Diagram for the Bump Relationship   Fig 4: Scatter Diagram for the Jump Relationship 

 

The population totals, prediction errors, the biases, absolute biases, efficiencies, MSEs and AREs for the estimators of finite 

population totals have been computed. The relative efficiencies (RE) which examine the robustness of various estimators, i.e. the 

Horvitz-Thompson estimator, the REG estimator and the Dorfman estimator versus the proposed robust estimators have also been 

computed. Further, the 95% confidence intervals (𝐶𝐼) and the average lengths (𝐴𝐿) of the confidence intervals of various 

estimators have been constructed (see Kikechi et al. (2017) [9], Kikechi et al. (2018) [10] and Kikechi and Simwa (2018)) [11]. 

 

4.2 Results 

The results for the absolute biases, mean squared errors, relative efficiencies, confidence intervals and average length of 

confidence intervals for the various estimators are provided in tables 3, 4, 5, 6, 7 and 8 respectively. 

 
Table 3: The Absolute Bias of the estimators with respect to the four mean functions 

 

Absolute Bias 

 Horvitz-Thompson (HT) Linear Regression (REG) Dorfman (DORF) Local Linear (LL) 

Linear 139.1395 3.650095 3.628214 3.626798 

Quadratic 163.4725 1.226636 0.403125 0.4323062 

Bump 157.7427 2.018801 0.4777851 0.4087753 

Jump 1219.668 21.785 9.760465 9.485367 

 
Table 4: The Mean Squared Error (MSE) of the estimators with respect to the four mean functions 

 

The Mean Square Error (MSE) 

 Horvitz-Thompson (HT) Linear Regression (REG) Dorfman (DORF) Local Linear (LL) 

Linear 514.9775 15.36639 15.74559 15.47903 
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Quadratic 453.5207 1.521063 0.1713249 0.160443 

Bump 548.131 4.551133 0.2942485 0.1894413 

Jump 35691.94 512.8734 110.7915 97.02299 

 

Table 5: The Relative Efficiency of the estimators to the proposed estimator 
 

Relative Efficiency 

 Horvitz-Thompson (HT) Linear Regression (REG) Dorfman (DORF) 

 Relative Efficiency Relative Efficiency Relative Efficiency 

Linear 0.09467563 0.8093 0.95664 

Quadratic 0.000464731 0.9954403 0.962707 

Bump 0.0002038478 0.02743355 0.9433107 

Jump 0.003577862 0.1901854 0.9706123 

 
Table 6: The Confidence Intervals of the estimators with respect to the four mean functions 

 

95% Confidence Intervals 

 Horvitz-Thompson (HT) Linear Regression (REG) Dorfman (DORF) Local Linear (LL) 

 Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit Lower Limit Upper Limit 

Linear 65.43579 78.35652 62.92036 63.24861 62.75978 63.01298 62.62953 63.06378 

Quadratic 61.74714 62.41275 60.29736 60.30645 60.25827 60.27853 60.44418 60.47615 

Bump 88.43077 92.85335 93.01087 93.14516 92.06424 93.34889 91.91642 93.18671 

Jump 503.6836 565.5807 479.9458 495.7306 460.7667 479.1529 465.1171 483.1778 

 

Table 7: The Average Length of Confidence Intervals of estimators with respect to the four mean functions 
 

Average Length of Confidence Intervals 

 Horvitz-Thompson (HT) Linear Regression (REG) Dorfman (DORF) Local Linear (LL) 

Linear 12.92073 0.3282467 0.2532001 0.4342478 

Quadratic 0.6656047 0.009090092 0.02025908 0.03197243 

Bump 4.422574 0.1342954 1.284649 1.270295 

Jump 61.8971 15.78477 18.38621 18.06073 

 
Table 8: The Bias and MSE for T̅0 and T̅1 in the three selected mean functions 

 

 Linear Quadratic Bump 

 𝑻̅𝟎 𝑻̅𝟏 𝑻̅𝟎 𝑻̅𝟏 𝑻̅𝟎 𝑻̅𝟏 

BIAS 5.507608 3.777348 4.7372 0.45116 5.293896 0.4187236 

MSE 100.8874 15.40735 18.40769 0.1601695 43.9272 0.1896261 

 

5. Discussion 

In all the populations considered according to table 3, the Horvitz-Thompson estimator was the poorest resulting in large biases as 

compared to the other three finite population total estimators. For all the biases computed, the Local Linear Regression estimator 

is superior and dominates the Horvitz-Thompson estimator and the Linear Regression estimator in all the populations in 

consideration. The Local Linear regression estimator also dominates the Dorfman estimator for all the populations except when 

the population is quadratic. 

The MSE results in table 4 indicate that the Local Linear estimators outperform the Linear Regression estimator in all the 

populations except when the population is linear. The Local Linear Regression estimators are not only superior to the popular 

Kernel Regression estimators, but they are also the best among all linear smoothers including those produced by orthogonal series 

and spline methods. In general, Local Linear regression estimation removes a bias term from the kernel estimator, that makes it 

have better behavior near the boundary of the 𝑥′𝑠 and smaller MSE everywhere.  

Further, results in table 5 show that the relative efficiency of the proposed Local Linear estimators to the Horvitz-Thompson 

estimator, the REG estimator and the Dorfman estimator is less than1. This implies that the proposed Local Linear estimators 

have a smaller variance than the three estimators and thus the three estimators are less efficient. Generally, the Local Linear 

regression estimators outperform the HT estimator, the REG estimator and the DORF estimator in all the populations implying 

that they are robust and are the most efficient estimators.  

In table 6, the confidence intervals indicate that the Local Linear regression method dominates the REG and Dorfman methods 

when the model is incorrectly specified. Generally, the model based estimators are much far better than the traditional design 

based estimators. The biases under the model based approach are also much lower than those for the design based approach in 

different populations under consideration. 

Finally, we observe in table 8 that the biases and MSEs computed for the local polynomial regression estimator 𝑇̅1 are small in all 

the three populations. The results therefore indicate that the local polynomial regression estimator 𝑇̅1 is superior and dominates the 

local polynomial regression estimator 𝑇̅0 for the linear, quadratic and bump populations and thus 𝑇̅1 is the most efficient estimator.  

 

6. Conclusion 

In this article, we have reviewed and presented model based robust estimators of finite population totals using the procedure of 

local linear regression as studied by Kikechi et al. (2017) [9], Kikechi et al. (2018) [10] and Kikechi & Simwa (2018) [11]. Results of 

the bias, mean squared error, relative efficiency, confidence intervals and average length of confidence intervals for the various 

estimators have been presented. The bias results show that the local linear regression estimators dominate the Horvitz-Thompson 
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estimator for the linear, quadratic, bump and jump populations. The MSE results show that the local linear estimators are 

performing better than the Horvitz-Thompson estimator and Dorfman estimator, irrespective of the model specification or 

misspecification. Results also show that the local linear regression estimators are robust and are the most efficient ones. 

Results further indicate that the confidence intervals generated by the model based local linear procedure are much tighter than 

those generated by the design based Horvitz-Thompson method, regardless of whether the model is specified or misspecified. It 

has been observed that the model based approach outperforms the design based approach at 95% coverage rate.  

Generally, the local linear regression estimators are not only superior to the popular kernel regression estimators, but are also the 

best among all linear smoothers including those produced by orthogonal series and spline methods. The estimators adapt well to 

bias problems at boundaries and in regions of high curvature and do not require smoothness and regularity conditions required by 

other methods such as boundary kernels. Simulation experiments carried out on the proposed Local Linear regression estimators 

in comparison with some estimators that exist in the literature indicate that the proposed estimators are robust and are the most 

efficient estimators. 

Further, the local polynomial regression estimators 𝑇̅0 and 𝑇̅1 of finite population totals have been studied and comparisons made. 

Analytically, variance comparisons are explored using the local polynomial regression estimator 𝑇̅0 for P = 0 and the local 

polynomial regression estimator 𝑇̅1 for P = 1 in which results indicate that the estimators are asymptotically equivalently 

efficient. Simulation experiments carried out in terms of the biases and MSEs show that the local polynomial regression estimator 

𝑇̅1 outperforms the local polynomial regression estimator 𝑇̅0 in all the three artificial populations and therefore, 𝑇̅1 is the most 

efficient estimator.  
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