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Abstract 

The aim of this paper is to establish two theorems using pathway fractional integral operator via Struve 

function and generalized Struve function. Our results are quite general in nature. Some special cases are 

also obtained here. We also point out their Riemann-Liouville fractional integral operator results in 

special cases. Our results will help to extend some classical statistical distributions to wider classes of 

distributions, these are useful in practical applications. 
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Introduction 

Let f(x) ∈ L(a,b), 𝛼 ∈ 𝐶, R(𝛼) > 0, then left side Riemann-Liouville fractional integral 

operator is defined as [7]. 
 

(𝐼0+
𝛼 𝑓)(𝑥) =

1

Γ(𝛼)
∫  

𝑥

0
(𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡 (1.1) 

 

Where, R(𝛼) > 0 

Let f(x) ∈ L(a,b) ⴄ ∈ 𝐶, R (ⴄ) > 0, a > 0,and a “Pathway parameter “ 𝛼 < 1. Then the pathway 

fractional integral operator is defined by [14], also see [6] 
 

(𝑃0+
(𝜂,𝛼)

𝑓) = 𝑥𝜂 ∫  

𝑥

𝑎(1−𝑎)

0
[1 −

𝑎(1−𝛼)𝑡

𝑥
]

𝜂/1−𝑎

𝑓(𝑡)𝑑𝑡  (1.2) 

 

When 𝛼 = 0, a = 1 and ⴄ is replaced by ⴄ − 1 in (1.2) it yields 
 

(𝑙0+
𝜂

𝑓)(𝑥) =
1

Γ(𝜂)
∫  

𝑥

0
(𝑥 − 𝑡)𝜂−1𝑓(𝑡)𝑑𝑡 ….            (1.3) 

 

Which is the left-sided Riemann-Liouville fractional integral defined in (1.1) 

Fractional integration operators play an important role in the solution of several problems of 

diversified fields of science and engineering. Many fractional integral operators like Riemann-

Liouville, Weyl, Kober, Erdely-Kober and Saigo operators are studied by various workers due 

to their applications in the solution of integral equations arising in several problem of many 

areas of physical, engineering and Technological sciences. A detailed description of these 

operators can be found in the survey paper by Srivastava and Saxena [3]. 

In this paper, we consider a function defined as follows 

The Struve function of order p is given by  
 

 𝐻𝑝(𝑧) = (
𝑧

2
)

𝑝+1
∑  𝑥

𝑘=0
(−1)𝑘

Γ(𝑘+
3

2
) Γ (𝑘+𝑝+

1

2
)

(
𝑧

2
)

2𝑘

  (1.4) 

 

The Struve function and its more generalization are found in many papers [1, 2, 4, 8, 5, 9, 10, 11, 13]. 

The generalized Struve function given by [7].
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𝐻𝑙
𝜆(𝑧) = ∑  ∞

𝑘=0
(−1)𝑘

Γ(𝜆𝑘+𝑙+
3

2
) Γ(𝑘+

3

2
)

(
𝑧

2
)

2𝑘+𝑙+1

, 𝜆 > 0  (1.5) 

 

And by [4] 

 

 𝐻𝑙
𝜆,𝛼(𝑧) = ∑  𝑛

𝑘=0
(−1)𝑘

Γ(𝜆𝑘+𝑙+
3

2
) Γ(𝛼𝑘+

3

2
)

(
𝑧

2
)

2𝑘+𝑙+1

, 𝜆 > 0, 𝛼 > 0  (1.6)  

 

Another generalized form studied by [8] as follows: 

 

 𝐻𝑙,𝜉
𝜆 (𝑧) = ∑  ∞

𝑘=0
(−1)𝑘

Γ(𝜆𝑘+
1

𝜉
+

3

2
)Γ(𝑘+

3

2
)

(
𝑧

2
)

2𝑘+𝑙+1

𝜉 > 0, 𝜆 > 0  (1.7) 

 

Where  is the Pochhammer symbol defined for  by Srivastava and Choi (see [12]) 

 

 (𝜆)𝑛 = {
1  (𝑛 = 0)
𝜆(𝜆 + 1) … (𝜆 + 𝑛 − 1)  (𝑛 ∈ 𝑁)

 𝜆 ≠ 0 

 

The beta function is defined by  

 

 𝐵(𝑛, 𝑚) = ∫  
1

0
𝑥𝑛−1(1 − 𝑥)𝑚−1𝑑𝑥  (1.8) 

 

Main Results  

Theorem 1: Let 𝜂, 𝜌𝑖 , 𝜆, 𝛾𝑖 ∈ 𝐶, 𝑅 (1 +
𝜂

1−𝛼
) > 0, min {Re (𝜌𝑖), Re (𝜆), Re (𝛾𝑖), Re (𝜂)} > 0 and 𝛼 < 1. 

 

Then for the pathway fractional operator 𝑃0+
(𝜂,𝛼)

 defined by (1.2) the following formula holds: 

 

(𝑃0+
(𝜂,𝛼)

𝑡𝜌−1𝐻𝑝(𝑡)) (𝑥) =
𝑥𝜂+1𝑟(1+

𝜂

1−𝛼
)

𝑎(1−𝛼)
𝐻𝑝+1 (

𝑥

𝑎(1−𝛼)
) ⋅ 1Ψ1  

 

[(
𝑥

𝑎(1−𝛼)
|

(𝑝 + 2,2)

(𝑝 +
𝜂

1−𝛼
+ 3,2

)] (2.1) 

 

Proof: Making use of (1.2) and (1.4) in LHS of the theorem 1 and then interchanging the order of integration and summation, we 

evaluate the inner integral by making use of beta function(1.8) to arrive at the desired result in (2.1). 

 

Theorem 2: Let 𝜂, 𝜌𝑖 , 𝛽, 𝛾𝑖 , 𝛿𝑖 ∈ 𝐶, 𝑅 (1 +
𝜂

1−𝛼
) > 0, min {Re(𝜌𝑖), Re(𝛽), Re(𝛾𝑖), Re(𝛿𝑖), Re(𝜂)} > 0 and 𝜌𝑖 , 𝛿𝑖 > 0, 𝛼 < 1. Then for 

the pathway fractional operator 𝑃0+
(𝜂,𝛼)

 defined by (1.2) then the following formula holds: 

 

𝑃0+
(𝜂,𝛼)

 [𝑡𝜌−1𝐻𝑙,𝜉
𝜆 (𝑡)](𝑥) =

𝑥𝜂+1/(1+
𝜂

1−𝛼
)

𝑎(1−𝛼)
𝐻𝑙,𝜉

𝜆 (
𝑥

𝑎(1−𝛼)
) ⋅  1Ψ1 [(

𝑥

𝑎(1−𝑎)
∣

(𝑙 + 2,2)

(𝑙 +
𝜂

1−𝛼
+ 3,2)

)] 2.2 

 

Proof: Making use of (1.2) and (1.7) in LHS of the theorem 2 and then interchanging the order of integration and summation, we 

evaluate the inner integral by making use of beta function(1.8) to arrive at the desired result in (2.2). 

 

Special Cases 

1. If we take 𝛼 = 0, a =1 and 𝜂 is replaced by 𝜂 − 1 in (2.1) then Pathway fractional integral operator will reduce Riemann-

Liouville fractional integral defined in (1.1). Then we get following result  
 

(𝐼0+
𝑎 𝑡𝑝−1𝐻𝑝(𝑡))(𝑥) = 𝑥𝜂Γ(𝜂)𝐻𝑝+1(𝑥).  1Ψ1 [(𝑥 ∣

(𝑝 + 2,2)
(𝑝 + 𝜂 + 3,2)

)]  (3.1) 

 

2. If we take 𝛼 = 0, a =1 and 𝜂 is replaced by 𝜂 − 1 in (2.2). Then Pathway fractional integral operator will reduce Riemann-

Liouville fractional integral defined in (1.1). Then we get following result 
 

(𝐼0+
𝑎 𝑡𝑝−1𝐻𝑙,𝜉

𝜆 (𝑡)) (𝑥) = 𝑥𝜂Γ(𝜂)𝐻𝑙,𝜉
𝜆 (𝑥) .1 Ψ1 [(𝑥 ∣

(𝑙 + 2,2)
(𝑙 + 𝜂 + 3,2)

)] . (3.2) 

 

Conclusion 

In this paper, we have presented Struve function and generalized struve via pathway fractional integral operator. As in this 

operator parameter 𝛼 establishes a path of going from one distribution to another and to different classes of distributions. We 
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conclude that our results will help to extend some classical statistical distributions to wider classes of distributions, useful in 

practical applications. 
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