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Abstract 
The Novel Coronavirus (COVID-19), which originated from Wuhan city in Central China late 2019 is 
still spreading rapidly worldwide with the current infections standing at 16,899, 326 cases and 663, 540 
deaths as at 29th July 2020 as captured in the World meter. Coupled with a rampant transmissibility rate, 
the virus has taken advantage of globalization and interconnectedness of the world as opposed to the 
previous years’ pandemics and claimed a number of lives in a very short span. Indeed, despite the 
significant interventions and containment measures imposed by different nations, the virus seems to have 
exponentially doubled its prevalence with the peak yet to register in numerous countries, including 
Kenya. Therefore, the aim of this article was to model the COVID-19 (Coronavirus) cases in Kenya 
using an epidemiological model (SIR). Specifically, the article sought to expound the use of differential 
equations in infectious disease modelling, as well as, the importance of herd immunity and need for an 
urgent coronavirus vaccination. The study used a simple SIR model to predict and model the spread of 
Coronavirus in Kenya. The model was fitted using data of the reported incidences of coronavirus in 
Kenya (dating 13th March, 2020 to 21st July, 2020), extracted from the {coronavirus} package in R 
developed by Rami Krispin. Based on the analysis findings, the graphs postulated that the number of 
cases estimated by the SIR model slightly deviated from the exponential growth, though evidenced a 
significant exponent rise in the coronavirus cases in Kenya from March to July. Moreover, with a 
reproduction number of 1.20, the model suggested that about 16.67% of the population requires 
vaccination to stop the spread of the infection. However, with no intervention or measures to deter the 
spread of the pandemic, the peak in Kenya is expected to be reached by 30th of September with 
approximately 443,720 infections and 7,810 deaths (given a fatality rate of 1.8%). Overall, the findings 
of this study offer insight to the government of Kenya to impose appropriate and relevant measures and 
policy that would stop the spread of the virus to a larger population. Additionally, the model creates a 
public knowhow on the importance of the currently imposed containment measures and regulations to 
reduce the spread of viruses in Kenya. 
 
Keywords: Coronavirus (Covid-19), SIR model, herd immunity, reproduction number (R0), pandemic, 
parameter, kenya 

 
1. Introduction 
Despite significant universal investment in health prospects, global epidemics have been 
catastrophic and a threat to human life for several decades. For instance, the Black Death 
wiped-out about a third of the total population in Medieval Europe, and in 1918 Spanish Flu 
wiped more people than those who died during the First World War (Trilla et al., 2008) [1]. In 
November 2002 to July 2003, SARS (COVID-2), a coronavirus that originated from Beijing, 
China, attacked various countries infecting and killing a significant number of people across 
the globe (World Health Organization, 2016) [13]. Additionally, the Swine Flu pandemic 
frightened the whole world, while Ebola and Zika virus outbreaks are still severe problems 
currently (Ryu, 2017) [7]. In 2012, Middle East Respiratory Syndrome (MERS-Cov) caused by 
novel Coronavirus killed 858 people from a proportion of 2,494 infected individuals; thus, 
recording a fatality rate of 34.4% (World Health Organization, 2016; Assiri, 2013)  [13, 1]. 
Seemingly, the Novel Coronavirus (COVID-19), which originated from Wuhan city in Central 
China late in 2019 is still spreading rapidly worldwide with the current infections standing at 
16,899, 326 cases and 663, 540 deaths as at 29th July 2020 (Worldometer, 2020) [14]. Coupled 
with a rampant transmissibility rate, the virus has taken advantage of globalization and 
interconnectedness of the world as opposed to the previous years’ pandemics and claimed a 
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number of lives in s very short span. Indeed, despite the 

significant interventions and containment measures imposed 

by different nations, the virus seems to have exponentially 

doubled its prevalence with the peak yet to register in 

numerous countries, including Kenya. Since January 2020, a 

considerable number of global scientists have been analyzing 

the spread of coronavirus from different views, and with 

different strategies and technologies to develop the solution 

and mitigate its effects on the citizens. 

Currently, mathematicians, statisticians, epidemiologists, and 

data scientists are at the forefront working to understand how 

the virus is spreading. The analytical commitments to 
predicting the virus trend is critical to aiding heath 

community; doctors, nurses, and governments, in dealing with 

the issues of epidemics. The availed statistical insights 

significantly inform optimal health decisions regarding the 

virus containment measures based on the notable prevalence 

rate. As such the main purpose of this article is to model the 

COVID-19 (Coronavirus) cases in Kenya using an 

epidemiological model (SIR). Specifically, the article sought 

to expound the use of differential equations in infectious 

disease modelling, as well as, the importance of herd 

immunity and need for an urgent coronavirus vaccination. 

 

2. Methods 

Data 

The study employed the current Kenyan population based on 

World meter elaboration for the latest United Nations data 

(July 21, 2020) as the initial uninfected population (N) source. 

A vector was generated with the daily cumulative incidence 

for Kenya, from March 13, 2020 (when our daily incidence 

data started), through July 21. The study used a simple SIR 

model to predict and model the spread of Coronavirus in 

Kenya. The model was fitted using data of the reported 

incidences of coronavirus in Kenya (dating 13th March, 2020 
to 21st July, 2020), extracted from the {coronavirus} package 

in R developed by Rami Krispin. The statistical analysis tool, 

RStudio, was used to model the data using simple SIR model 

(deterministic compartmental model), which divides the 

population into three compartments (Susceptible - Infected -

Recovered) where:  

• Susceptible (S) (not infected), 

• Infectious (I), and 

• Recovered (R) (that is, vaccinated or recovered with 

immunity). 

 
In this case, the incidences predicted from SIR model were 

compared with the actual incidences dating 13th March, 2020. 

As such, the values were initialized as; total current 

population (N), Susceptible (S), Infected (I), and recovered 

(R).  

 

2.1 The SIR Model and Its Optimal Parameters Values 

The SIR model represents how an infection would spread 

through a population since it takes into consideration that 

some people will recover from the disease and never become 

susceptible. The SIR model assumes that individuals who 

recover from the infection become immune and cannot be 
infected again. These groups evolve as the virus continue to 

spread, that is, susceptible group S declines when people are 

infected and move to the infectious group I. As individuals 

recover or die, they move to the recovered group R. With the 

SIR model, as such the three differential equations were 

required to model the coronavirus outbreak dynamics. The 

transmission rate, β (beta), controls the transition from S to I, 

and the recovery rate, γ (gamma), controls the transition 

between I and R. 

The following differential equations was used with SIR 

Model without demographic characteristics.  

 
𝑑𝑆

𝑑𝑡
= −𝜆𝑆     . . . (𝑖) 

𝑑𝐼

𝑑𝑡
= 𝜆𝑆 − 𝛾𝐼     . . . (𝑖𝑖) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼       . . . (𝑖𝑖𝑖) 

 

The first equation (i) indicates that the number of susceptible 

individuals (S) decreases with the number of newly infected 

individuals, where newly infected cases are the product of 

infection rate (𝛽) and the number of susceptible individuals 

(S) who had contact with infectious individuals (I). The 

second equation (ii) suggests that the number of infectious 

individuals (I) increases with the newly infected individuals 

(𝛽IS), minus the previously infected people who recovered 

(i.e., 𝛾I), which is the removal rate, multiplied by the 

infectious individuals (I). 

Finally, the last equation (iii) states that the number of 

individuals in the recovered group (R) goes up with the 

increase in the recovery individuals from the infectious group 
(I) who either die or recover. 

 

2.1.1 The SIR Model Assumptions 

 The number of the infected individual rises at a rate 

proportional to both the infected and susceptible number 

of individuals. The number of susceptible people 

decreases at this same rate. The ratio involved in the 

transmission rate 𝛽 (beta), is the same as in the SI model. 

 The recovered individuals rise at a rate proportional to 

the infected number of individuals. The ratio involved is 

called the recovery rate, 𝛾(gamma). 

 A susceptible person who catches the disease becomes 

infectious immediately. The differential equations were 

first expressed as R functions with respect to the time 

before fitting the SIR model. 

 

2.2 Optimal Values of the Unknown Parameters 

Optimal values for the two unknown parameters 𝛽 and 𝛾 in 

the model were obtained using an optimizer and a solver for 

the differential equations. The ordinary differential equations 
were solved using ode () function from {deSolve} package in 

R. And the optimal values were estimated by using optim () 

function from base R. The sum of squared differences 

between the infectious individuals (I) at time t and estimated 

individuals 𝐼(𝑡) was minimized to obtain the residual sum of 

squares (RSS): 
 

𝑅𝑆𝑆(𝛽, 𝛾) = ∑ (
𝑡

𝐼(𝑡) − 𝐼(𝑡))2 

 

The function to calculate the RSS was defined, given a set of 

values for 𝛽 and 𝛾. Finally, the SIR model was fitted to the 

data by finding the values for 𝛽 and 𝛾 that reduces the 

residual sum of squares between the observed cumulative 

incidence observed in Kenya and the predicted cumulative 

incidence. Moreover, the function to calculate the RSS was 

defined, given a set of values for 𝛽 and 𝛾 followed by the SIR 

model fit, where the values for 𝛽, and 𝛾 that reduces the 
residual sum of squares between the observed cumulative 

incidence observed in Kenya and the predicted cumulative 
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incidence were estimated. Besides, the model convergence 

was checked before fitting. The analysis results were 

summarized in both visual graphical and tabular summary 

statistics as presented in the next section.  

 

3.0 Results and Discussion 

Test for Model Convergence and Parameter Estimates 

The convergence of the model was confirmed. Different 

estimates may be obtained for different choices for the initial 

values of the model. The aspect indicate that the fitting 

process is not stable; thus, a potential solution for a better 

fitting process is essential. From analysis of the model 

estimates, the fitted values for 𝛽 and 𝛾 were 0.573 and 0.501 

respectively. It was noted that the transition between S and I 

(transmission rate) controls the transition between I and R 

(Recovery rate). Nevertheless, those values do not have much 

meaning, though they are used to obtain the fitted number of 

people in each compartment of our SIR model for the dates to 

July 21 and then compare the fitted versus the observed data. 

 

3.1 Graphical Representation and Prediction 

 

 
 

Fig 1: A graph of COVID-19 fitted versus observed cumulative incidence in Kenya 

 

As shown in figure 1 above, the graph indicated that the 

number of observed confirmed cases slightly deviated from 
the number of confirmed cases expected by our model. This 

postulated that the pandemic in Kenya was growing 

exponentially from March to July. However, as time goes, the 

trend of the data will not follow the exponential phase in the 

long term as coronavirus continues to spread across all the 

counties in Kenya. 

 

 
 

Fig 2: A graph of log scale of COVID-19 fitted versus observed 
Cumulative incidence 

 

The graph above (Figure 2), is on a log scale on the y-axis 

called a semi-log plot or log-linear plot since only the y-axis 

is transformed with a logarithm scale. As such, this is 

essential to transform the variable into a log scale since it 

gives a more easily readable graph in terms of the disparity 

between the observed and expected number of confirmed 

cases, as well as, how the observed cases differ from the 

exponential trend. Seemingly, the plot suggested that at the 

beginning of the pandemic to July 2020, the number of 
confirmed cases stayed above what would be expected in an 

exponential phase. In particular, the number of confirmed 

cases increased day after day from March 13 and sustained 

the increment rate above an exponential rate to date (July 

2020). 

 

3.2 Reproduction Number (R0) 

The SIR model looked like a good fit to the observed 

cumulative incidence data in Kenya; thus, the fitted model 

was used to calculate the basic reproduction number 𝑅0. The 

latter is also referred as basic reproduction ratio, and it 

depends on transmission rate (𝛽) and recovery rate (𝛾). It is a 

mathematical term that indicates how contagious an infectious 

disease is. The 𝑅0 gives the average number of people who 

will contract a contagious disease from one person with that 

disease (Cori et al., 2013) [2]. The reproduction number: 

 𝑅0 < 1 means each existing infection causes less than 

one new infection. In this case, the disease will decline 

and eventually die out. 

 𝑅0 = 1 means each existing infection causes one new 
infection. The disease will stay alive and stable, but there 

won’t be an outbreak or epidemic. 

 𝑅0 > 1 means each existing infection causes more than 

one new infection. The disease will be transmitted 

between people, and there may be an outbreak or 

epidemic. 

 

In the SIR model, the basic reproduction number R0 can be 

calculated using the ratio of the transmission rate to the 

recovery rate: 

𝑅0 =
𝛽

𝛾
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The analysis revealed a reproduction number of 1.2 from the 

current cases of coronavirus in Kenya. The reproduction 

number of 1.2 was below values found by others for COVID-

19 and for SARS and MERS, which are similar diseases also 

caused by a coronavirus (Liu et al., 2020) [6]. Moreover, in the 

literature, preliminary studies had estimated the reproduction 

number for COVID-19 to be between 1.5 and 3.5 (with a 𝛽 

close to 0.54 and 𝛾 close to 0.2) (Liu et al., 2020; You et al., 

2020; Wang et al., 2020) [6, 15, 12]. The reproduction number 

(𝑅0) suggested that, on average, one infectious person spread 
the virus to about 2 uninfected individuals in Kenya. 

However, the available body of literature indicate that when 

the reproduction number goes below one, the pandemic 

disappears gradually (Wang et al., 2020) [12].  

 

3.3 Herd Immunity 

Herd immunity applies when a critical proportion of a 

susceptible population is immunized against a contagious 

disease, giving overall protection to the remainder of the 

unprotected community (herd). This minimizes the chance of 

an outbreak occurring and allows those who are not eligible 
for vaccines, such as infants and pregnant women, to also 

receive some protection from the disease (Fine et al., 2011) [4]. 

Herd immunity works because it is more difficult for diseases 

to spread between individuals if large numbers are already 

immune, as this breaks the chain of infection. The proportion 

of the population in need of effective immunization to prevent 

the sustained spread of the disease called herd immunity 

threshold has to be larger than (1 −
1

𝑅0
) for simple models. 

From the reproduction number 1.2 obtained from our Kenyan 

data, about 16.67% the population need to be immunized to 

stop the spread of the infection. With an approximate of 

about 53.8 million Kenyan population, this translates into 

roughly 8.97 million people. 

  

3.4 Prediction of Coronavirus Outbreak with no 

Intervention 

The SIR model was employed to fit the data for the first 130 

days of the available confirmed cases in Kenya to examine the 

effect of the outbreak if left to run its course without public 

health intervention. 

 

 
 

Fig 3: A Covid-19 graph when there was no intervention 

 

The graph (Figure 3), above indicated that as the proportion 

of recovered people increases, the proportion of susceptible 

people decreases (See the green and black trend lines). The 
red line represents the trend of infected individuals and how 

their numbers change over time. Both the black and red lines 

are decreasing going down to the horizontal line but not yet 

reached zero, while the green line is decreasing at a slower 

rate. This means that the number of susceptible decreases as 

more people become infected, and the number of infected 

decreases as some people recover or die. More so, the 

graphical results suggested that the disease will die out before 

everyone gets infected since the red line is almost reaching 

zero. The graph in figure 4 below is same as figure 3 but log-

scaled for the y-axis and with a legend for an explicit 

readability. 

 

 
 

Fig 4: Log-linear graph 

 

3.4.1 Model Deductions 

The fitted SIR model alluded to interesting results pertaining 

the Peak of the Pandemic and the number of deaths. The 

predictions with the exact same settings and no intervention 

or measures undertaken to limit the spread of the pandemic 

indicated that the peak in Kenya is expected to be reached by 

probably 30th September 2020. In addition, the model adduced 

that in Kenya, if no measures or intervention is imposed, 

about 443,720 people will be infected by the end of 

September with about 7,810 deaths (with a fatality rate of 
1.8%). Therefore, the above finding provides a rationale to 

government imposition of the current strict containment 

measures and regulations to reduce the spread of viruses. 

Indeed, the above predictions should be taken with a lot of 

caution, despite the limitations of the SIR model, that is, 

unrealistic assumptions such as no public health interventions, 

or strict measures imposed, fixed reproduction number extra. 

Nevertheless, more advanced projections can be developed 

with the help of {projection} package in R.  

 

4.0 Conclusion and Recommendation 

Overall, the study findings support the available body of 
literature and presents insight to the universal health fraternity 

across the globe to develop and actualize appropriate and 

relevant policy measures to mitigate the spread of the 

coronavirus. Moreover, the model alludes a need for careful 

and struct adherence to the proposed public health 

interventions by the public to evade catastrophic effects 

attested in the previous pandemics, such as SAR, Spanish Flu, 

Swine Flu, among others. 

However, the model used in this study was limited to only 

three compartments (Susceptible, Infected, and Recovered); it 

did not consider the pandemic's latent period. Therefore, more 
sophisticated models are required to model the pandemic and 

reflect real-life transmission processes. Given that the 
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pandemic has exposed period, the SEIR model, which is an 

extension of the SIR model, would more appropriate. In the 

SEIR model, S is susceptible, E is the exposed or infected 

asymptomatic, I infected and symptomatic, and R is the 

Recovered. The SEIR model is a continuous-time dynamic 

model that assumes fixed transition rates. Some models allow 

varying transition rates, such as stochastic models that depend 

on individuals' characteristics and social networking. 

Furthermore, the SIR model used in this study assumed a 

constant reproduction number (R0). Therefore, it would be 

pertinent to estimate the current effective reproduction 

number (Re) on a daily basis to keep track of the effectiveness 
and efficiency of public health interventions and probably 

estimate when the incidence curve will begin to decline. This 

can be achieved in a future study using {EpiEstim} package 

in R to estimate (Re) and allow to consider internal migration 

from one geographical region besides local transmission. 
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