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Abstract 

Extreme Ranked Set Sampling (ERSS) is a survey technique which seeks to improve the likelihood that 

collected sample data provides a good representation of the population and minimizes costs associated 

with obtaining them. The main goal of a statistical survey is to reduce sampling errors either by devising 

suitable sampling scheme or by formulating efficient estimator of the population parameters. In an 

attempt to address the problem of weak or loss of efficiency usually suffered in estimation of population 

mean under Simple Random Sampling (SRS), a class of ratio-cum-product estimators for population 

mean of the study variable Y is proposed based on ERSS using information on a single accompanying 

variable. Members of the proposed class of estimators were obtained by assigning various values to the 

scalars that helps in designing the estimators. These members were then transformed to a form that can 

be easily expanded using Taylor’s series approximation, from where various properties such as biases, 

relative biases, Mean Square Errors (MSEs), and Optimal Mean Square Errors (OMSEs) were derived 

under large sample approximation. Empirical study was conducted using three natural population data 

sets in order to investigate the performances and efficiency of the proposed classes of estimators under 

ERSS over its corresponding counterpart’s estimator based on SRS and some existing ratio and product 

estimators. This empirical study was followed up with a computer simulation study using R-software. 

The results revealed that the advocated class of estimators in ERSS produced smaller biases and MSEs 

which is an indicator of appreciable gain in efficiency and superiority over its corresponding counterpart 

estimator and some existing ratio type estimators in sample survey for all cases considered in this work 

and are therefore adjudged to provide a better alternative whenever efficiency is required.  
 

Keywords: Estimators, extreme ranked set sampling, mean square errors, simple random sampling, 

simulation 
 

Introduction 

Under sampling techniques, the estimation of population variables is of utmost interest. This 

estimation most times seek to make use of better methods of estimation that would give an 

improved result. More often, interest is on the mean of a definite feature of a finite population 

on the ground of the portion taken from the population following a specific sampling scheme. 

This is so because the mean has a wider use in sampling and statistical analysis. Many 

sampling techniques depend on the possession of advance information about an auxiliary 

variate. Researches which adopt supplementary information in statistical survey (sampling) are 

broad and traceable to the pioneer work of Bowley (1926) [27] who carried out the groundwork 

of contemporary sampling theory involving stratified random sampling and Neyman (1934, 

1938) [37, 38]. Nevertheless, application of supplementary knowledge in estimation technique to 

enhance the performances of estimators was introduced by Watson (1937) [51] and Cochran 

(1940, 1942) [28, 29]. 

McIntyre (1952) [35] initiated and put in the procedure of ranked-set-sampling (RSS) in 

approximating the average pasture output as a better/reliable approaches and inexpensive 

scheme than the procedure of Simple Random Sampling (SRS). This technique is functional in 

circumstances where units of interest are very simple and economical to order than to observe 

in relation to a variable under consideration. 
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Takahasi and Wakimoto (1968) [50] separately set out the procedure of RSS and revealed an impressive mathematical reasoning, 

which is in tandem with McIntyre’s instinctive postulation. Dell and Clutter (1972) [30] proved that deviations in ordering lowers 

the accuracy of the RSS average comparative to SRS average. Nevertheless, RSS average is always superior over the SRS average 

till ordering is too substandard as to produce a probabilistic sample when its performances are akin to that of SRS average. 

The techniques of Extreme-Ranked Set Sampling (ERSS) as first introduced by Samawi et al. (1996) [41] to estimate the 

population mean and showed that the mean based on ERSS though unbiased but is more efficient that the sample me due to SRS. 

Furthermore, Samawi (1996) [41] introduced the principle of Stratified Ranked Set Sampling (SRSS); to improve the precision of 

estimating the population means in case of SSRS. 

Ali and Iqbal (2021) [3] proposed an efficient generalized family of estimators to estimate finite population mean of study variable 

under Ranked Set Sampling utilizing information on an auxiliary variable and concluded that when correlation between the study 

and auxiliary variables increases, the proposed generalized family of estimators proved to be efficient estimator of population 

mean of the study variable. 

Further researches on RSS method include but not limited to Al-Omari el tal.(2009) [2], Al-Omari (2019) [1], Haq and Shabbir 

(2010) [31], Kaur et al. (1995) [33] Al Saleh and Al-Kadiri (2000) [18], Al-Saleh and Al-Omari (2002) [22], Abu Dayyeh et al. (2002) 

[4], Al-Saleh and-Zheng (2002) [25], Al-Saleh and Samawi (2000) [24], Ozturk and Wolfe (2000) [39], Ozturk (2002) [40], Al-Saleh and 

Ababneh (2015) [20], Zheng and Al-Saleh (2002) [25], Al-Saleh and Darabseh (2017)) [23]. The expeditious development in the area 

of RSS over the past twenty (20) years provided a boost for the uprising of other key connected methods to inferential statistics. In 

this paper, a class of ratio-cum-product estimators of population mean of the study variable is proposed by employing ERSS 

method following information on a single accompanying variable. The expressions of the biases and Mean Square Errors (MSEs) 

of the proposed estimators were calculated. Analytical and simulation study of performances and efficiencies of the estimators 

over the usual SRS method using their (MSEs) were carried out in an attempt to support the theoretical results with numerical 

illustration. Application to real life data was successfully done to illustrate the method, from where conclusion was drawn 

following the results obtained from the work.  

 

Sampling methods 

Here, we present the sampling scheme which is employed in the course of this work i.e Ranked Set Sampling (RSS), (ERSS), as 

well as the frequently used (SRS). 

 

RSS Description 

Step 1: Select 𝑚 random samples each of size 𝑚 bivariate units from the population under consideration. 

 

Step 2: Rank the units within each set-in relation to the variable of interest by eyeball approach or any cost-free method. 

 

Step 3: From the first set of 𝑚 units, the smallest ranked unit X is selected together with the corresponding Y, and from the 

second set of 𝑚 units the second smallest ranked unit X is selected together with the corresponding Y. The process is continued 

until from the 𝑚𝑡ℎ set of 𝑚 units the largest ranked unit X is selected with the associated Y. This process can be repeated 𝑟 times 

to increase the sample size to 𝑟𝑚 RSS bivariate units. 

In this work we assume that the ranking is done on the variable X for estimating the population mean of the study variable Y. 

Nevertheless, the entire process can be carried out again while the ranking can be done on the variable Y.  

 

ERSS Description 

Let (𝑋𝑖(1), 𝑌𝑖[1]), (𝑋𝑖(2), 𝑌𝑖[2]), … (𝑋𝑖(𝑚), 𝑌𝑖[𝑚]) be the order Statistics of 𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, … 𝑋𝑖𝑚 and the judgment order of  𝑌𝑖1, 𝑌𝑖2, 

𝑌𝑖3, … 𝑌𝑖𝑚, (𝑖 = 1, 2, …𝑚). Then the RSS units are: (𝑋1(1), 𝑌1[1]), (𝑋2(2), 𝑌2[2]), … (𝑋𝑚(𝑚), 𝑌𝑚[𝑚]), here, (∙) and [∙] implies that 

the ordering of X is faultless or without error and the ordering of Y has error, be 𝑚 independent random samplesof size 𝑚 and 

assume that each member (𝑋𝑖(𝑗), 𝑌𝑖[𝑗]) in the sample has the same bivariate distribution-function 𝐹(𝑥, 𝑦) with mean 𝜇𝑋 , 𝜇𝑌 

variance 𝜎𝑋,  𝜎𝑌, and 𝜌𝑋𝑌. 

The ERSS method, as suggested by Samawi et al. (1996) [41], can be described as given below: 

a) Select 𝑚 random samples, each of size 𝑚 units, from an infinite population and order the units within each sample with 

respect to a variable under consideration by impressionistic method or any other cost-free procedure. For exact quantification, 

if the sample size 𝑚 is even, from the first 
 𝑚 

2
 sets, select the smallest ordered units and from the other 

 𝑚 

2
 sets select the 

largest ranked unit. Such a sample shall be represented by ERSSe. 

b) If the sample size 𝑚 is odd, then there are two options: 

(i) From the first 
 𝑚−1 

2
 sets we choose the average of the observation of the smallest units in the 

 𝑚−1 

2
 sets, and from the other 

 𝑚−1 

2
 sets, we take the mean of the measures of the largest ranked unit. Such a sample shall be represented by 𝐸𝑅𝑆𝑆0(𝑎). 

(ii) From the remaining measure of the 𝑚𝑡ℎ unit we take the median. Such a sample will be represented by 𝐸𝑅𝑆𝑆0(𝑚).  

 

𝑒: is even 

0(𝑎): is odd average 

0(𝑚): is odd median 

 

The procedure can be continued 𝑟 times, if need be, to get a sample of size 𝑟𝑚 units. The choices of (𝑎) and 𝑏(𝑖𝑖) is usually less 

difficult in application than the choice of 𝑏(𝑖). In this work, we considered the choices of (𝑎) and 𝑏(𝑖𝑖), (i.e the even case and the 

case of taking the median from the 𝑚𝑡ℎ  sample if 𝑚 is odd). 
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If 𝑚 is even, then the observed ERSSe units are: 

 

(𝑋1(1), 𝑌1[1]), (𝑋2(1), 𝑌2[1]), … (𝑋𝑚
2
(1), 𝑌𝑚

2
[1]), (𝑋𝑚+2

2
(𝑚)
, 𝑌𝑚+2

2
[𝑚]
), (𝑋𝑚+4

2
(𝑚)
, 𝑌𝑚+4

2
[𝑚]
), …,(𝑋𝑚(𝑚), 𝑌𝑚[𝑚]), then under ERSSe the 

sample means and variances of the study and accompanying variables are defined as: 

 

𝐸(�̅�𝐸𝑅𝑆𝑆𝑒) =
1

𝑚
(𝜇𝑥(1) + 𝜇𝑥(𝑚))

𝐸(�̅�𝐸𝑅𝑆𝑆𝑒) =
1

𝑚
(𝜇𝑦[1] + 𝜇𝑦[𝑚])

}                      (1) 

 

With variances 

 

𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒) =
1

2𝑚
(𝜎𝑋(1)

2 + 𝜎𝑋(𝑚)
2 )

𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒) =
1

2𝑚
(𝜎𝑌[1]

2 + 𝜎𝑌[𝑚]
2 )

}                    (2) 

 

If 𝑚 odd, then measured 𝐸𝑅𝑆𝑆0(𝑚) units are: 

 

(𝑋1(1), 𝑌1[1]), (𝑋2(1), 𝑌2[1]), … (𝑋𝑚−1
2
(1)
, 𝑌𝑚−1

2
[1]
), (𝑋𝑚+1

2
(
𝑚+1

2
)
, 𝑌𝑚+1

2
[
𝑚+1

2
]
), (𝑋𝑚+3

2
(𝑚)
, 𝑌𝑚+3

2
[𝑚]
)… , (𝑋𝑚(𝑚), 𝑌𝑚[𝑚]), then under 

𝐸𝑅𝑆𝑆0(𝑚) the sample means and variances of the study and accompanying variables are defined as: 

 

𝐸(�̅�𝐸𝑅𝑆𝑆0(𝑚)) =
𝑚−1

2𝑚
(𝜇𝑥(1), + 𝜇𝑥(𝑚)) +

1

𝑚
𝜇
𝑥(
𝑚+1

2
)

𝐸(�̅�𝐸𝑅𝑆𝑆0(𝑚)) =
𝑚−1

2𝑚
(𝜇𝑦[1], + 𝜇𝑦[𝑚]) +

1

𝑚
𝜇
𝑦[
𝑚+1

2
]

}                 (3) 

 

With variances 

 

𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆0(𝑚)) =
(𝑚−1)

2𝑚2 (𝜎𝑋(1)
2 + 𝜎𝑋(𝑚)

2 ) +
1

𝑚2 𝜎𝑥(𝑚+1
2
)

2

𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆0(𝑚)) =
(𝑚−1)

2𝑚2 (𝜎𝑌[1]
2 + 𝜎𝑌[𝑚]

2 ) +
1

𝑚2 𝜎𝑦[𝑚+1
2
]

2
}                (4) 

 

SRS Description 

In SRS, 𝑚 unit out of 𝑀 units of a population are chosen in such a way that every individual unit has equiprobable chance of 

being selected. According to our description, 

 

(𝑋11, 𝑌11), (𝑋21, 𝑌21), …, (𝑋𝑚1, 𝑌𝑚1) is the SRS. 

 

Definition 1 

Let 𝑌 be the study variable and 𝑋 be the accompanying variable which is correlated with 𝑌. Let again (𝑦1, 𝑦2, … , 𝑦𝑚) and 
(𝑥1, 𝑥2, … , 𝑥𝑚) be 𝑚 sample values, then under Simple Random Sampling without Replacement (SRSWOR) the sample means 

and variances of the study and accompanying variables are given as: 

 

�̅�𝑆𝑅𝑆 =
1

𝑚
(∑ 𝑋𝑖

𝑚
𝑖=1 )

�̅�𝑆𝑅𝑆 =
1

𝑚
(∑ 𝑌𝑖

𝑚
𝑖=1 )

}                         (5) 

 

𝑉𝑎𝑟(�̅�𝑆𝑅𝑆) = (
𝜎𝑥
2

𝑚
)

𝑉𝑎𝑟(�̅�𝑆𝑅𝑆) = (
𝜎𝑦
2

𝑚

}                         (6) 

 

𝜌𝑋𝑌 =
𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
, 𝜎𝑋𝑌 = 𝐶𝑜𝑣(�̅�

𝑆𝑅𝑆, �̅�𝑆𝑅𝑆) = 𝜌𝑋𝑌𝜎𝑋𝜎𝑌                  (7) 

 

if the finite population correction 𝑓 → 0 
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Table 1: Some existing ratio estimators with their MSE 
 

S. No Estimators MSE 

1. 𝑦,̅ Sample Mean (
1 − 𝑓

𝑚
) �̅� 

2
𝐶𝑦
2 

2. 𝑦 ̅(�̅�
�̅�
), Sukhatme (1974) [48] �̅� 

2

𝑚
[ 𝐶𝑦 

2 + 𝐶𝑥
2 − 2𝜌CxCy] 

3. 𝑦 ̅(�̅�
�̅�
), Sukhatme (1974) [48] �̅� 

2

𝑚
[ 𝐶𝑦 

2 + 𝐶𝑥
2 + 2𝜌CxCy] 

4. 𝑦 ̅(�̅�
�̅�
)𝛼, Srivastava (1970) [46] (

1

𝑚
−

1

𝑀
) �̅� 

2
{𝐶𝑦 

2 + 𝛼𝐶𝑥
2(𝛼 − 2

𝜌Cy

Cx
)} 

5. 𝑦 ̅exp[
�̅�−�̅�

�̅�+ �̅�
], Bahl and Tuteja (1991) [26] �̅� 

2

𝑚
[ 𝐶𝑦 

2 +
𝐶𝑥
2

4
− 𝜌CxCy] 

6 𝑦 ̅exp[
�̅�−�̅�

�̅�+�̅� 
], Bahl and Tuteja (1991) [26] �̅� 

2

𝑚
[ 𝐶𝑦 

2 +
𝐶𝑥
2

4
+ 𝜌CxCy] 

7 
�̅�[𝛼(

�̅�2

�̅�
) + (1 − 𝛼)(

�̅�

�̅�1
) ], 

Singh & Choudhury (2012) [42] 
�̅�2 (

1

𝑚
−

1

𝑀
) 𝐶𝑦 

2 (1 − 𝜌2) 

8. 
𝜇𝑦−𝐴
𝑆𝑅𝑆1 = �̅�𝑆𝑅𝑆 ∙

(𝜇𝑥+𝑞1)

(�̅�𝑆𝑅𝑆+𝑞1)
, �̅�𝑆𝑅𝑆 ∙

(𝜇𝑥+𝑞3)

(�̅�𝑆𝑅𝑆+𝑞3)
 

Al-Omari et al. (2009) [2] 

1

𝑚
(

𝜇𝑦

𝜇𝑥+𝑞𝑗
) [(

𝜇𝑦

𝜇𝑥+𝑞𝑗
) 𝜎𝑥

2 + 𝜎𝑦
2 − 2𝜎𝑥𝜎𝑦𝜌]; j=1,3 

9 
𝜇𝑦−𝑆𝑇
𝑆𝑅𝑆 = �̅�𝑆𝑅𝑆 ∙

(𝜇𝑥 + 𝜌)

(�̅�𝑆𝑅𝑆 + 𝜌)
 

Singh and Tailor (2003) [45] 

(
1 − 𝑓

𝑚
)𝜇𝑦

2 [𝐶𝑦
2 + (

𝜇𝑥
𝜇𝑥 + 𝜌

)𝐶𝑥 
2 (

𝜇𝑥
𝜇𝑥 + 𝜌

− 2
𝜌Cy

Cx
)] 

10 
�̂�𝑦−𝐾𝐶
𝑆𝑅𝑆 = �̅�𝑆𝑅𝑆 + 𝑏 ∙

(𝜇𝑥 − �̅�
𝑆𝑅𝑆)

(�̅�𝑆𝑅𝑆 + 𝜌)
(𝜇𝑥 + 𝜌) 

Kadilar and Cingi (2004) [32] 

(
1 − 𝑓

𝑚
) [𝑅2𝜎𝑥

2 + 𝜎𝑦
2(1 − 𝜌2)] 

11 
�̂�𝑦−𝑆𝐸
𝑆𝑅𝑆 = �̅�𝑆𝑅𝑆 (𝑤

�̅�𝑆𝑅𝑆

𝜇𝑥
+ (1 − 𝑤)

𝜇𝑥

�̅�𝑆𝑅𝑆
) 

Singh and Espejo (2003) [44] 

 

(
1 − 𝑓

𝑚
)𝜇𝑦

2 {𝐶𝑦
2 + 𝐶𝑥 

2(1 − 2𝑤)[1 − 2𝑤 + 2
𝜌Cy

Cx
} 

 

Notations and some useful equations 

Let 𝑌 be the study variable and 𝑋 be the auxiliary variable which is correlated with 𝑌. Then following notations and expressions 

shall be useful in the course of this work. For all 𝑖 = 1, 2, … ,𝑚. 
 

 𝜇𝑥 = 𝐸(𝑋𝑖)

 𝜎𝑥
2 = 𝑣𝑎𝑟(𝑋𝑖)

 𝜎𝑥
2 = 𝑣𝑎𝑟(𝑋𝑖)

𝜇𝑥1 = 𝐸(𝑋𝑖(1))

𝜇
𝑥(
𝑚+1

2
)
= 𝐸 (𝑋

𝑖(
𝑚+1

2
)
)

𝜎𝑥1
2 = 𝑣𝑎𝑟(𝑋𝑖(1))

𝜎
𝑥(
𝑚+1

2
)

2 = 𝑣𝑎𝑟(𝑋
𝑖(
𝑚+1

2
)

𝜎𝑥𝑚
2 = 𝑣𝑎𝑟(𝑋𝑖(𝑚))

𝜎𝑥(1,𝑚) = cov(𝑋𝑚(1), 𝑋𝑚(𝑚))}
 
 
 
 
 
 

 
 
 
 
 
 

                      (8) 

 
 𝜇𝑦 = 𝐸(𝑌𝑖)

𝜎𝑦
2 = 𝑣𝑎𝑟(𝑌𝑖)

 𝜎𝑥
2 = 𝑣𝑎𝑟(𝑋𝑖)

 𝜇𝑦[1] = 𝐸(𝑌𝑖[1]) 

𝜇
𝑦(
𝑚+1

2
)
= 𝐸 (𝑌

𝑖[
𝑚+1

2
]
)

𝜎𝑦1
2 = 𝑣𝑎𝑟 (𝑌

𝑖[
𝑚+1

2
]
)

𝜎
𝑦(
𝑚+1

2
)

2 = 𝑣𝑎𝑟 (𝑌
𝑖[
𝑚+1

2
]
)

𝜎𝑦𝑚
2 = 𝑣𝑎𝑟(𝑌𝑖[𝑚])

𝜎𝑦(1,𝑚) = cov(𝑌𝑚[𝑚], 𝑌𝑚[𝑚])}
 
 
 
 
 
 

 
 
 
 
 
 

                       (9) 

 

Then proposed class of estimator based on ERSS 

Motivated by Singh and Espejo (2003) [44] ratio-cum-product estimator under SRS, we advocated a class of ratio-cum-product 

estimators of the population mean 𝑌 ̅of the study variable Y with a single accompanying variable using SRS and ERSS schemes as 

follows: 
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𝑇1𝐸𝑗 = �̅�
𝐸𝑅𝑆𝑆𝑒 [𝑤 (

𝑎�̅�𝐸𝑅𝑆𝑆𝑒+𝜌

𝑎�̅�𝐸𝑅𝑆𝑆𝑒+𝜌
)
𝛼1
+ (1 − 𝑤) (

𝑎�̅�∗𝐸𝑅𝑆𝑆𝑒+𝜌

𝑎�̅�𝑅𝑆𝑆𝑒+𝜌
)
𝛼2
]                (10) 

 

𝑇1(𝑜(𝑚))𝑗 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) [𝑤 (

𝑎�̅�
𝐸𝑅𝑆𝑆0(𝑚)+𝜌

𝑎�̅�
𝐸𝑅𝑆𝑆0(𝑚)+𝜌

)
𝛼1

 + (1 − 𝑤) (
𝑎�̅�

∗𝐸𝑅𝑆𝑆0(𝑚)+𝜌

𝑎�̅�
𝐸𝑅𝑆𝑆0(𝑚)+𝜌

)
𝛼2

]             (11) 

 

Where (𝑎 ≠ 0, 𝜌 ≠ 0) are real numbers and may take the values of parameters associated with either the study variable 𝑦 or the 

concomitant variable 𝑥 or both(𝑥, 𝑦); in this case, the coefficient of variation and the correlation coefficient respectively. (𝛼1, 𝛼2,) 
are scalars or real constants which helps in designing the estimator and can be determined suitably. We may fix 𝛼1, 𝛼2, and 𝑤 will 

be selected in an optimum manner by minimizing the (MSEs) of 𝑇1𝐸𝑖, 𝑖 = 1 𝑡𝑜 𝑚 with respect to 𝑤.  

 

Where �̅�∗𝐸𝑅𝑆𝑆𝑒 = {(1 + 𝑔)�̅�𝐸𝑅𝑆𝑆𝑒 − 𝑔�̅�𝐸𝑅𝑆𝑆𝑒} is unbiased estimator of population mean  �̅�𝐸𝑅𝑆𝑆𝑒, 𝑔 =
𝑚

(𝑀−𝑚)
=

𝑓

(1−𝑓)
 and 𝑓 =

𝑚

𝑀
 

 

|(1 − 𝑔𝜆𝑖𝑒𝑖)| < 1, 𝑜𝑟 |(1 − 𝑔𝜆𝑖 (
�̅�𝐸𝑅𝑆𝑆𝑒−�̅�𝐸𝑅𝑆𝑆𝑒

�̅�𝐸𝑅𝑆𝑆𝑒
))| < 1 for all the 𝐶𝑚 

𝑀  Samples 

 

𝑖 = 0, 1, 2. Where, 𝜆𝑖 =
 �̅�𝐸𝑅𝑆𝑆𝑒

 �̅�𝐸𝑅𝑆𝑆𝑒+𝜌
, 𝑒𝑦 =

�̅�𝐸𝑅𝑆𝑆𝑒−�̅�𝐸𝑅𝑆𝑆𝑒

�̅�𝐸𝑅𝑆𝑆𝑒
,  𝑒𝑥 =

�̅�𝐸𝑅𝑆𝑆𝑒−�̅�𝐸𝑅𝑆𝑆𝑒

�̅�𝐸𝑅𝑆𝑆𝑒
 

 

The proposed class of estimator based on SRS 

 

𝑇1𝑆𝑗 = �̅�
𝑆𝑅𝑆 [𝑤 (

𝑎�̅�𝑆𝑅𝑆+𝜌

𝑎�̅�𝑆𝑅𝑆+𝜌
)
𝛼1
+ (1 − 𝑤) (

𝑎�̅�∗𝑆𝑅𝑆+𝜌

𝑎�̅�𝑆𝑅𝑆+𝜌
)
𝛼2
]                  (12) 

 

Where, �̅�∗𝑆𝑅𝑆 = {(1 + 𝑔)�̅�𝑆𝑅𝑆 − 𝑔�̅�𝑆𝑅𝑆} is unbiased estimator of population mean �̅�𝑆𝑅𝑆, 𝑔 =
𝑚

(𝑀−𝑚)
=

𝑓

(1−𝑓)
 and 𝑓 =

𝑚

𝑀
, |(1 − 𝑔𝜆𝑖𝑒𝑖)| < 1,  

 

𝑜𝑟 |(1 − 𝑔𝜆𝑖 (
�̅�𝑆𝑅𝑆−�̅�𝑆𝑅𝑆

�̅�𝑆𝑅𝑆
))| < 1 𝑖 = 0, 1, 2. for all the 𝐶𝑚 

𝑀  samples. 

 
Table 2: Some members of the class of estimator 𝑇1𝐸𝑗 

 

S/N Estimator 𝒘 𝒂 𝝆 𝜶𝟏 𝜶𝟐 

1 𝑇1𝐸1= �̅�𝐸𝑅𝑆𝑆𝑒, 1 1 0 0 0 

2 𝑇1𝐸2=�̅�𝐸𝑅𝑆𝑆𝑒 (
�̅�𝐸𝑅𝑆𝑆𝑒

�̅�𝐸𝑅𝑆𝑆𝑒
) 1 1 0 1 0 

3 𝑇1𝐸3 = �̅�
𝐸𝑅𝑆𝑆𝑒 (

�̅�∗𝐸𝑅𝑆𝑆𝑒

�̅�𝐸𝑅𝑆𝑆𝑒
) 0 1 0 1 1 

4 𝑇1𝐸4 = �̅�
𝐸𝑅𝑆𝑆𝑒 (

𝑎�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌

𝑎�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
) 1 𝑎 𝜌 1 0 

5 𝑇1𝐸5 = �̅�
𝐸𝑅𝑆𝑆𝑒 (

𝑎�̅�∗𝐸𝑅𝑆𝑆𝑒 + 𝜌

𝑎�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
) 0 𝑎 𝜌 0 1 

6 𝑇1𝐸6 = �̅�
𝐸𝑅𝑆𝑆𝑒 (

�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌

�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
) 1 1 𝜌 1 0 

7 𝑇1𝐸7 = �̅�
𝐸𝑅𝑆𝑆𝑒 (

�̅�∗𝐸𝑅𝑆𝑆𝑒 + 𝜌

�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
) 0 1 𝜌 0 1 

8 𝑇1𝐸8 = �̅�
𝐸𝑅𝑆𝑆𝑒 (

𝑎�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌

𝑎�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
)

𝛼1

 1 𝑎 𝜌 𝛼1 0 

9 𝑇1𝐸9 = �̅�
𝐸𝑅𝑆𝑆𝑒 (

�̅�∗𝐸𝑅𝑆𝑆𝑒 + 𝜌

�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
)

𝛼2

 0 1 𝜌 0 𝛼2 

10 𝑇1𝐸10 = �̅�
𝐸𝑅𝑆𝑆𝑒 [𝑤 (

�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌

�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
) + (1 − 𝑤)(

�̅�∗𝐸𝑅𝑆𝑆𝑒 + 𝜌

�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
)] 𝑤 1 𝜌 1 1 

11 𝑇1𝐸11 = �̅�
𝐸𝑅𝑆𝑆𝑒 [𝑤 (

�̅�𝐸𝑅𝑆𝑆𝑒

�̅�𝐸𝑅𝑆𝑆𝑒
) + (1 − 𝑤)(

�̅�∗𝐸𝑅𝑆𝑆𝑒

�̅�𝐸𝑅𝑆𝑆𝑒
)] 𝑤 1 0 1 1 

12 𝑇1𝐸12 = �̅�
𝐸𝑅𝑆𝑆𝑒 [𝑤 (

�̅�𝐸𝑅𝑆𝑆𝑒

�̅�𝐸𝑅𝑆𝑆𝑒
)

𝛼1

+ (1 − 𝑤)(
�̅�∗𝐸𝑅𝑆𝑆𝑒

�̅�𝐸𝑅𝑆𝑆𝑒
)

𝛼2

] 𝑤 1 0 𝛼1 𝛼2 

13 𝑇1𝐸13 = �̅�
𝐸𝑅𝑆𝑆𝑒 [𝑤 (

�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌

�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
)

𝛼1

+ (1 − 𝑤)(
�̅�∗𝐸𝑅𝑆𝑆𝑒 + 𝜌

�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
)

𝛼2

] 𝑤 1 𝜌 𝛼1 𝛼2 

14 𝑇1𝐸14 = �̅�
𝐸𝑅𝑆𝑆𝑒 [𝑤 (

𝑎�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌

𝑎�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
)

𝛼1

+ (1 − 𝑤)(
𝑎�̅�∗𝐸𝑅𝑆𝑆𝑒 + 𝜌

𝑎�̅�𝐸𝑅𝑆𝑆𝑒 + 𝜌
)

𝛼2

] 𝑤 𝑎 𝜌 𝛼1 𝛼2 
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Table 3: Some members of the class of estimator 𝑇1(0(𝑚))𝑗 
 

S/N Estimator 𝒘 𝒂 𝝆 𝜶𝟏 𝜶𝟐 

1 𝑇1(0(𝑚))1= �̅�𝐸𝑅𝑆𝑆0(𝑚)  1 1 0 0 0 

2 𝑇1(0(𝑚))2= �̅�𝐸𝑅𝑆𝑆0(𝑚) (
�̅�
𝐸𝑅𝑆𝑆0(𝑚)

�̅�
𝐸𝑅𝑆𝑆0(𝑚)

) 1 1 0 1 0 

3 𝑇1(0(𝑚))3 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) (

�̅�∗𝐸𝑅𝑆𝑆0(𝑚)

�̅�𝐸𝑅𝑆𝑆0(𝑚)
) 0 1 0 1 1 

4 𝑇1(0(𝑚))4 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) (

𝑎�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌

𝑎�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌
) 1 𝑎 𝜌 1 0 

5 𝑇1(0(𝑚))5 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) (

𝑎�̅�∗𝐸𝑅𝑆𝑆0(𝑚) + 𝜌

𝑎�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌
) 0 𝑎 𝜌 0 1 

6 𝑇1(0(𝑚))6 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) (

�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌

�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌
) 1 1 𝜌 1 0 

7 𝑇1(0(𝑚))7 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) (

�̅�∗𝐸𝑅𝑆𝑆0(𝑚) + 𝜌

�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌
) 0 1 𝜌 0 1 

8 𝑇1(0(𝑚))8 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) (

𝑎�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌

𝑎�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌
)

𝛼1

 1 𝑎 𝜌 𝛼1 0 

9 𝑇1(0(𝑚))9 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) (

�̅�∗𝐸𝑅𝑆𝑆0(𝑚) + 𝜌

�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌
)

𝛼2

 0 1 𝜌 0 𝛼2 

10 𝑇1(0(𝑚))10 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) [𝑤 (

�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌

�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌
) + (1 − 𝑤)(

�̅�∗𝐸𝑅𝑆𝑆0(𝑚) + 𝜌

�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌
)] 𝑤 1 𝜌 1 1 

11 𝑇1(0(𝑚))11 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) [𝑤 (

�̅�𝐸𝑅𝑆𝑆0(𝑚)

�̅�𝐸𝑅𝑆𝑆0(𝑚)
) + (1 − 𝑤)(

�̅�∗𝐸𝑅𝑆𝑆0(𝑚)

�̅�𝐸𝑅𝑆𝑆0(𝑚)
)] 𝑤 1 0 1 1 

12 𝑇1(0(𝑚))12 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) [𝑤 (

�̅�𝐸𝑅𝑆𝑆0(𝑚)

�̅�𝐸𝑅𝑆𝑆0(𝑚)
)

𝛼1

+ (1 − 𝑤)(
�̅�∗𝐸𝑅𝑆𝑆0(𝑚)

�̅�𝐸𝑅𝑆𝑆0(𝑚)
)

𝛼2

] 𝑤 1 0 𝛼1 𝛼2 

13 𝑇1(0(𝑚))13 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) [𝑤 (

�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌

�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌
)

𝛼1

+ (1 − 𝑤) (
�̅�∗𝐸𝑅𝑆𝑆0(𝑚)

�̅�𝐸𝑅𝑆𝑆0(𝑚)
)

𝛼2

] 𝑤 1 𝜌 𝛼1 𝛼2 

14 𝑇1(0(𝑚))14 = �̅�
𝐸𝑅𝑆𝑆0(𝑚) [𝑤 (

𝑎�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌

𝑎�̅�𝐸𝑅𝑆𝑆0(𝑚) + 𝜌
)

𝛼1

+ (1 − 𝑤) (
𝑎�̅�∗𝐸𝑅𝑆𝑆0(𝑚)

𝑎�̅�𝐸𝑅𝑆𝑆0(𝑚)
)

𝛼2

] 𝑤 𝑎 𝜌 𝛼1 𝛼2 

 
Table 4: Some members of the class of estimator 𝑇1𝑆𝑗 

 

S/N Estimator 𝒘 𝒂 𝝆 𝜶𝟏 𝜶𝟐 

1 𝑇1𝑆1= �̅�𝑆𝑅𝑆, 1 1 0 0 0 

2 𝑇1𝑆2=�̅�𝑆𝑅𝑆 (
�̅�𝑆𝑅𝑆

�̅�𝑆𝑅𝑆
) 1 1 0 1 0 

3 𝑇1𝑆3 = �̅�
𝑆𝑅𝑆 (

�̅�∗𝑆𝑅𝑆

�̅�𝑆𝑅𝑆
) 0 1 0 1 1 

4 𝑇1𝑆4 = �̅�
𝑆𝑅𝑆 (

𝑎�̅�𝑆𝑅𝑆 + 𝜌

𝑎�̅�𝑆𝑅𝑆 + 𝜌
) 1 𝑎 𝜌 1 0 

5 𝑇1𝑆5 = �̅�
𝑆𝑅𝑆 (

𝑎�̅�∗𝑆𝑅𝑆 + 𝜌

𝑎�̅�𝑆𝑅𝑆 + 𝜌
) 0 𝑎 𝜌 0 1 

6 𝑇1𝑆6 = �̅�
𝑆𝑅𝑆 (

�̅�𝑆𝑅𝑆 + 𝜌

�̅�𝑆𝑅𝑆 + 𝜌
) 1 1 𝜌 1 0 

7 𝑇1𝑆7 = �̅�
𝑆𝑅𝑆 (

�̅�∗𝑆𝑅𝑆 + 𝜌

�̅�𝑆𝑅𝑆 + 𝜌
) 0 1 𝜌 0 1 

8 𝑇1𝑆8 = �̅�
𝑆𝑅𝑆 (

𝑎�̅�𝑆𝑅𝑆 + 𝜌

𝑎�̅�𝑆𝑅𝑆 + 𝜌
)

𝛼1

 1 𝑎 𝜌 𝛼1 0 

9 𝑇1𝑆9 = �̅�
𝑆𝑅𝑆 (

�̅�∗𝑆𝑅𝑆 + 𝜌

�̅�𝑆𝑅𝑆 + 𝜌
)

𝛼2

 0 1 𝜌 0 𝛼2 

10 𝑇1𝑆10 = �̅�
𝑆𝑅𝑆 [𝑤 (

�̅�𝑆𝑅𝑆 + 𝜌

�̅�𝑆𝑅𝑆 + 𝜌
) + (1 − 𝑤)(

�̅�∗𝑆𝑅𝑆 + 𝜌

�̅�𝑆𝑅𝑆 + 𝜌
)] 𝑤 1 𝜌 1 1 

11 𝑇1𝑆11 = �̅�
𝑆𝑅𝑆 [𝑤 (

�̅�𝑆𝑅𝑆

�̅�𝑆𝑅𝑆
) + (1 − 𝑤)(

�̅�∗𝑆𝑅𝑆

�̅�𝑆𝑅𝑆
)] 𝑤 1 0 1 1 

12 𝑇1𝑆12 = �̅�
𝑆𝑅𝑆 [𝑤 (

�̅�𝑆𝑅𝑆

�̅�𝑆𝑅𝑆
)

𝛼1

+ (1 − 𝑤)(
�̅�∗𝑆𝑅𝑆

�̅�𝑆𝑅𝑆
)

𝛼2

] 𝑤 1 0 𝛼1 𝛼2 

13 𝑇1𝑆13 = �̅�
𝑆𝑅𝑆 [𝑤 (

�̅�𝑆𝑅𝑆 + 𝜌

�̅�𝑆𝑅𝑆 + 𝜌
)

𝛼1

+ (1 − 𝑤)(
�̅�∗𝑆𝑅𝑆 + 𝜌

�̅�𝑆𝑅𝑆 + 𝜌
)

𝛼2

] 𝑤 1 𝜌 𝛼1 𝛼2 

14 𝑇1𝑆14 = �̅�
𝑆𝑅𝑆 [𝑤 (

𝑎�̅�𝑆𝑅𝑆 + 𝜌

𝑎�̅�𝑆𝑅𝑆 + 𝜌
)

𝛼1

+ (1 − 𝑤)(
𝑎�̅�∗𝑆𝑅𝑆 + 𝜌

𝑎�̅�𝑆𝑅𝑆 + 𝜌
)

𝛼2

] 𝑤 𝑎 𝜌 𝛼1 𝛼2 
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Definition 2 

Bias, Relative Bias and Mean Square Errors of 𝑻𝟏𝑬𝒋, 𝑻𝟏(𝟎(𝒎))𝒋, 𝑻𝟏𝑺𝒋 

If 𝑇1𝐸𝑗, 𝑇1(0(𝑚))𝑗, 𝑇1𝑆𝑗 , 𝑗 = 1, 2, . . 𝑚 are classes estimator of the population mean �̅� under ERSS and SRS, then the biases, relative 

biases, and Means Square Errors (MSEs) is defined as: 

 

(a) Biases 

(1) 𝐵(𝑇1𝐸𝑗) = [𝐸(𝑇1𝐸𝑗) − �̅�
𝐸𝑅𝑆𝑆𝑒], 𝑗 = 1,2,…𝑚,                  (13) 

 

(2) 𝐵(𝑇1(0(𝑚))𝑗) = [𝐸(𝑇1(0(𝑚))𝑗) − �̅�
𝐸𝑅𝑆𝑆0(𝑚)], 𝑗 = 1,2,…𝑚                (14) 

 

(3) 𝐵(𝑇1𝑆𝑖) = [𝐸(𝑇1𝑆𝑗) − �̅�
𝑆𝑅𝑆], 𝑖 = 1,2, …𝑚,                  (15) 

 

(b) Relative Biases 

(1). 𝑅𝐵(𝑇1𝐸𝑗) =
[𝐸(𝑇1𝐸𝑗)−�̅�

𝐸𝑅𝑆𝑆𝑒]

�̅�𝐸𝑅𝑆𝑆𝑒
, 𝑗 = 1,2, …𝑚,                  (16) 

 

(2). 𝑅𝐵(𝑇1(0(𝑚))𝑗) =
[𝐸(𝑇1(0(𝑚))𝑗)−�̅�

𝐸𝑅𝑆𝑆0(𝑚)]

�̅�
𝐸𝑅𝑆𝑆0(𝑚)

, 𝑗 = 1,2, …𝑚                 (17) 

 

(3). 𝑅𝐵(𝑇1𝑆𝑖) =
[𝐸(𝑇1𝑆𝑗)−�̅�

𝑆𝑅𝑆]

�̅�𝑆𝑅𝑆
, 𝑖 = 1,2, …𝑚,                    (18) 

 

𝑇1𝑆𝑗 , 𝑗 = 1, 2, . . 𝑚 is a class of estimator of the Population mean �̅�𝑆𝑅𝑆 under SRS 

 

(c) MSEs 

(1) 𝑀𝑆𝐸(𝑇1𝐸𝑗) = 𝐸[𝑇1𝐸𝑗 − �̅�
𝐸𝑅𝑆𝑆𝑒]

2
, 𝑗 = 1,2, …𝑚,                 (19) 

 

(2) 𝑀𝑆𝐸(𝑇1[0(𝑚)]𝑗) = 𝐸[𝑇1(0(𝑚))𝑗 − �̅�
𝐸𝑅𝑆𝑆0(𝑚)]

2
, 𝑗 = 1,2, …𝑚               (20) 

 

(3) 𝑀𝑆𝐸(𝑇1𝑆𝑖) = 𝐸[𝑇1𝑆𝑗 − �̅�
𝑆𝑅𝑆]

2
, 𝑣 = 1,2, …𝑚,                  (21) 

 

𝑇1𝑆𝑗 , 𝑗 = 1, 2, . . 𝑚 is a class of estimator of the Population mean �̅�𝑆𝑅𝑆 under SRS, for 𝐸𝑅𝑆𝑆𝑒 case, 𝑒: is even and 𝐸𝑅𝑆𝑆0(𝑚) case, 

0(𝑚): is median odd respectively, 𝑚 the total number of members of the proposed class of estimator. 

 

Biases 𝑻𝟏𝑬𝒋,  𝑻𝟏(𝟎(𝒎))𝒋,  𝑻𝟏𝑺𝒋 

To obtain the bias and Mean Square Error of the class of estimators 𝑇1𝐸𝑗 we write  

 

�̅�𝐸𝑅𝑆𝑆𝑒 = �̅�𝐸𝑅𝑆𝑆𝑒(1 + 𝑒𝑦) 

�̅�𝐸𝑅𝑆𝑆𝑒 = �̅�𝐸𝑅𝑆𝑆𝑒(1 + 𝑒𝑥)

∆𝑥∆𝑦= (𝜇𝑥(𝑖) − 𝜇𝑥)(𝜇𝑦[𝑖] − 𝜇𝑦)

𝐸(𝑒𝑦) = 𝐸(𝑒𝑥) = 0

𝐸(𝑒𝑦
2) = (

1

2𝑚
)
𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒)

(𝜇𝑦)
2 = 𝐶𝑦

2

𝐸(𝑒𝑥
2) = (

1

2𝑚
)
𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒)

(𝜇𝑥)
2 = 𝐶𝑥

2

𝐸(𝑒𝑦𝑒𝑥) = (𝜎𝑥𝑦 −
1

𝑚
∑ ∆𝑥
𝑚
𝑖=1 ∆𝑦) = 𝐶𝑥𝑦 = (

1

2𝑚
) 𝜌𝑥𝑦 ∙

√𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒)

𝜇𝑦
∙
√𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒)

𝜇𝑥
 = 𝜌𝑥𝑦 𝐶𝑦 𝐶𝑥}

 
 
 
 
 

 
 
 
 
 

        (22) 

 

𝑇1𝐸𝑗 ,  𝑇1(0(𝑚))𝑗 ,  𝑇1𝑆𝑗  in equations 10, 11 and 12 can be expressed in terms of 𝑒′𝑠 as: 

 

𝑇1𝐸𝑗 = �̅�
𝐸𝑅𝑆𝑆𝑒(1 + 𝑒𝑦)[𝑤(1 + 𝜆𝑎𝑒𝑥)

−𝛼1 + (1 − 𝑤)(1 − 𝑔𝜆𝑎𝑒𝑥)
𝛼2]              (23) 

 

𝑇1(0(𝑚))𝑗 = �̅�
𝐸𝑅𝑆𝑆0(𝑚)(1 + 𝑒𝑦)[𝑤(1 + 𝜆𝑎𝑒𝑥)

−𝛼1 + (1 − 𝑤)(1 − 𝑔𝜆𝑎𝑒𝑥)
𝛼2]             (24) 

 

𝑇1𝑆𝑗 = �̅�
𝑆𝑅𝑆(1 + 𝑒𝑦)[𝑤(1 + 𝜆𝑎𝑒𝑥)

−𝛼1 + (1 − 𝑤)(1 − 𝑔𝜆𝑎𝑒𝑥)
𝛼2]               (25) 

 

Expanding the right and side of (23), neglecting terms of 𝑒′𝑠 having power greater than two, we have and then taking the 

mathematical expectations of the emergent expression, yields the bias of  𝑇1𝐸𝑗 as: 
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𝐵(𝑇1𝐸𝑖) = [𝐸(𝑇1𝐸𝑗) − �̅�
𝐸𝑅𝑆𝑆𝑒] = �̅�𝐸𝑅𝑆𝑆𝑒 [

𝑤 (1 − 𝛼1𝜆𝑎 (
1

2𝑚
) 𝜌𝑥𝑦 ∙

√𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒)

𝜇𝑦
∙
√𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒)

𝜇𝑥
+
𝛼1(𝛼1+1)

2
𝜆𝑎
2 (

1

2𝑚
)
𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒)

(𝜇𝑥)
2

)

+(1 − 𝑤) (1 − 𝛼2𝑔𝜆𝑎 (
1

2𝑚
) 𝜌𝑥𝑦 ∙

√𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒)

𝜇𝑦
∙
√𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒)

𝜇𝑥
+
𝛼2(𝛼2−1)

2
𝑔2𝜆𝑎

2 (
1

2𝑚
)
𝑉𝑎𝑟(�̅�𝐸𝑅𝑆𝑆𝑒)

(𝜇𝑥)
2

) − 1
] 

 

𝐵(𝑇1𝐸𝑖) =[𝐸(𝑇1𝐸𝑗) − �̅�
𝐸𝑅𝑆𝑆𝑒]= 

�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
[

𝑤 ((2𝑚 − 𝛼1𝜆𝑎𝐶𝑥𝑦 +
𝛼1(𝛼1+1)

2
𝜆𝑎
2𝐶𝑥

2)

+(1 − 𝑤) ((2𝑚 − 𝛼2𝑔𝜆𝑎𝐶𝑥𝑦 +
𝛼2(𝛼2−1)

2
𝑔2𝜆𝑎

2𝐶𝑥
2) − 2𝑚

]        (26) 

 

In like manners, we obtained the biases of  𝑇1(0(𝑚))𝑗 ,  𝑇1𝑆𝑗 

 

𝐵( 𝑇1(0(𝑚))𝑗) = [𝐸(𝑇1(0(𝑚))𝑗) − �̅�
𝐸𝑅𝑆𝑆0(𝑚)] = �̅�𝐸𝑅𝑆𝑆0(𝑚)

[
 
 
 
 
 

𝑤 (1 − 𝛼1𝜆𝑎𝜃𝜌𝑥𝑦 ∙
√𝑉𝑎𝑟(�̅�

𝐸𝑅𝑆𝑆0(𝑚))

𝜇𝑦
∙
√𝑉𝑎𝑟(�̅�

𝐸𝑅𝑆𝑆0(𝑚))

𝜇𝑥
+

𝛼1(𝛼1+1)

2
𝜆𝑎
2𝜃

𝑉𝑎𝑟(�̅�
𝐸𝑅𝑆𝑆0(𝑚))

(𝜇𝑥)
2

)

+(1 − 𝑤)(1 − 𝛼2𝑔𝜆𝑎𝜃𝜌𝑥𝑦 ∙
√𝑉𝑎𝑟(�̅�

𝐸𝑅𝑆𝑆0(𝑚))

𝜇𝑦
∙
√𝑉𝑎𝑟(�̅�

𝐸𝑅𝑆𝑆0(𝑚))

𝜇𝑥
+

𝛼2(𝛼2−1)

2
𝑔2𝜆𝑎

2𝜃
𝑉𝑎𝑟(�̅�

𝐸𝑅𝑆𝑆0(𝑚))

(𝜇𝑥)
2

) − 1
]
 
 
 
 
 

 

 

𝐵(𝑇1(0(𝑚))𝑗)=[𝐸(𝑇1(0(𝑚))𝑗) − �̅�
𝐸𝑅𝑆𝑆0(𝑚)] = 

 

 𝜃�̅�𝐸𝑅𝑆𝑆0(𝑚) [
𝑤 ((

1

𝜃
− 𝛼1𝜆𝑎𝐶𝑥𝑦 +

𝛼1(𝛼1+1)

2
𝜆𝑎
2𝐶𝑥

2)

+(1 − 𝑤) ((
1

𝜃
− 𝛼2𝑔𝜆𝑎𝐶𝑥𝑦) +

𝛼2(𝛼2−1)

2
𝑔2𝜆𝑎

2𝐶𝑥
2) − 

1

𝜃

]             (27) 

 

Where 𝜃 = (
𝑚−1

2𝑚2) 

 

𝐵(𝑇1𝑆𝑗) =[𝐸(𝑇1𝑆𝑗)  − �̅�
𝑆𝑅𝑆] = 

 

 (
1−𝑓

𝑚
) �̅�𝑆𝑅𝑆 [

𝑤 ((
𝑚

1−𝑓
) − 𝛼1𝜆𝑎𝐶10 +

𝛼1(𝛼1+1)

2
𝜆𝑎
2𝐶1

2)

+(1 − 𝑤) (((
𝑚

1−𝑓
) − 𝛼2𝑔𝜆𝑎𝐶10) +

𝛼2(𝛼2−1)

2
𝑔2𝜆𝑎

2𝐶1
2) − (

𝑚

1−𝑓
)

]           (28) 

 

MSEs of  𝑻𝟏𝑬𝒋,  𝑻𝟏(𝟎(𝒎))𝒋,  𝑻𝟏𝑺𝒋  

 

Recall that from equation (23) 

 

(𝑇1𝐸𝑗 − �̅�
𝐸𝑅𝑆𝑆𝑒) =  

 

�̅�𝐸𝑅𝑆𝑆𝑒 [
𝑤 ((1 + 𝑒𝑦 − 𝛼1𝜆𝑎𝑒𝑦𝑒𝑥 − 𝛼1𝜆𝑎𝑒𝑥 +

𝛼1(𝛼1+1)

2
𝜆𝑎
2𝑒𝑥

2 −⋯)

+(1 − 𝑤) ((1 + 𝑒𝑦 − 𝛼2𝑔𝜆𝑎𝑒𝑦𝑒𝑥 − 𝛼2𝑔𝜆𝑎𝑒𝑥 +
𝛼2(𝛼2−1)

2
𝑔2𝜆𝑎

2𝑒𝑥
2 +⋯) − 1

]          (29)  

 

By Squaring both sides of (29) and neglecting terms of 𝑒′𝑠 having powers greater than two we have:  

 

(𝑇1𝐸𝑗 − �̅�
𝐸𝑅𝑆𝑆𝑒)

2
==

{�̅�2
𝐸𝑅𝑆𝑆𝑒𝑤2 (

(1 + 𝑒𝑦 − 𝛼1𝜆𝑎𝑒𝑦𝑒𝑥 +
𝛼1(𝛼1+1)

2
𝜆𝑎
2𝑒𝑥

2 + 𝑒𝑦 + 𝑒𝑦
2 − 𝛼1𝑔𝜆𝑎𝑒𝑦𝑒𝑥 − 𝛼1𝑔𝜆𝑎𝑒𝑦𝑒𝑥

−𝛼1
2𝜆𝑎
2𝑒𝑥

2 − 𝛼1𝑔𝜆1𝑒𝑦𝑒𝑥 +
𝛼1(𝛼1+1)

2
𝜆𝑎
2𝑒𝑥

2
)

+ �̅�2
𝐸𝑅𝑆𝑆𝑒(1 − 𝑤)2 (

1 + 𝑒𝑦 − 𝛼2𝑔𝜆𝑎𝑒𝑦𝑒𝑥 +
𝛼2(𝛼2−1)

2
𝑔2𝜆𝑎

2𝑒𝑥
2 + 𝑒𝑦 + 𝑒𝑦

2 − 𝛼2𝑔𝜆𝑎𝑒𝑦𝑒𝑥

−𝛼2𝑔𝜆𝑎𝑒𝑦𝑒𝑥 − 𝛼2𝑔𝜆𝑎𝑒𝑦𝑒𝑥 + 𝛼2
2𝜆𝑎
2𝑒𝑥

2 +
𝛼2(𝛼2−1)

2
𝑔2𝜆𝑎

2𝑒𝑥
2

)

+2𝑤(1 − 𝑤)�̅�2
𝐸𝑅𝑆𝑆𝑒 (

1 + 𝑒𝑦 − 𝛼2𝑔𝜆𝑎𝑒𝑦𝑒𝑥 +
𝛼2(𝛼2−1)

2
𝑔2𝜆𝑎

2𝑒𝑥
2 + 𝑒𝑦 + 𝑒𝑦

2 − 𝛼2𝑔𝜆𝑎𝑒𝑦𝑒𝑥 − 𝛼1𝑔𝜆𝑎𝑒𝑦𝑒𝑥

−𝛼1𝑔𝜆𝑎𝑒𝑦𝑒𝑥 − 𝛼1𝛼2𝑔𝜆𝑎
2𝑒𝑥

2 +
𝛼1(𝛼1+1)

2
𝜆𝑎
2𝑒𝑥

2
)

−2𝑤�̅�2
𝐸𝑅𝑆𝑆𝑒 (1 + 𝑒𝑦 − 𝛼1𝑔𝜆𝑎𝑒𝑦𝑒𝑥 −

𝛼1(𝛼1+1)

2
𝜆𝑎
2𝑒𝑥

2)

 −2(1 − 𝑤)�̅�2
𝐸𝑅𝑆𝑆𝑒 1 + 𝑒𝑦 − 𝛼2𝑔𝜆𝑎𝑒𝑦𝑒𝑥 +

𝛼2(𝛼2−1)

2
𝑔2𝜆𝑎

2𝑒𝑥
2} + �̅�2

𝐸𝑅𝑆𝑆𝑒

    (30) 
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By taking the mathematical expectation of (30), gives the MSE of  𝑇1𝐸𝑗  as: 

 

𝑀𝑆𝐸(𝑇1𝐸𝑗) = �̅�
2𝐸𝑅𝑆𝑆𝑒 [1 + 𝑤2𝐹1 + (1 − 𝑤)

2𝐹2 + 2𝑤(1 − 𝑤)𝐹3 − 2𝑤𝐹4 − 2(1 − 𝑤)𝐹5]         (31) 

 

Where 

 𝐹1 = [1 +
1

2𝑚
(1 + 𝐶𝑦

2 + 𝛼1(𝛼1 + (𝛼1 + 1))𝜆𝑎
2𝐶𝑥

2 − 4𝛼1𝜆𝑎𝐶𝑥𝑦)]              (32) 

 

𝐹2=[1 +
1

2𝑚

(1 + 𝐶𝑦
2 − 𝛼2(𝛼2 + (𝛼2 − 1))𝑔

2𝜆𝑎
2𝐶𝑥

2 − 4𝛼2𝑔𝜆𝑎𝐶𝑥𝑦)]             (33) 

 

𝐹3 = [
1 +

1

2𝑚
(𝐶𝑦

2 + (
𝛼1(𝛼1+1)

2
+

𝛼2(𝛼2−1)

2
𝑔2 + 𝛼2𝑔

2) 𝜆𝑎
2𝐶𝑥

2 − 2(𝛼1 + 𝛼2𝑔)𝜆𝑎𝐶𝑥𝑦)]           (34) 

 

𝐹4 = [1 +
1

2𝑚
(−(

𝛼1(𝛼1+1)

2
) 𝜆𝑎

2𝐶𝑥
2 − 𝛼1𝑔𝜆𝑎𝐶𝑥𝑦)]                  (35) 

 

𝐹5 = [1 +
1

2𝑚
((

𝛼2(𝛼2−1)

2
)𝑔2𝜆𝑎

2𝐶𝑥
2 − 𝛼2𝑔𝜆𝑎𝐶𝑥𝑦)]                  (36) 

 

Similarly, the MSEs of  𝑇1(0(𝑚))𝑗,  𝑇1𝑆𝑗  were obtained to be: 

 

𝑀𝑆𝐸(𝑇1(0(𝑚))𝑗 = �̅�
2𝐸𝑅𝑆𝑆0(𝑚) [1 + 𝑤2𝐻1 + (1 − 𝑤)

2𝐻2 + 2𝑤(1 − 𝑤)𝐻3 − 2𝑤𝐻4 − 2(1 − 𝑤)𝐻5]       (37) 

 

Where  

𝐻1 = [1 + 𝜃(𝐶𝑦
2 + 𝛼1(𝛼1 + (𝛼1 + 1))𝜆𝑎

2𝐶𝑥
2 − 4𝛼1𝜆𝑎𝐶𝑥𝑦)]               (38) 

 

𝐻2=[1 + 𝜃(𝐶𝑦
2 − 𝛼2(𝛼2 + (𝛼2 − 1))𝑔

2𝜆𝑎
2𝐶𝑥

2 − 4𝛼2𝑔𝜆𝑎𝐶𝑥𝑦)]               (39) 

 

𝐻3 = [1 + 𝜃 (𝐶𝑦
2 + (

𝛼1(𝛼1+1)

2
+

𝛼2(𝛼2−1)

2
𝑔2 + 𝛼2𝑔

2) 𝜆𝑎
2𝐶𝑥

2 − 2(𝛼1 + 𝛼2𝑔)𝜆𝑎𝐶𝑥𝑦)]           (40) 

 

𝐻4 = [1 + 𝜃 ((
𝛼1(𝛼1+1)

2
) 𝜆𝑎

2𝐶𝑥
2 − 𝛼1𝑔𝜆𝑎𝐶𝑥𝑦)]                  (41) 

 

𝐻5 = [1 + 𝜃 ((
𝛼2(𝛼2−1)

2
)𝑔2𝜆𝑎

2𝐶𝑥
2 − 𝛼2𝑔𝜆𝑎𝐶𝑥𝑦)]                  (42) 

 

𝑀𝑆𝐸(𝑇1𝑆𝑗) = (�̅�
𝑆𝑅𝑆)2[1 + 𝑤2𝐺1 + (1 − 𝑤)

2𝐺2 + 2𝑤(1 − 𝑤)𝐺3 − 2𝑤𝐺4 − 2(1 − 𝑤)𝐺5]         (43) 

 

Where  

𝐺1 = [1 + (
1−𝑓

𝑚
) (𝐶0

2 + 𝛼1(𝛼1 + (𝛼1 + 1))𝜆𝑎
2𝐶1

2 − 4𝛼1𝜆𝑎𝐶10)]              (44) 

 

𝐺2=[1 + (
1−𝑓

𝑚
) (1 + 𝐶0

2 − 𝛼2(𝛼2 + (𝛼2 − 1))𝑔
2𝜆𝑎
2𝐶1

2 − 4𝛼2𝑔𝜆𝑎𝐶10)]              (45) 

 

𝐺3 = [1 + (
1−𝑓

𝑚
) (𝐶0

2 + (
𝛼1(𝛼1+1)

2
+

𝛼2(𝛼2−1)

2
𝑔2 + 𝛼2𝑔

2) 𝜆𝑎
2𝐶1

2 − 2(𝛼1 + 𝛼2𝑔)𝜆𝑎𝐶10)]          (46) 

 

𝐺4 = [1 + (
1−𝑓

𝑚
) ((

𝛼1(𝛼1+1)

2
) 𝜆𝑎

2𝐶1
2 − 𝛼1𝑔𝜆𝑎𝐶10)]                 (47) 

 

𝐺5 = [1 + (
1−𝑓

𝑚
) ((

𝛼2(𝛼2−1)

2
)𝑔2𝜆𝑎

2𝐶1
2 − 𝛼2𝑔𝜆𝑎𝐶10)]                 (48) 

 

Optimal MSEs of 𝑻𝟏𝑬𝒋,  𝑻𝟏(𝟎(𝒎))𝒋,  𝑻𝟏𝑺𝒋 

To obtain the optimum MSE of 𝑇1𝐸𝑗, 𝑇1(0(𝑚))𝑗 ,  𝑇1𝑆𝑗  we differentiate (31), (37), and (43) partially and separately with respect to 

𝑤 and (1 − 𝑤) and equate the resulting expression to zero respectively. This procedure yields the optimal MSEs of 𝑇1𝐸𝑗, 

 𝑇1(0(𝑚))𝑗 ,  𝑇1𝑆𝑗 as: 

 

𝑀𝑆𝐸(𝑇1𝐸𝑗)𝑜𝑝𝑡 = �̅�
2𝐸𝑅𝑆𝑆𝑒 [1 +

(2𝐹3𝐹4𝐹5−𝐹2𝐹4
2−𝐹1𝐹5

2)

(𝐹1𝐹2−𝐹3
2)

]                 (49) 

 

𝑀𝑆𝐸(𝑇1(0(𝑚))𝑗)𝑜𝑝𝑡 = �̅�
2𝐸𝑅𝑆𝑆0(𝑚) [1 +

(2𝐻3𝐻4𝐻5−𝐻2𝐻4
2−𝐻1𝐻5

2)

(𝐻1𝐻2−𝐻3
2)

]                (50) 
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𝑀𝑆𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡 = �̅�
2𝑆𝑅𝑆 [1 +

(2𝐺3𝐺4𝐺5−𝐺2𝐺4
2−𝐺1𝐺5

2)

(𝐺1𝐺2−𝐺3
2)

]                  (51) 

 

Efficiency comparison 

Let  𝑀𝑆𝐸(𝑇1𝐸𝑗)𝑜𝑝𝑡, 𝑀𝑆𝐸(𝑇1[0(𝑚)]𝑗)𝑜𝑝𝑡
, and MS𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡 be the Mean Square Errors (MSEs) of the proposed class of estimators 

under ERSS for 𝐸𝑅𝑆𝑆𝑒 case, 𝑒: is even, 𝐸𝑅𝑆𝑆0(𝑚) case, 0(𝑚): is median odd, and that of the estimator proposed under SRS 

respectively. 

(𝑖) 𝑀𝑆𝐸(𝑇1𝐸𝑗)𝑜𝑝𝑡 is more efficient than MS𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡 under optimal condition if the ratio of 𝑀𝑆𝐸(𝑇1𝐸𝑗)𝑜𝑝𝑡 in relation to 

MS𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡 is less than 1 or the reciprocal of the ratio of 𝑀𝑆𝐸(𝑇1𝐸𝑗)𝑜𝑝𝑡 in relation to MS𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡 is greater than 1. Thus: 

 

(�̅�𝐸𝑅𝑆𝑆𝑒)
2
[1+

(2𝐹3𝐹4𝐹5−𝐹2𝐹4
2−𝐹1𝐹5

2)

(𝐹1𝐹2−𝐹3
2)

]

(�̅�𝑆𝑅𝑆)
2
[1+

(2𝐺3𝐺4𝐺5−𝐺2𝐺4
2−𝐺1𝐺5

2)

(𝐺1𝐺2−𝐺3
2)

]

< 1 𝑜𝑟 
1

(�̅�𝐸𝑅𝑆𝑆𝑒)
2
[1+

(2𝐹3𝐹4𝐹5−𝐹2𝐹4
2−𝐹1𝐹5

2)

(𝐹1𝐹2−𝐹3
2)

]

(�̅�𝑆𝑅𝑆)
2
[1+

(2𝐺3𝐺4𝐺5−𝐺2𝐺4
2−𝐺1𝐺5

2)

(𝐺1𝐺2−𝐺3
2)

]

> 1,  

 

for 𝑗 = 1 𝑡𝑜 𝑚                          (52) 

 

(𝑖𝑖) 𝑀𝑆𝐸(𝑇1[0(𝑚)]𝑗)𝑜𝑝𝑡
 is more efficient than MS𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡 under optimal condition if the ratio of 𝑀𝑆𝐸(𝑇1[0(𝑚)]𝑗)𝑜𝑝𝑡

 in relation 

to MS𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡 is less than 1 or the reciprocal of the ratio of 𝑀𝑆𝐸(𝑇1[0(𝑚)]𝑗)𝑜𝑝𝑡
 in relation to MS𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡 is greater than 1. 

 

(�̅�
𝐸𝑅𝑆𝑆0(𝑚))

2
[1+

(2𝐻3𝐻4𝐻5−𝐻2𝐻4
2−𝐻1𝐻5

2)

(𝐻1𝐻2−𝐻3
2)

]

(�̅�𝑆𝑅𝑆)
2
[1+

(2𝐺3𝐺4𝐺5−𝐺2𝐺4
2−𝐺1𝐺5

2)

(𝐺1𝐺2−𝐺3
2)

]

< 1 𝑜𝑟 
1

(�̅�
𝐸𝑅𝑆𝑆0(𝑚))

2
[1+

(2𝐻3𝐻4𝐻5−𝐻2𝐻4
2−𝐻1𝐻5

2)

(𝐻1𝐻2−𝐻3
2)

]

(�̅�𝑆𝑅𝑆)
2
[1+

(2𝐺3𝐺4𝐺5−𝐺2𝐺4
2−𝐺1𝐺5

2)

(𝐺1𝐺2−𝐺3
2)

]

> 1,  

 

for 𝑗 = 1 𝑡𝑜14                          (53) 

 

(𝑖𝑖𝑖) 𝑀𝑆𝐸(𝑇1[0(𝑚)]𝑗)𝑜𝑝𝑡
, is most efficient than 𝑀𝑆𝐸(𝑇1𝐸𝑗)𝑜𝑝𝑡, and MS𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡, under optimal condition if  

(�̅�𝐸𝑅𝑆𝑆0(𝑚))
2
[1 +

(2𝐻3𝐻4𝐻5−𝐻2𝐻4
2−𝐻1𝐻5

2)

(𝐻1𝐻2−𝐻3
2)

] < (�̅�𝐸𝑅𝑆𝑆𝑒)2 [1 +
(2𝐹3𝐹4𝐹5−𝐹2𝐹4

2−𝐹1𝐹5
2)

(𝐹1𝐹2−𝐹3
2)

] < (�̅�𝑆𝑅𝑆)2 [1 +
(2𝐺3𝐺4𝐺5−𝐺2𝐺4

2−𝐺1𝐺5
2)

(𝐺1𝐺2−𝐺3
2)

]   (54) 

 

(𝑖𝑣) 𝑀𝑆𝐸 (𝑇1𝐸𝑗)𝑜𝑝𝑡 is more efficient than MS𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡 in terms of 𝑃𝑅𝐸, if 

 

(�̅�𝐸𝑅𝑆𝑆𝑒)
2
[1+

(2𝐹3𝐹4𝐹5−𝐹2𝐹4
2−𝐹1𝐹5

2)

(𝐹1𝐹2−𝐹3
2)

]

(�̅�𝑆𝑅𝑆)
2
[1+

(2𝐺3𝐺4𝐺5−𝐺2𝐺4
2−𝐺1𝐺5

2)

(𝐺1𝐺2−𝐺3
2)

]

× 100 < 100 𝑜𝑟

1

(�̅�𝐸𝑅𝑆𝑆𝑒)
2
[1+

(2𝐹3𝐹4𝐹5−𝐹2𝐹4
2−𝐹1𝐹5

2)

(𝐹1𝐹2−𝐹3
2)

]

(�̅�𝑆𝑅𝑆)
2
[1+

(2𝐺3𝐺4𝐺5−𝐺2𝐺4
2−𝐺1𝐺5

2)

(𝐺1𝐺2−𝐺3
2)

]

× 100 > 100

for 𝑗 = 1 𝑡𝑜 14 }
 
 
 
 

 
 
 
 

                  (55) 

  

(v) 𝑀𝑆𝐸 (𝑇1[0(𝑚)]𝑗)𝑜𝑝𝑡
 is more efficient than MS𝐸(𝑇1𝑆𝑗)𝑜𝑝𝑡in terms of PRE, if 

 

(�̅�
𝐸𝑅𝑆𝑆0(𝑚))

2
[1+

(2𝐻3𝐻4𝐻5−𝐻2𝐻4
2−𝐻1𝐻5

2)

(𝐻1𝐻2−𝐻3
2)

]

(�̅�𝑆𝑅𝑆)
2
[1+

(2𝐺3𝐺4𝐺5−𝐺2𝐺4
2−𝐺1𝐺5

2)

(𝐺1𝐺2−𝐺3
2)

]

× 100 < 100 𝑜𝑟

1

(�̅�
𝐸𝑅𝑆𝑆0(𝑚))

2
[1+

(2𝐻3𝐻4𝐻5−𝐻2𝐻4
2−𝐻1𝐻5

2)

(𝐻1𝐻2−𝐻3
2)

]

(�̅�𝑆𝑅𝑆)
2
[1+

(2𝐺3𝐺4𝐺5−𝐺2𝐺4
2−𝐺1𝐺5

2)

(𝐺1𝐺2−𝐺3
2)

]

× 100 > 100

for 𝑗 = 1 𝑡𝑜 14 }
 
 
 
 

 
 
 
 

                 (56) 
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Table 5: Members of 𝑇1𝐸𝑗, 𝑗 = 1, 2, … 14 with their Bias 
 

S/N 𝑻𝟏𝑬𝒊 Bias 

1 𝑇1𝐸1 0 

2 𝑇1𝐸2 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝐶𝑥

2 − 𝐶𝑥𝑦) 

3 𝑇1𝐸3 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
(−𝑔𝐶𝑥𝑦) 

4 𝑇1𝐸4 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
𝜆𝑎(𝜆𝑎𝐶𝑥

2 − 𝐶𝑥𝑦) 

5 𝑇1𝐸5 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
𝜆𝑎(−𝑔𝐶𝑥𝑦) 

6 𝑇1𝐸6 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
𝜆1(𝜆1𝐶𝑥

2 − 𝐶𝑥𝑦) 

7 𝑇1𝐸7 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
𝜆𝑎(−𝑔𝐶𝑥𝑦) 

8 𝑇1𝐸8 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
𝜆𝑎 ((

𝛼1(𝛼1 + 1)

2
) 𝜆𝑎𝐶𝑥

2 − 𝛼1𝐶𝑥𝑦) 

9 𝑇1𝐸9 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
𝜆1 ((

𝛼2(𝛼2 − 1)

2
)𝑔2𝜆1𝐶𝑥

2 − 𝑔𝛼2𝐶𝑥𝑦) 

10 𝑇1𝐸10 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝑤(2𝑚 + 𝜆1

2 𝐶𝑥
2 − 𝜆1𝐶𝑥𝑦) + (1 − 𝑤)(2𝑚 − 𝜆1𝐶𝑥𝑦) − 2𝑚) 

11 𝑇1𝐸11 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝑤(2𝑚 + 𝐶𝑥

2 + 𝐶𝑥𝑦) + (1 − 𝑤)(2𝑚 − 𝑔𝐶𝑥𝑦) − 2𝑚) 

12 𝑇1𝐸12 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝑤 (2𝑚 + (

𝛼1(𝛼1 + 1)

2
)𝐶𝑥

2 − 𝛼1𝐶𝑥𝑦) + (1 − 𝑤) (2𝑚 + (
𝛼2(𝛼2 − 1)

2
)𝑔2𝐶𝑥

2 − 𝑔𝛼2𝐶𝑥𝑦) − 2𝑚) 

13 𝑇1𝐸13 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝑤 (2𝑚 + (

𝛼1(𝛼1 + 1)

2
) 𝜆1

2 𝐶𝑥
2 − 𝛼1𝜆1𝐶𝑥𝑦) + (1 − 𝑤) (2𝑚 + (

𝛼2(𝛼2 − 1)

2
) 𝜆1

2 𝑔2𝐶𝑥
2 − 𝑔𝜆1𝛼2𝐶𝑥𝑦) − 2𝑚) 

14 𝑇1𝐸14 
�̅�𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝑤 (2𝑚 + (

𝛼1(𝛼1 + 1)

2
) 𝜆𝑎

2 𝐶𝑥
2 − 𝛼1𝜆𝑎𝐶𝑥𝑦) + (1 − 𝑤) (2𝑚 + (

𝛼2(𝛼2 − 1)

2
) 𝜆𝑎

2 𝑔2𝐶𝑥
2 − 𝑔𝜆𝑎𝛼2𝐶𝑥𝑦) − 2𝑚) 

 
Table 6: Members of 𝑇1𝐸𝑗, 𝑗 = 1, 2, … 14 with their MSE 

 

S/N 𝑻𝟏𝑬𝒊 MSE 

1 𝑇1𝐸1 
�̅�2

𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝐶𝑦

2) 

2 𝑇1𝐸2 
�̅�2

𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝐶𝑦

2 + 𝐶𝑥
2 − 2𝐶𝑥𝑦) 

3 𝑇1𝐸3 
�̅�2

𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝐶𝑦

2 + 𝑔2𝐶𝑥
2 + 2𝑔𝐶𝑥𝑦) 

4 𝑇1𝐸4 
�̅�2

𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝐶𝑦

2 + 𝜆𝑎
2 𝐶𝑥

2 − 2𝜆𝑎𝐶𝑥𝑦) 

5 𝑇1𝐸5 
�̅�2

𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝐶𝑦

2 + 𝑔2𝜆𝑎
2 𝐶𝑥

2 − 2𝜆𝑎𝑔𝐶𝑥𝑦) 

6 𝑇1𝐸6 
�̅�2

𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝐶𝑦

2 + 𝜆1
2 𝐶𝑥

2 − 2𝜆1𝐶𝑥𝑦) 

7 𝑇1𝐸7 
�̅�2

𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝐶𝑦

2 + 𝑔2𝜆1
2 𝐶𝑥

2 + 2𝑔𝜆1𝐶𝑥𝑦) 

8 𝑇1𝐸8 
�̅�2

𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝐶𝑦

2 + 𝛼1
2 𝜆𝑎

2 𝐶𝑥
2 − 2𝛼1𝜆𝑎𝐶𝑥𝑦) 

9 𝑇1𝐸9 
�̅�2

𝐸𝑅𝑆𝑆𝑒

2𝑚
(𝐶𝑦

2 + 𝑔2𝛼2
2 𝜆1

2 𝐶𝑥
2 + 2𝑔𝛼2𝜆1𝐶𝑥𝑦) 

10 𝑇1𝐸10 lim
(𝝀𝒂→𝝀𝟏,𝜶𝟏→𝟏, 𝜶𝟐→𝟏) 

�̅�2
𝐸𝑅𝑆𝑆𝑒[1 + 𝑤2𝐹1 + (1 − 𝑤)

2𝐹2 + 2𝑤(1 − 𝑤)𝐹3 − 2𝑤𝐹4 − 2(1 − 𝑤)𝐹5]  

11 𝑇1𝐸11 lim
(𝝀𝒂→𝟏,𝜶𝟏→𝟏, 𝜶𝟐→𝟏) 

�̅�2
𝐸𝑅𝑆𝑆𝑒[1 + 𝑤2𝐹1 + (1 − 𝑤)

2𝐹2 + 2𝑤(1 − 𝑤)𝐹3 − 2𝑤𝐹4 − 2(1 − 𝑤)𝐹5]  

12 𝑇1𝐸12 lim
(𝝀𝒂→𝟏) 

�̅�2
𝐸𝑅𝑆𝑆𝑒[1 + 𝑤2𝐹1 + (1 − 𝑤)

2𝐹2 + 2𝑤(1 − 𝑤)𝐹3 − 2𝑤𝐹4 − 2(1 − 𝑤)𝐹5]  

13 𝑇1𝐸13 lim
(𝝀𝒂→𝝀𝟏) 

�̅�2
𝐸𝑅𝑆𝑆𝑒[1 + 𝑤2𝐹1 + (1 − 𝑤)

2𝐹2 + 2𝑤(1 − 𝑤)𝐹3 − 2𝑤𝐹4 − 2(1 − 𝑤)𝐹5]  

14 𝑇1𝐸14 �̅�2
𝐸𝑅𝑆𝑆𝑒[1 + 𝑤2𝐹1 + (1 − 𝑤)

2𝐹2 + 2𝑤(1 − 𝑤)𝐹3 − 2𝑤𝐹4 − 2(1 − 𝑤)𝐹5] 

 

Empirical study 

In order to investigate the efficiency of the proposed class of estimators and its members under ERSS over its corresponding 

counterpart estimator based on SRS, and some existing ratio type estimators, we have considered three natural populations data 

sets. The real-life data sets were obtained from various sources and the description of the population and the values of the required 

parameters are specified below: 
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Population I: [Source: Murthy (1967)] [36]. The population consists of 80 factories in a region, the character 𝑋 and Y being fixed 

capital and output respectively. The variables are defined as follows: 

Y = Output of factory 

𝑋= Fixed capital 

𝑀 = 80,𝑚 = 8, �̅� = 8.480904,  �̅� = 6.750716, 𝐶𝑥 = 0.7459, 𝐶𝑦 = 0.3519, 𝜌𝑥𝑦 = 0.9640175. 

 

Population II: [Source: Steel and Torrie (1960)] [49]. 

Y: Log of leaf burn in seconds, 

X: Potassium percentage 

𝑀 = 30,𝑚 = 4, �̅� = 0.6860, �̅� = 4.6437, 𝐶𝑥 = 0.47906, 𝐶𝑦 = 0.693 𝜌𝑥𝑦 = 0.1794. 

 

Population III: [Source: Khare and Rehman (2015)] [34]. 

Y: Number of Agricultural labour pp 

X: Area of village hectares 

𝑀 = 96,𝑚 = 24, �̅� = 137.9271, �̅� = 144.8720, 𝐶𝑥 = 0.8115,  𝐶𝑦 = 1.3232  

𝜌𝑥𝑦 = 0.786.  
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Simulation study 

A computer simulation study was conducted using the R-software to examine the theoretical underpinnings of the work and the 

performances of the proposed class of estimator of population mean based on ERSS (even and odd median) and on SRS, when 

ranking is done on a single accompanying variable X. Bivariate random observations were generated from a bivariate normal 

distribution having parameters 𝜇𝑋 = 25, 𝜇𝑌  = 15,  𝜎𝑋
2 = 𝜎𝑦

2 = 1, and 𝜌𝑋𝑌  = ±0.99, ±0.90, ±0.70 and ±0.50. Using 5000 simulations, 

estimates of MSE’s for the estimators in question were computed. We considered sample sizes m = 3, 4, 5, 6, 7, 8, 9, 10 and r = 1 

respectively to study the performances of the proposed ratio-cum-product estimators under ERSSe, ERSSo(m) and on SRS, the 

results is as shown in table 12 and table 13. 

 
Table 12: Simulation Results of MSEs, R.E, AND P.R.E of  𝑇1𝐸𝑗, 𝑇1(𝑜(𝑚))𝑗 , 𝑇1𝑆𝑗 

 

m  𝐓𝟏𝐄𝐣 𝐓𝟏(𝐨(𝐦))𝐣  𝐓𝟏𝐒𝐣 𝛒𝐱𝐲=0.99  𝐑𝐄𝟏  𝐑𝐄𝟐  𝐏𝐑𝐄𝟏  𝐏𝐑𝐄𝟐 

3 2.9333865 2.06268234 5.8654474 0.500113 0.351666667 50.0113 35.1666667 

4 2.7537503 2.14067801 5.50656724 0.50008475 0.38875 50.008475 38.875 

5 2.648793 2.17701262 5.2968677 0.5000678 0.411 50.00678 41.1 

6 2.8414645 2.41970715 5.68228685 0.5000565 0.425833333 50.00565 42.5833333 

7 2.7810122 2.4271913 5.5614858 0.500048429 0.436428571 50.00484286 43.6428571 

8 2.7904075 2.47976454 5.58034214 0.500042375 0.444375 50.0042375 44.4375 

9 2.8344908 2.55399878 5.66855462 0.500037667 0.450555556 50.00376667 45.0555556 

10 2.7223081 2.47985453 5.44424704 0.5000339 0.4555 50.00339 45.55 

m 
   

ρxy= - 0.99 
   

3 4.2260183 3.15466985 8.45000853 0.50012 0.373333333 50.012 37.3333333 

4 4.1497192 3.36066766 8.29794484 0.50009 0.405 50.009 40.5 

5 4.0674988 3.44874234 8.13382628 0.500072 0.424 50.0072 42.4 

6 4.1568577 3.62988682 8.31271792 0.50006 0.436666667 50.006 43.6666667 

7 4.1652753 3.71266355 8.32969385 0.500051429 0.445714286 50.00514286 44.5714286 

8 4.0902068 3.70130407 8.17967751 0.500045 0.4525 50.0045 45.25 

9 4.2857021 3.92348445 8.57071845 0.50004 0.457777778 50.004 45.7777778 

10 4.2681986 3.94353161 8.53578271 0.500036 0.462 50.0036 46.2 

m 
   

ρxy=0.90 
   

3 2.1071912 1.47902634 4.21375024 0.500075 0.351 50.0075 35.1 

4 2.1748577 1.68858706 4.34922616 0.50005625 0.38825 50.005625 38.825 

5 2.2164454 1.8199812 4.43249197 0.500045 0.4106 50.0045 41.06 

6 2.1689496 1.84563767 4.33757385 0.5000375 0.4255 50.00375 42.55 

7 2.1083178 1.83893727 4.21636452 0.500032143 0.436142857 50.00321429 43.6142857 

8 2.2829573 2.02772278 4.56565782 0.500028125 0.444125 50.0028125 44.4125 

9 2.1680773 1.95261735 4.33593787 0.500025 0.450333333 50.0025 45.0333333 

10 2.2303415 2.03085754 4.46048218 0.5000225 0.4553 50.00225 45.53 

m 
   

ρxy= - 0.90 
   

3 0.739528 0.51913824 1.47902634 0.50001 0.351 50.001 35.1 

4 3.5715981 2.77330429 7.14308896 0.5000075 0.38825 50.00075 38.825 

5 3.5821267 2.94160712 7.16416736 0.500006 0.4106 50.0006 41.06 

6 3.6636968 3.11777481 7.32732035 0.500005 0.4255 50.0005 42.55 

7 3.6077125 3.14692911 7.21536317 0.5000043 0.436142857 50.00042857 43.6142857 

8 3.5225697 3.1288991 7.04508664 0.5000038 0.444125 50.000375 44.4125 

9 3.5933394 3.23637946 7.18663093 0.5000033 0.450333333 50.00033333 45.0333333 

10 3.5929281 3.27170068 7.18581304 0.500003 0.4553 50.0003 45.53 

 
Table 13: Second simulation Results of MSEs, R.E, AND P.R.E of 𝑇1𝐸𝑗, 𝑇1(𝑜(𝑚))𝑗 , 𝑇1𝑆𝑗 Advocated classes of estimators 

 

m  𝐓𝟏𝐄𝐣 𝐓𝟏(𝐨(𝐦))𝐣  𝐓𝟏𝐒𝐣 𝛒𝐱𝐲=0.70  𝐑𝐄𝟏  𝐑𝐄𝟐  𝐏𝐑𝐄𝟏  𝐏𝐑𝐄𝟐 

3 1.4019339 0.8299883 2.45092732 0.572001433 0.33864256 57.200143 33.8642559 

4 1.2389521 0.92921411 2.4899649 0.497578157 0.37318362 49.757816 37.3183618 

5 1.1655997 0.932479774 2.47790429 0.470397392 0.37631791 47.039739 37.6317914 

6 1.2166386 1.01386546 2.33119944 0.521893808 0.43491151 52.189381 43.4911507 

7 1.2393883 1.062332799 2.4332771 0.509349414 0.43658521 50.934941 43.6585212 

8 1.2543398 1.097547303 2.47877653 0.50603181 0.44277783 50.603181 44.2777834 

9 1.2216126 1.085877852 2.50867955 0.486954415 0.43284837 48.695442 43.2848369 

10 1.0912346 0.9651243 2.44322517 0.446636935 0.39502061 44.663694 39.5020612 

m 
   

ρxy= - 0.70 
   

3 2.3694209 1.57961392 4.73884176 0.5 0.33333333 50 33.3333333 

4 2.2138623 1.660396699 4.42772453 0.5 0.375 50 37.5 

5 2.239746 1.79179679 4.47949197 0.5 0.4 50 40 

6 2.3188298 1.93235819 4.63765966 0.5 0.41666667 50 41.6666667 

7 2.2643066 1.940834217 4.52861317 0.5 0.42857143 50 42.8571429 

8 2.3252148 2.034562913 4.65042952 0.5 0.4375 50 43.75 

9 2.2950216 2.04001916 4.59004311 0.5 0.44444444 50 44.4444444 

10 2.237049 2.013344079 4.47409795 0.5 0.45 50 45 
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m 
   

ρxy=0.50 
   

3 0.5937952 0.39586345 1.18759035 0.5 0.33333333 50 33.3333333 

4 0.5186365 0.388977396 1.03727306 0.5 0.375 50 37.5 

5 0.5542557 0.443404557 1.10851139 0.5 0.4 50 40 

6 0.5377956 0.44816302 1.07559125 0.5 0.41666667 50 41.6666667 

7 0.5536828 0.474585235 1.10736555 0.5 0.42857143 50 42.8571429 

8 0.5536053 0.484404623 1.10721057 0.5 0.4375 50 43.75 

9 0.5373568 0.477650448 1.07471351 0.5 0.44444444 50 44.4444444 

10 0.5678814 0.511093304 1.1357629 0.5 0.45 50 45 

m 
   

ρxy= - 0.50 
   

3 1.2824622 0.854974816 2.56492445 0.5 0.33333333 50 33.3333333 

4 1.2584511 0.94383832 2.51690219 0.5 0.375 50 37.5 

5 1.2824775 1.025981993 2.56495498 0.5 0.4 50 40 

6 1.2816042 1.068003536 2.56320849 0.5 0.41666667 50 41.6666667 

7 1.2963588 1.111164661 2.59271754 0.5 0.42857143 50 42.8571429 

8 1.2984354 1.13613097 2.59687079 0.5 0.4375 50 43.75 

9 1.3156134 1.169434112 2.63122675 0.5 0.44444444 50 44.4444444 

 

Conclusion 

A class of ratio-cum-product estimators of population mean of the study variable Y have been successfully proposed following 

information on a single accompanying variable under ERSS as shown in equations (10) and (11) while keeping track record of the 

SRS version of the proposed estimators as shown in (12) for the purpose of efficiency comparison. Members of the proposed class 

of the estimators were obtained by varying the scalars that helps in designing the estimator and were presented in table 2, table 3, 

and table 4 respectively. Their properties such as biases, and MSEs were all derived as can be envisage in equations (26), (27), 

(28) for biases and (31), (37), (43) for MSEs. The Optimal Mean Square Errors were also calculated to the quadratic polynomial 

form of Taylor’s series approximation and presented in (49), (50) and (51) respectively. Theoretical underpinnings and the 

condition for which the proposed class of estimator would provide an appreciable gain in efficiency over its counterpart estimator 

were established and shown in (52). (53), (54), (55), and (56). Empirical and simulation studies were conducted to ascertain the 

veracity of the theoretical underpinnings of the work. From where it was discovered from the results that the proposed class of 

estimators based on ERSS provided smaller MSEs, R.E, P.R.E, for all values of the correlation coefficients and sample sizes 

considered in the work and are therefore adjudged to be more efficient than the corresponding counterpart under SRS. This 

evidence is presented in table 7 to table 13. 

The efficiency of 𝑇1𝐸𝑗 , 𝑇1(𝑜(𝑚))𝑗 𝑇1𝑆𝑗  increases for smaller values of correlation coefficient 𝜌𝑋𝑌  =-0.80, ±0.70, and ±0.50 and for 

smaller values of sample size and decreases for the values of the correlation coefficient 𝜌𝑋𝑌  =±0.99, ±0.90, and +0.80 and as the 

sample size increases in most cases in table 12 and table 13. 

The proposed estimators are approximately unbiased for all cases, correlation coefficients, and sample sizes considered in the 

simulation study. 

The estimator 𝑇1(𝑜(𝑚))𝑗 performs better than that of 𝑇1𝐸𝑗 and 𝑇2𝑆𝑗 for all the values of the correlated coefficient and the samples 

sizes considered in this work. 

Therefore, the estimator𝑠 𝑇1(𝑜(𝑚))𝑗  was adjudged to be the most efficient estimators among their brethren 𝑇1𝐸𝑗 , 𝑇1𝑆𝑗 since it 

produces the smallest MSEs in all the population, correlation coefficients, and sample sizes considered in this work. The 

estimators in question were therefore adjudged to be efficient and provide a better alternative whenever efficiency is required. 
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