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Abstract 
Closed forms are obtained for the maximum likelihood estimators (MLE) of the mean vector and the 
covariance matrix of a multivariate normal model with a hierarchical missing pattern. According to the 
missing pattern, the likelihood function is decomposed as product of several independent normal and 
conditional normal likelihood functions. The original parameters are transformed into a new set of 
parameters whose MLE are easy to derive. Since the MLE are invariant, the MLE of the original 
parameters are derived using the inverse transformation.  
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Introduction 
The problem of missing data is very common in practice, especially in public survey. For 
example, during data gathering and recording, when the experiment is involved a group of 
individuals over a period of time like in clinical trials or in a planned experiment where the 
variables that are expensive to measure are collected only from a subset of a sample, missing 
data arises. 
There are several missing patterns considered in the literature, but the incomplete data with 
monotone pattern not only occur frequently in practice but also it allows the exact calculation 
of the maximum likelihood estimators (MLEs) and the likelihood ratio statistics and relevant 
distributions if multivariate normality is assumed. Jianqi Yu [1] defines hierarchical data 
missing pattern, which is a generalization of monotone data missing pattern. Anderson [2] gave 
a simple approach to derive the MLEs of bivariate normal data for a special case of monotone 
pattern. Kanda and Fujkoshi [3] studied some basic properties of the MLEs based on monotone 
data. Many authors developed asymptotic inferential procedures based on the likelihood ratio 
approach for multivariate normal distribution. We note, among many other papers, Bhargava 
[4], Morrison and Bhoj [5] and Naik [6].  
This article derive the MLEs of the mean vector and the covariance matrix of a multivariate 
normal model with a hierarchical missing pattern. The causes for missing data could be 
various which will not be discussed in this article. However, to ignore the process that causes 
missing data, it is usually assumed that the data are missing at random (MAR). For an 
exposition of such issues, we refer to Little and Rubin [7] or Little [8]. Lu and Copas [9] pointed 
out that inference from the likelihood method ignoring the missing data mechanism is valid if 
and only if the missing data mechanism is MAR. 
The hierarchical data missing pattern is like following data: 
 




































mnn

n

klmnlmn

lmnmn

mnnn

jklmnklmnlmnlmnmnmnnn

ww

vv

uu

zz

yyyy

xxxxxxxxx

,,

,,

,,

,,

,,,,,

,,,,,,,,,,,

1

1

1

1

11

1111












，

，，

    (1)

www.mathsjournal.com
https://doi.org/10.22271/maths.2021.v6.i3a.681


 

~17~ 

International Journal of Statistics and Applied Mathematics http://www.mathsjournal.com 
 

 

Where the vector (x, y, z, u, v, w) represent the population with N = n + m + l + k + j observations, and the sub-index sets of the 

data satisfy following conditions:  

1) The index set of the first row, i.e., (1, ., n, n + 1, ., n + m, n + m + 1, ., n + m + 1, n + m + 1 + 1., n), is the union of the index 

sets of all the other rows. 

2) The index sets of two different rows are either disjoint, or inclusive. 

 

It is easy to see that the monotone pattern is a special case of the hierarchical pattern. 

The monotone pattern of missing data is like following data: 
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1. Maximum likelihood estimators 

Assume that ),(~),,,,,( pNwvuzyx , x, y, z, u, v, w are 
ip  dimensional respectively, i = 1, 2, …, 6, pp

i
 . 

We partition the parameters as follows: 

 

），，，，，（  654321 
 









































666564636261

565554535251

464544434241

363534333231

212121212221

161514131211

 
 

and partition the data as follows: 
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Let 
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Except 
4D , we denote the sample mean vector and the sums of squares and products matrix based on iD  by 

ii SD , . Let 

),(
,



ii SD  are th  sub-vector and th),(   sub-matrix of 
ii SD ,  respectively.  

Finally, denote the sample mean vector and the sums of squares and products matrix based on x by 
xSx, , and using similar 

notation for y, z, u, v, and w.  

Consider the density function of data in (3). We note that the density can be written as the marginal density times the conditional 

density (we indicate the density of normal distribution by n (·) here), that is: 
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For 2D 
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For 3D ,  
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For 4D ,  
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Where 141.4441.411.441.4

1

11411.4 ,,   BBB 
 (7) 

 

The likelihood function is  
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Consider MLE of the parameters in (8), it is obvious that 

 xSx  111
ˆ,̂
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Next, Regress y on x in xyD , we have 
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Similarly,  
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Solve the equations in (4), (5), (6), (7)，we get the MLE of the original parameters: 
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It is worth to note that parameters such as 32 have no estimates, since there is no information of the correlation between z and x. 
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