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Abstract

Closed forms are obtained for the maximum likelihood estimators (MLE) of the mean vector and the
covariance matrix of a multivariate normal model with a hierarchical missing pattern. According to the
missing pattern, the likelihood function is decomposed as product of several independent normal and
conditional normal likelihood functions. The original parameters are transformed into a new set of
parameters whose MLE are easy to derive. Since the MLE are invariant, the MLE of the original
parameters are derived using the inverse transformation.
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Introduction

The problem of missing data is very common in practice, especially in public survey. For
example, during data gathering and recording, when the experiment is involved a group of
individuals over a period of time like in clinical trials or in a planned experiment where the
variables that are expensive to measure are collected only from a subset of a sample, missing
data arises.

There are several missing patterns considered in the literature, but the incomplete data with
monotone pattern not only occur frequently in practice but also it allows the exact calculation
of the maximum likelihood estimators (MLEs) and the likelihood ratio statistics and relevant
distributions if multivariate normality is assumed. Jiangi Yu [ defines hierarchical data
missing pattern, which is a generalization of monotone data missing pattern. Anderson 21 gave
a simple approach to derive the MLEs of bivariate normal data for a special case of monotone
pattern. Kanda and Fujkoshi (I studied some basic properties of the MLEs based on monotone
data. Many authors developed asymptotic inferential procedures based on the likelihood ratio
approach for multivariate normal distribution. We note, among many other papers, Bhargava
[ Morrison and Bhoj ! and Naik €1,

This article derive the MLEs of the mean vector and the covariance matrix of a multivariate
normal model with a hierarchical missing pattern. The causes for missing data could be
various which will not be discussed in this article. However, to ignore the process that causes
missing data, it is usually assumed that the data are missing at random (MAR). For an
exposition of such issues, we refer to Little and Rubin [/l or Little (1, Lu and Copas [°! pointed
out that inference from the likelihood method ignoring the missing data mechanism is valid if
and only if the missing data mechanism is MAR.

The hierarchical data missing pattern is like following data:
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Where the vector (x,y,z,u,v,w) represent the population with N =n + m + | + k + j observations, and the sub-index sets of the

data satisfy following conditions:

1) The index set of the first row, i.e., (1,.,n,n+1, ,n+mn+m+1 .,n+m+1 n+m+1+1,n),isthe union of the index
sets of all the other rows.

2) The index sets of two different rows are either disjoint, or inclusive.

It is easy to see that the monotone pattern is a special case of the hierarchical pattern.
The monotone pattern of missing data is like following data:
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1. Maximum likelihood estimators
Assume that (x,y,z,u,v,w) ~ N (B,2), X ¥,z u,v,ware p; dimensional respectively,i=1,2, ..., 6, Yp =p-
We partition the parameters as follows:
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and partition the data as follows:
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Except D,, we denote the sample mean vector and the sums of squares and products matrix based on D; by Ei,si. Let

Bia, Si(“‘” are a —th sub-vector and (&, ) —th sub-matrix of E,Si respectively.

Finally, denote the sample mean vector and the sums of squares and products matrix based on x by ;(, S, and using similar

notation fory, z, u, v, and w.

Consider the density function of data in (3). We note that the density can be written as the marginal density times the conditional

density (we indicate the density of normal distribution by n (-) here), that is:
For D, Hn(xi Yo Vi | B,2) = Hn(xi | B 20 )IN(Y; | Bos+ By i X, 2 )NV, | Bson + Bs 1 (X5, Vi), 2s.01)
i=1 i=1
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For D, Hn(xiv YW | B,2) = Hn(xi | B Z0N(Y; | Bog + ByaXiy 25 )N, | B o1 + Bg iy (Xis Vi) 2621)
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Where B4.1 = Z41 z1_11’134.1 = ﬂ4 - B4.1ﬂ1’z4.1 = Z:44 _B4.1 Z:14
The likelihood function is
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Consider MLE of the parameters in (8), it is obvious that

LPr=%24 =S,
Next, Regress y on x in ny , we have
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Solve the equations in (4), (5), (6), (7), we get the MLE of the original parameters:
B =%x2, =8,

~
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It is worth to note that parameters such as 2_, have no estimates, since there is no information of the correlation between z and x.

References

1. Jiangi Yu. Hierarchical Missing Data and Multivariate Behrens - Fisher Problem [J], Journal of Mathematics 2021.
DOI:10.1155/2021/8837044.

2. Anderson TW. Maximum likelihood estimates for a multivariate normal distribution when some observations are missing [J].
Journal of American Statistical Association 1957(52).

3. Kanda T, Fujikoshi Y. Some basic properties of the MLEs for a multivariate normal distribution with monotone missing data
[J]. Journal of Mathematics and Management Science 1998(18).

4. Bhargava BP. Multivariate tests of hypotheses with incomplete data [D]. Stanford CA: Stanford University 1962.

Morrison DF, Bhoj D. Power of the likelihood ratio test on the mean vector of the multivariate normal distribution with

missing observations [J]. Biometrika 1973(60).

Naik UD. On testing equality of means of correlated variables with incomplete data [J]. Biometrika 1975(62).

Lu GB, Copas JB. Missing at random, likelihood ignitability and model completeness [J]. Annals of Statistics 2004(32).

Little RJA, Rubin DB. Statistical Analysis with Missing Data [M]. New York: Wiley 1987.

Little RJA. A test of missing completely at random for multivariate data with missing values [J]. Journal of American

Statistical Association 1988(83).

o

© N

~19~


http://www.mathsjournal.com/

