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Abstract 

Let {𝑋𝑗: 𝑗 ≥ −𝑚 + 1} be a homogeneous Markov chain of order 𝑚 taking values in {0,1}. For 𝑗 =

0, −1, … , −𝑙 + 1, we will set 𝑅𝑗 = 0 and we define 𝑅𝑗 = ∏𝑖=𝑗−1
𝑗−𝑙

 (1 − 𝑅𝑖)∏𝑖=𝑗
𝑗+𝑘−1

 𝑋𝑖. Now 𝑅𝑗 = 1 

implies that an 𝑙-look-back run of length 𝑘 has occurred starting at 𝑗. Here 𝑅𝑗 is defined inductively as a 

run of 1 's starting at 𝑗, provided that no 𝑙-look-back run of length 𝑘 occurs, starting at time 𝑗 − 1, 𝑗 −
2, … , 𝑗 − 𝑙 respectively. We study the conditional distribution of the number of 𝑙1-look-back runs of 
length 𝑘1 until the stopping time i.e. the 𝑟-th occurrence of the 𝑙-look-back run of length 𝑘 where 𝑘1 ≤ 𝑘 
and obtain it's probability generating function. The number of 𝑙1-look-back runs of length 𝑘1 until the 
stopping time has been expressed as the sum of 𝑟 independent random variables with the first random 
variable having a slightly different distribution under certain conditions. 
 
Keywords: Look-back runs, stopping time, Markov chain, strong Markov property, probability 
generating functions 

 
1. Introduction 
The theory of distributions of runs has been studied extensively since Feller [1968] [8] 
introduced runs as an example of a renewal event. This field has received a lot of interest 
among researchers. Various new techniques such as Markov embedding technique (refer Fu 
and Koutras [1994]) [9], method of conditional probability generating functions (refer 
Ebneshahrashoob & Sobel [1990]) [7] etc. have been developed to study interesting features of 
the distributions of runs of different type. 
We consider an 𝑚-th order homogeneous {0,1}-valued Markov chain. Further, we assume that 
the initial condition {𝑋0 = 𝑥0, 𝑋−1 = 𝑥1, … , 𝑋−𝑚+1 = 𝑥𝑚−1} is given to us. The state 1 is 
associated with success in an experiment while state 0 for failure. A run of length 𝑘 is a 
consecutive occurrence of 𝑘 successes. The l-look-back counting scheme for runs was 
introduced by Anuradha [2022𝑎]. In this scheme, if a run has been counted starting at time i, 
i.e., {𝑋i =  𝑋i+1 = ⋯ = 𝑋i+k−1 = 1}, then no runs can be counted till the time point 𝑖 + 𝑙 and 
the next counting of runs can start only from the time point 𝑖 + 𝑙 + 1. This scheme is repeated 
every time a run is counted. In other words, if a run is counted starting at time i, there are k 
consecutive successes from the time point i and no runs of length k can be counted which start 
at the time points 𝑖 − 1, 𝑖 − 2, … , 𝑖 − 𝑙. The look-back counting scheme generalizes the 
concept of run counting and encompasses both the definitions of overlapping counting as well 
as the non-overlapping counting and also gives rise to new objects for further study. Clearly, if 
𝑙 = 0, this counting scheme of run matches exactly with the counting of overlapping runs of 
length k, whereas if we consider 𝑙 = 𝑘 − 1, then this counting scheme results in the counting 
of non-overlapping runs of length k. Under the set-up of m-th order homogeneous Markov 
chain, Anuradha [2022a] [3] proved that the waiting time distribution of the n-th occurrence of 
the l-look-back run of length k converges to an extended Poisson distribution when the system 
exhibits strong propensity towards success. Under the same set up, central limit theorem was 
established for the number of l-look-back runs of length k till the n-th trial. Anuradha [2022b] 
[4] obtained the conditional distribution of the number of runs of a fixed length or more till the 
r-th occurrence of l-look-back run of length k when the underlying random variables follow an 
m-th order Markov chain and identified the form of conditional distribution.

https://www.mathsjournal.com/
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In order to understand the practical use of the 𝑙-look-back counting scheme for runs of length 𝑘 with 𝑙 < 𝑘, we consider the 

following example. Suppose an experiment is conducted to study the efficiency of a particular drug to control the symptom of 

illness. Here observations are taken every hour for the presence (success) or absence (failure) of a particular symptom, say, fever 

exceeding a specific temperature. If we observe the presence of the symptom for 𝑘 successive hours, a drug has to be 

administered; however, as is the case with most drugs, once the drug is administered, we have to wait for 𝑙 hours for the next 

administration of the drug with 𝑙 < 𝑘. But the process of the observation for the presence or absence of the symptom is continued 

as ever. In this experiment, the number of administrations of the drug until the time point 𝑛, is the number of 𝑙-look-back runs of 

length 𝑘 up to time 𝑛. 
Aki and Hirano [1994] [1] studied the marginal distributions of failures, successes and success-runs of length less than 𝑘 until the 
first occurrence of consecutive 𝑘 successes where the underlying random variables are either i.i.d. or homogeneous Markov chain 
or binary sequence of order . Aki and Hirano [1995] [5] derived the joint distributions of failures, successes and success-runs for 
the same set-up. Hirano et al. [1997] [10] obtained the distributions of number of success-runs of length 𝑙 for various counting 
schemes like runs of length 𝑘1, overlapping runs of length 𝑘1, non-overlapping of length 𝑘1 etc. until the first occurrence of the 
success-run of length 𝑘 for a 𝑚-th order homogeneous Markov chain where 𝑚 ≤ 𝑙 < 𝑘. Uchida [1998] [11] studied the joint 
distributions of the waiting time and the number of outcomes such as failures, successes and success-runs of length less than 𝑘 for 
various counting schemes of runs for an 𝑚-th order homogeneous Markov chain. Chadjiconstantindis and Koutras [2001] [6] also 
obtained the distribution of failures and successes in a waiting time problem. In this paper, we obtain the distribution of 𝑙1-look-
back runs of length 𝑘1, until a specified stopping time, namely the 𝑟-th occurrence of the 𝑙-look-back run of length 𝑘 where 𝑘1 ≤
𝑘. The study of distributions of runs until a stopping time brings out many salient features of runs statistics and establishes new 
connection between various discrete distributions.  
 Next section outlines the definitions and the main result. Section 3 formalizes the underlying set up for deriving the results. 
Section 4 is devoted to establishing the main theorem. The main tool that we use is the method of p.g.f.s, where we translate the 
problem in terms of a first order homogeneous Markov chain taking values in a finite set and use the strong Markov property for 
deriving the basic recurrence relation involving the probabilities of the number of 𝑙1-look-back runs of length 𝑘1. 
 
2. Definitions and Statement of Results 
Let 𝑋−𝑚+1, 𝑋−𝑚+2, … , 𝑋0, 𝑋1, … be a sequence of stationary 𝑚-order {0,1} valued Markov chain. It is assumed that the states of 
𝑋−𝑚+1, 𝑋−𝑚+2, … , 𝑋0 are known, i.e., we are given the initial condition {𝑋0 = 𝑥0, 𝑋−1 = 𝑥1, … , 𝑋−𝑚+1 = 𝑥𝑚−1}. 

To make things formal, for any 𝑖 ≥ 0, define 𝑁𝑖 = {0,1, … , 2𝑖 − 1}. It is clear that 𝑁𝑖 and {0,1}𝑖 can be identified easily by the 

mapping 𝑥 = (𝑥0, 𝑥1, … , 𝑥𝑖−1) ⟶ ∑𝑗=0
𝑖−1  2𝑗𝑥𝑗. Since, {𝑋𝑛: 𝑛 ≥ −𝑚 + 1} is 𝑚th  order Markov chain, we have, for any 𝑛 ≥ 0, 

 
𝑝𝑥 = ℙ(𝑋𝑛+1 = 1 ∣ 𝑋𝑛 = 𝑥0, 𝑋𝑛−1 = 𝑥1, … , 𝑋𝑛−𝑚+1 = 𝑥𝑚−1) 
 

where 𝑥 = ∑𝑗=0
𝑚−1  2𝑗𝑥𝑗 ∈ 𝑁𝑚. Consequently, we have 𝑞𝑥 = ℙ(𝑋𝑛+1 = 0 ∣ 𝑋𝑛 = 𝑥0, 𝑋𝑛−1 = 𝑥1, … , 𝑋𝑛−𝑚+1 = 𝑥𝑚−1) = 1 − 𝑝𝑥. We 

assume that 0 < 𝑝𝑥 < 1 for all 𝑥 ∈ 𝑁𝑚. 
Fix two integers 𝑘 ≥ 1 and 𝑙 ≤ 𝑘 − 1. We set 𝑅𝑖(𝑘, 𝑙) = 0 for 𝑖 = 0, −1, … , −𝑙 + 1 and for any 𝑖 ≥ 1, define inductively, 
 

𝑅𝑖(𝑘, 𝑙) = ∏  

𝑖−𝑙

𝑗=𝑖−1

(1 − 𝑅𝑗(𝑘, 𝑙)) ∏  

𝑖+𝑘−1

𝑗=𝑖

𝑋𝑗 . 

 
If 𝑅𝑖(𝑘, 𝑙) = 1, we say that a l-look-back run of length 𝑘 has been recorded which started at time 𝑖. Define a sequence of stopping 
times {𝜏𝑟(𝑘, 𝑙): 𝑟 ≥ 1} as follows 
 

𝜏𝑟(𝑘, 𝑙) = 𝑖𝑛𝑓 {𝑛: ∑  

𝑛

𝑖=1

 𝑅𝑖(𝑘, 𝑙) = 𝑟} + 𝑘 − 1. 

 
It should be noted that this is indeed the stopping time for the completion of 𝑡ℎ𝑒 r-th l-look-back run of length 𝑘. 
Fix any constant 𝑘1 ≤ 𝑘. The counting of the runs of length 𝑘1 can also be performed using the look-back counting scheme. For 
𝑙1 < 𝑘1, we define 𝑁𝑟(𝑘1, 𝑙1) as the number of 𝑙1-look-back runs of length 𝑘1 up to the stopping time 𝜏𝑟(𝑘, 𝑙). In other words, 
 

𝑁𝑟(𝑘1, 𝑙1) = 𝑁𝑟 = ∑  

𝜏𝑟(𝑘,𝑙)−𝑘1+1

𝑖=1

𝑅𝑖(𝑘1, 𝑙1). 

 
For some special cases, we will obtain the exact distribution of 𝑁𝑟(𝑘1, 𝑙1). We denote the probability generating function of 
𝑁𝑟(𝑘1, 𝑙1) by 𝜁𝑟(𝑠; 𝑘1, 𝑙1). Before we proceed, we present an example to facilitate understanding. Consider the following sequence 
of 's and 1 's of length 20 
 
11010111011111011101. 
 
For 𝑘 = 4 and 𝑙 = 2, it should be noted that stopping times will be given by 𝜏1(4,2) = 9, 𝜏2(4,2) = 15, 𝜏3(4,2) = 18, 𝜏4(4,2) =
24, 𝜏5(4,2) = 27 and 𝜏6(4,2) = 33. Now let us  
consider 𝑘1 = 2 and 𝑙1 = 1, then the number of 𝑙1-look-back runs of length 𝑘1 till the stopping times are given by 𝑁1(2,1) = 3, 
𝑁2(2,1) = 5, 𝑁3(2,1) = 6, 𝑁4(2,1) = 9, 𝑁5(2,1) = 10 and 𝑁6(2,1) = 12. 

https://www.mathsjournal.com/
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Now we introduce two discrete distributions which will be useful for identifying the results. Anuradha [2022c] introduced the 
generalized Binomial type distribution. The probability generating function 𝜒(𝑝,𝑛,𝑡) of the generalized Binomial type distribution is 

given by 
 
𝜒(𝑝,𝑛,𝑡)(𝑠) = (𝑞 + 𝑞𝑝𝑠 + ⋯ + 𝑞𝑝𝑡−1𝑠𝑡−1 + 𝑝𝑡𝑠𝑡)𝑛. 
 
When we take 𝑛 = 1, the random variable is called the generalized Bernoulli type and is denoted by 𝐺Ber (𝑝, 𝑡). Thus, the pgf of 
𝐺Ber (𝑝, 𝑡) is given by 
 
𝜒(𝑝,𝑡)(𝑠) = (𝑞 + 𝑞𝑝𝑠 + ⋯ + 𝑞𝑝𝑡−1𝑠𝑡−1 + 𝑝𝑡𝑠𝑡). 
 
Another discrete distribution will be important for our results. Aki (1985) had defined an extended negative binomial distribution 
of order 𝑡 with parameters 𝑛 and (𝑝1, 𝑝2, … , 𝑝𝑡) and gave the probability generating function as 
 

𝜑(𝑠; 𝑛, (𝑝1, 𝑝2, … , 𝑝𝑡)) = [
𝑝1𝑝2 … 𝑝𝑡𝑠𝑡

1 − ∑  𝑡
𝑗=1  𝑝1𝑝2 ⋯ 𝑝𝑗−1𝑞𝑗𝑠𝑗

]

𝑛

. 

 
We will consider the case when 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑡 = 𝑝. Indeed, when 𝑡 = 1, this is the usual negative binomial distribution with 
parameters 0 < 𝑝 < 1 and 𝑛 ≥ 1. When 𝑛 = 1 and 𝑝1 = 𝑝2 = ⋯ = 𝑝𝑡 = 𝑝, we will call this distribution as extended geometric 
distribution of order 𝑡 with parameter 𝑝. 
Now we state our main results which we have proved in the subsequent sections. We consider the 𝑙1-look-back runs of length 𝑘1. 
 
Theorem 1 For any initial condition 𝑥 ∈ 𝑁𝑚, if both 𝑘2 and (𝑙 + 1) are multiples of (𝑙1 + 1), the probability generating function 
of 𝑁𝑟(𝑘1, 𝑙1) is given by, 
 

𝜁𝑟(𝑠; 𝑘1, 𝑙1) =
𝑠(𝑝2𝑚−1

′ 𝑠)𝑘3

1 − ∑  
𝑘3−1
𝑗=0  𝑞2𝑚−1

′ (𝑝2𝑚−1
′ )

𝑗
𝑠𝑗+1

[(𝑝2𝑚−1
′ 𝑠)𝑙2

+
𝑠(𝑝2𝑚−1

′ 𝑠)𝑘3

1 − ∑  
𝑘3−1
𝑗=0  𝑞2𝑚−1

′ (𝑝2𝑚−1
′ )

𝑗
𝑠𝑗+1

∑  

𝑙2−1

𝑗=0

 𝑞2𝑚−1
′ (𝑝2𝑚−1

′ 𝑠)𝑗]

𝑟−1 

 

where 𝑝2𝑚−1
′ = (𝑝2𝑚−1)𝑙1+1, 𝑞2𝑚−1

′ = 1 − 𝑝2𝑚−1
′ , 𝑘3 = 𝑘2/(𝑙1 + 1) and 𝑙2 = (𝑙 + 1)/(𝑙1 + 1). The result of Theorem 1 provides 

a powerful representation of 𝑁𝑟(𝑘1, 𝑙1) through the extended geometric random variables and generalized Bernoulli type 
distribution. Let us define the indicator function as follows: 
 

𝕀{𝑢}(𝑣) = {
1  if 𝑢 = 𝑣

0  otherwise 
 

 

Corollary 1 Suppose that {𝐺𝑖
(𝐸)

: 𝑖 = 1, … , 𝑟} and {𝐵𝑖
(𝐺)

: 𝑖 = 1, … , 𝑟} are independent families of i.i.d. random variables where 

each 𝐺𝑖
(𝐸)

 is having an extended geometric distribution of order 𝑘3 with parameter 𝑝2𝑚−1
′  and each 𝐵𝑖

(𝐺)
 is a generalized Bernoulli 

type random variable GBer (𝑝2𝑚−1
′ , 𝑙2). Then, under the conditions of Theorem 1, we have 

 

𝑁𝑟 =
𝑑

(1 + 𝐺1
(𝐸)

) + ∑  

𝑟

𝑖=2

[𝐵𝑖
(𝐺)

+ (1 + 𝐺𝑖
(𝐸)

) (1 − 𝕀{𝑙2}(𝐵𝑖
(𝐺)

))]. 

 

Indeed, we have that the generating function of any 𝐺𝑖
(𝐸)

 given above. Also, the generating function of 𝐵𝑖
(𝐺)

+ (1 + 𝐺𝑖
(𝐸)

) (1 −

𝕀{𝑙2}(𝐵𝑖
(𝐺)

)) is given by 

 

 ∑  

∞

𝑖=0

 ∑  

𝑙2

𝑗=0

  𝑠𝑗+(1+𝑖)(1−𝕀{𝑙2}(𝑗))ℙ(𝐺𝑖
(𝐸)

= 𝑖)ℙ(𝐵𝑖
(𝐺)

= 𝑗)

 = ∑  

∞

𝑖=0

  ∑  

𝑙2−1

𝑗=0

  𝑠𝑗+(1+𝑖)ℙ(𝐺𝑖
(𝐸)

= 𝑖)ℙ(𝐵𝑖
(𝐺)

= 𝑗) + ∑  

∞

𝑖=0

  𝑠𝑙2ℙ(𝐺𝑖
(𝐸)

= 𝑖)ℙ(𝐵𝑖
(𝐺)

= 𝑙2)

 = 𝑠 ∑  

∞

𝑖=0

  𝑠𝑖ℙ(𝐺𝑖
(𝐸)

= 𝑖) ∑  

𝑙2−1

𝑗=0

  𝑠𝑗ℙ(𝐵𝑖
(𝐺)

= 𝑗) + 𝑠𝑙2(𝑝2𝑚−1
′ )𝑙2 ∑  

∞

𝑖=0

 ℙ(𝐺𝑖
(𝐸)

= 𝑖)

 =
𝑠(𝑝2𝑚−1

′ 𝑠)𝑘3

1 − ∑  
𝑘3−1
𝑗=0  𝑞2𝑚−1

′ (𝑝2𝑚−1
′ )

𝑗
𝑠𝑗+1

∑  

𝑙2−1

𝑗=0

 𝑞2𝑚−1
′ (𝑝2𝑚−1

′ 𝑠)𝑗 + (𝑝2𝑚−1
′ 𝑠)𝑙2 .
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Thus, using the independence of the random variables, we now conclude that the generating functions of the random variables of 

both sides of the Corollary 1 are same. This proves the corollary. 

Unfortunately, when the above conditions do not hold, the distributions become more complicated and hence difficult to identify. 

However, we will show, through an example, how we may proceed and obtain the generating functions in this case. We discuss 

these results in the section 4. 

 

3. Set-up 

Now we outline the underlying set up which will be used in the subsequent section to establish the results. Let us define two 

functions 𝑓0, 𝑓1: 𝑆𝑘1
→ 𝑆𝑘1

 by 

 

𝑓1(𝑥) = 2𝑥 + 1 (mod2𝑘1) and 𝑓0(𝑥) = 2𝑥 (mod2𝑘1). 
 

Further define a projection 𝜃𝑚: 𝑆𝑘1
→ 𝑆𝑚 by 𝜃𝑚(𝑥) = 𝑥(mod2𝑚). Now, set 𝑋−𝑚 = 𝑋−𝑚−1 = ⋯ = 𝑋−𝑘1+1 = 0. Define a 

sequence of random variables {𝑌𝑛: 𝑛 ≥ 0} as follows: 

 

𝑌𝑛 = ∑  

𝑘1−1

𝑗=0

2𝑗𝑋𝑛−𝑗 . 

 

Since 𝑋𝑖 ∈ {𝟎, 𝟏} for all 𝑖, 𝑌𝑛 assumes values in the set 𝑆𝑘1
. The random variables 𝑋𝑛 's are stationary and forms an 𝑚th  order 

Markov chain, hence we have that {𝑌𝑛: 𝑛 ≥ 0} is a homogeneous Markov chain with transition matrix given by 

 

ℙ(𝑌𝑛+1 = 𝑦 ∣ 𝑌𝑛 = 𝑥) = {

𝑝𝜃𝑚(𝑥)  if 𝑦 = 𝑓1(𝑥)

1 − 𝑝𝜃𝑚(𝑥)  if 𝑦 = 𝑓0(𝑥)

0  otherwise. 

 

 

Note that 𝑌𝑛 is even if and only if 𝑋𝑛 = 0. This motivates us to define the function 𝜅: 𝑆𝑘1
→ {0,1} by 

 

𝜅(𝑥) = {
1  if 𝑥 is odd 

0  if 𝑥 is even 
 

 

Therefore, 𝜅(𝑌𝑛) = 1 if and only if 𝑋𝑛 = 1. Hence, the definition of 𝑙-look-back run can be described in terms of 𝑌𝑛 's as 

 

𝑅𝑖(𝑘, 𝑙) = ∏  

𝑖−1

𝑗=𝑖−𝑙

(1 − 𝑅𝑗(𝑘, 𝑙)) ∏  

𝑖+𝑘−1

𝑗=𝑖

𝜅(𝑌𝑗) 

 

Let us fix any initial condition 𝑥 ∈ 𝑆𝑚. We denote the probability measure governing the distribution of {𝑌𝑛: 𝑛 ≥ 1} with 𝑌0 =
𝑥 ∈ 𝑆𝑘 by ℙ𝑥. Since we have set 𝑋−𝑚 = 𝑋−𝑚−1 = ⋯ = 𝑋−𝑘+1 = 0, we have 𝑌0 = 𝑥. 

In order to obtain the recurrence relation for the probabilities, we will condition the process after the first occurrence of the run of 

length 𝑘1. Therefore, we consider the stopping time 𝑇 when the first occurrence of a run of length 𝑘1 ends, i.e., when we observe 

𝑘1 successes consecutively for the first time. More precisely, define 

 

𝑇: = 𝑖𝑛𝑓 {𝑖 ≥ 𝑘1: ∏  

𝑖

𝑗=𝑖−𝑘1+1

 𝑋𝑗 = 1} 

 

We would like to translate the above definition to 𝑌𝑖 's. It must be the case that when 𝑇 occurs, last 𝑘1 trials have resulted in 

success, which may be described by 𝜅(𝑌𝑗) = 1 for 𝑗 = 𝑖 − 𝑘1 + 1 to 𝑖. Therefore, 𝑌𝑇 must equal 2𝑘1 − 1. Since this is the first 

occurrence, this has not happened earlier. So, 𝑇 can be better described as 

𝑇 = inf{𝑖 ≥ 𝑘1: 𝑌𝑖 = 2𝑘1 − 1}, 
 

i.e., the first visit of the chain to the state 2𝑘1 − 1 after time 𝑘1 − 1. Now, we note that {𝑌𝑛: 𝑛 ≥ 0} is a Markov chain with finite 

state space. Further, since 0 < 𝑝𝑢 < 1 for 𝑢 ∈ 𝑆𝑚, this is an irreducible chain; hence, it is positive recurrent. So we must have 

ℙ𝑥(𝑇 < ∞) = 1. We observe that when the first occurrence of 𝑘 consecutive successes happen, we must have the occurrence of 

𝑘1 successes previously since 𝑘1 ≤ 𝑘. Therefore, we have ℙ𝑥(𝑇 ≤ 𝜏1(𝑘, 𝑙)) = 1. 

 

4. Look-back runs of length 𝒌𝟏 

In this section, we study the distribution of the number of 𝑙1-look-back runs of length 𝑘1 up to stopping time 𝜏𝑟(𝑘, 𝑙). We will 

employ the method of generating functions to derive these results. We obtain a recurrence relation between the probabilities in 

order to derive the generating functions. 
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~8~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

Let us define the probability, for 𝑥 ∈ 𝑆𝑚, 𝑛 ∈ ℤ, 

𝑔𝑟
(𝑥)(𝑛; 𝑘1, 𝑙1) = ℙ𝑥(𝑁𝑟(𝑘1, 𝑙1) = 𝑛). 

 

Also, let us define 𝜁𝑟(𝑠; 𝑘1, 𝑙1) as the probability generating function of 𝑁𝑟(𝑘1, 𝑙1), i.e., 

 

𝜁𝑟(𝑠; 𝑘1, 𝑙1) = ∑  

∞

𝑛=0

𝑔𝑟
(𝑥)(𝑛; 𝑘1, 𝑙1)𝑠𝑛. 

 

4.1 When (𝒍 + 𝟏) and 𝒌𝟐 are both multiples of (𝒍𝟏 + 𝟏) 

We will show that these probabilities 𝑔𝑟
(𝑥)(𝑛; 𝑘1, 𝑙1) is actually independent of the initial condition 𝑥. First we consider the case 

when 𝑟 = 1 and obtain the basic recurrence relation. If 𝑟 = 1 and 𝑘2 = 𝑘 − 𝑘1 = 0, i.e, 𝑘 = 𝑘1, we have that 𝑁1 = 1 and hence 

 

𝑔1
(𝑥)(𝑛; 𝑘1, 𝑙1) = 𝕀{1}(𝑛) 

 

where 𝕀{𝑢}(𝑣) is the indicator function defined above. Clearly, we have 𝑔1
(𝑥)(𝑛; 𝑘1, 𝑙1) is independent of 𝑥. 

Now, we concentrate on the case when 𝑘2 = 𝑘 − 𝑘1 > 0 with 𝑘2 = 𝑘3(𝑙1 + 1). We note that 𝑁1 ≥ (𝑘3 + 1) and hence ℙ𝑥(𝑁1 =

𝑛) = 𝑔1
(𝑥)(𝑛; 𝑘1, 𝑙1) = 0 for 𝑛 ≤ 𝑘3. 

 

Theorem 2 For any initial condition 𝑥 ∈ 𝑁𝑚, if both 𝑘2 and (𝑙 + 1) are multiples of (𝑙1 + 1), we have 

 

𝑔1
(𝑥)(𝑛; 𝑘1, 𝑙1) = ∑  

𝑘2−1

𝑡=0

𝑞2𝑚−1(𝑝2𝑚−1)𝑡𝑔1
(2𝑚−2)(𝑛 − 1 − ⌊𝑡/(𝑙1 + 1)⌋; 𝑘1, 𝑙1) 

 

+(𝑝2𝑚−1)𝑘2𝕀{𝑛}(1 + ⌊𝑘2/(𝑙1 + 1)⌋), 

 

where ⌊𝑢⌋ is the largest integer smaller than or equal to 𝑢 ∈ ℝ. 

 

Proof: When 𝑘2 = 𝑘 − 𝑘1 > 0 and 𝑟 = 1, using the fact that 𝑌𝑇 = 2𝑘1 − 1 with probability 1, we have 

 

𝑔1
(𝑥)(𝑛; 𝑘1, 𝑙1) = ℙ𝑥(𝑁1 = 𝑛) = ℙ𝑥(𝑁1 = 𝑛, 𝑌𝑇 = 2𝑘1 − 1)

 = ∑  

𝑘2−1

𝑡=0

 ℙ𝑥(𝑁1 = 𝑛, 𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑡 = 2𝑘1 − 1, 𝑌𝑇+𝑡+1 = 2𝑘1 − 2)

 +ℙ𝑥(𝑁1 = 𝑛, 𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑘2−1 = 2𝑘1 − 1, 𝑌𝑇+𝑘2
= 2𝑘1 − 1).

 

 

We look at the terms in the summation first. For any 0 ≤ 𝑡 ≤ 𝑘2 − 1, we have, 

 

ℙ𝑥(𝑁1 = 𝑛, 𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑡 = 2𝑘1 − 1, 𝑌𝑇+𝑡+1 = 2𝑘1 − 2)

 = ℙ𝑥(𝑁1 = 𝑛 ∣ 𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑡 = 2𝑘1 − 1, 𝑌𝑇+𝑡+1 = 2𝑘1 − 2)

 × ℙ𝑥(𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑡 = 2𝑘1 − 1, 𝑌𝑇+𝑡+1 = 2𝑘1 − 2).

 

 

The second term in the above expression can be written as 

 

ℙ𝑥(𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑡 = 2𝑘1 − 1, 𝑌𝑇+𝑡+1 = 2𝑘1 − 2)

 = ℙ𝑥(𝑌𝑇+𝑡+1 = 2𝑘1 − 2 ∣ 𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑡 = 2𝑘1 − 1)

 × ∏  

𝑡

𝑗=1

 ℙ𝑥(𝑌𝑇+𝑗 = 2𝑘1 − 1 ∣ 𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑗−1 = 2𝑘1 − 1).

 

 

Now, 𝑇 + 𝑗 − 1 is also a stopping time for any 1 ≤ 𝑗 ≤ 𝑡. Using strong Markov property, we can write 

 

ℙ𝑥(𝑌𝑇+𝑗 = 2𝑘1 − 1 ∣ 𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑗−1 = 2𝑘1 − 1)

 = ℙ𝑌𝑇+𝑗−1
(𝑌𝑇+𝑗 = 2𝑘1 − 1) = ℙ2𝑘1−1(𝑌1 = 2𝑘1 − 1) = 𝑝2𝑚−1.

 

 

A similar argument shows that 

 

ℙ𝑥(𝑌𝑇+𝑡+1 = 2𝑘1 − 2 ∣ 𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑡 = 2𝑘1 − 1) = 𝑞2𝑚−1. 
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For the first term, we note that 𝑌𝑇 = 𝑌𝑇+1 = ⋯ = 𝑌𝑇+𝑡 = 2𝑘1 − 1 and 𝑌𝑇+𝑡+1 = 2𝑘1 − 2. This implies that 𝑋𝑇−𝑘1
= 0 and 

𝑋𝑇−𝑘1+𝑗 = 1 for 𝑗 = 0,1, … , 𝑘1 + 𝑡 − 1. Therefore, we have a sequence of 𝟏′ s of length 𝑘1 + 𝑡 with 𝑡 ≥ 0 which contributes to 

1 + ⌊𝑡/(𝑙1 + 1)⌋ many 𝑙1-look-back runs of length 𝑘1. Since there are no runs of length 𝑘1 before 𝑇, by the very definition of 𝑇, 

we have that the number of 𝑙1-look-back runs of length 𝑘1 up to time 𝑇 + 𝑡 + 1 is 1 + ⌊𝑡/(𝑙1 + 1)⌋. Thus, the process after time 

𝑇 + 𝑡 + 1 will have to contribute rest 𝑛 − 1 − ⌊𝑡/(𝑙1 + 1)⌋ many 𝑙1-look-back runs of length 𝑘1. Using the strong Markov 

property, the process after 𝑇 + 𝑡 + 1, is a homogeneous Markov chain with same transition matrix with initial condition 2𝑘1 − 2. 

Thus, we have 

 

ℙ𝑥(𝑁1 = 𝑛 ∣ 𝑌𝑇 = 2𝑘1 − 1, 𝑌𝑇+1 = 2𝑘1 − 1, … , 𝑌𝑇+𝑡 = 2𝑘1 − 1, 𝑌𝑇+𝑡+1 = 2𝑘1 − 2)

 = ℙ(2𝑚−2)(𝑁1 = 𝑛 − 𝑡 − 1) = 𝑔1
(2𝑚−2)(𝑛 − 1 − ⌊𝑡/(𝑙1 + 1)⌋; 𝑘1, 𝑙1).

. 

 

Combining the terms, we now get the required result. Hence the Theorem is proved. 

Further note that the right-hand side of the expression in the theorem does not involve the initial condition 𝑥 ∈ 𝑆𝑚. Therefore 

𝑔1
(𝑥)(𝑛; 𝑘1, 𝑙1) must be independent of 𝑥. So, we will drop 𝑥 and denote the above probability by 𝑔1(𝑛; 𝑘1, 𝑙1). Thus, on 

simplifying the right hand side of this equation, we have the following corollary from Theorem 2 

 

Corollary 2 For 𝑛 ≥ 𝑘3 + 1 and 𝑘2 > 0, we have 

 

𝑔1(𝑛; 𝑘1, 𝑙1) = ∑  

𝑘3−1

𝑗=0

𝑞2𝑚−1
′ (𝑝2𝑚−1

′ )𝑗𝑔1(𝑛 − 1 − 𝑗; 𝑘1, 𝑙1) + (𝑝2𝑚−1
′ )𝑘3𝕀{𝑛}(1 + 𝑘3) 

 

where 𝑝2𝑚−1
′ = (𝑝2𝑚−1)𝑙1+1, 𝑞2𝑚−1

′ = 1 − 𝑝2𝑚−1
′ , 𝑘3 = 𝑘2/(𝑙1 + 1). 

For the case 𝑟 > 1, we get the similar result by following the similar arguments as of Theorem 2 and Corollary 2. Hence we get 

the following theorem: 

 

Theorem 3 For any initial condition 𝑥 ∈ 𝑁𝑚, if both 𝑘2 and (𝑙 + 1) are multiples of (𝑙1 + 1), we have 

 

𝑔𝑟(𝑛; 𝑘1, 𝑙1) = ∑  

𝑘3−1

𝑗1=0

 𝑞2𝑚−1
′ (𝑝2𝑚−1

′ )𝑗1𝑔𝑟(𝑛 − 1 − 𝑗1; 𝑘1, 𝑙1)

+ ∑  

𝑟−2

𝑗1=0

  ∑  

𝑙2−1

𝑗2=0

 𝑞2𝑚−1
′ (𝑝2𝑚−1

′ )𝑗1𝑙2+𝑗2+𝑘3𝑔𝑟−1−𝑗1
(𝑛 − 1 − (𝑘3 + 𝑗2 + 𝑗1𝑙2)); 𝑘1, 𝑙1)

 +(𝑝2𝑚−1
′ )𝑘3+(𝑟−1)𝑙2𝕀{𝑛}(1 + 𝑘3 + (𝑟 − 1)𝑙2).

 

 

Proof of Theorem 1: We observe that the same set of recurrence relations were obtained in Anuradha [2022b]. Therefore, rest of 

the argument can easily be carried out to yield the following expression for the probability generating function: 

 

𝜁𝑟(𝑠; 𝑘1, 𝑙1) =
𝑠(𝑝2𝑚−1

′ 𝑠)𝑘3

1 − ∑  
𝑘3−1
𝑗=0  𝑞2𝑚−1

′ 𝑠(𝑝2𝑚−1
′ 𝑠)

𝑗
[(𝑝2𝑚−1

′ 𝑠)𝑙2

+
𝑠(𝑝2𝑚−1

′ 𝑠)𝑘3

1 − ∑  
𝑘3−1
𝑗=0  𝑞2𝑚−1

′ 𝑠(𝑝2𝑚−1
′ 𝑠)

𝑗
∑  

𝑙2−1

𝑗=0

 𝑞2𝑚−1
′ (𝑝2𝑚−1

′ 𝑠)𝑗]

𝑟−1

.

 

 

This proves the result. 

 

𝟒. 𝟐 (𝒌𝟐 = 𝟎 ) and (l + 1) is not a multiple of (𝒍𝟏 + 𝟏) 

 

In this subsection, we briefly describe how our method can be modified to handle the cases when (𝑙 + 1 )is not a multiple of (𝑙1 +
1). Although, we concentrate only on the case 𝑙1 = 1 and 𝑙 = 2, the method for treating the general case is similar but 

complicated. We define the generating functions Ξodd (𝑧; 𝑘, 1) = ∑𝑟=0
∞  𝜁2𝑟+1(𝑠; 𝑘1, 𝑙1)𝑧2𝑟+1 and Ξeven (𝑧; 𝑘, 1) =

∑𝑟=1
∞  𝜁2𝑟(𝑠; 𝑘1, 𝑙1)𝑧2𝑟. We derive two linear equations involving Ξodd (𝑧; 𝑘, 1) and Ξeven (𝑧; 𝑘, 1) which can be solved to yield the 

formula for Ξodd (𝑧; 𝑘, 1) and Ξeven (𝑧; 𝑘, 1). 

For odd values of 𝑟, the recurrence relation can be written as 

 

𝑔2𝑟+1(𝑛; 𝑘, 1)  = ∑  

𝑟−1

𝑗1=0

  ∑  

5

𝑗2=0

 𝑞2𝑚−1(𝑝2𝑚−1)6𝑗1+𝑗2𝑔(2𝑟−2𝑗1−[𝑗2/3])((𝑛 − 𝑗1 + [𝑗2/3] − [𝑗2/2]); 𝑘, 1)

 +(𝑝2𝑚−1)6𝑟𝕀{𝑟}(𝑛).
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Hence, the generating function 𝜁2𝑟+1(𝑠; 𝑘, 1) of the sequence {𝑔2𝑟+1(𝑛; 𝑘, 1): 𝑛 ≥ 0} is given by 

 

𝜁2𝑟+1(𝑠; 𝑘, 1) = ∑  

𝑟−1

𝑗=0

 𝑞2𝑚−1(𝑝2𝑚−1)6𝑗𝑠𝑗[(1 + 𝑝2𝑚−1 + (𝑝2𝑚−1)2𝑠)𝜁2𝑟−2𝑗(𝑠; 𝑘, 1)

+(𝑝2𝑚−1)3(1 + 𝑝2𝑚−1𝑠 + (𝑝2𝑚−1)2𝑠)𝜁2𝑟−2𝑗−1(𝑠; 𝑘, 1)] + (𝑝2𝑚−1)6𝑟𝑠𝑟 .

 

 

Thus, we have 

 

Ξodd (𝑧; 𝑘, 1) = 𝑧 + ∑  

∞

𝑟=1

 ∑  

𝑟−1

𝑗=0

 𝑞2𝑚−1(𝑝2𝑚−1)6𝑗𝑠𝑗[(1 + 𝑝2𝑚−1 + (𝑝2𝑚−1)2𝑠)𝜁2𝑟−2𝑗(𝑠; 𝑘, 1)

+(𝑝2𝑚−1)3(1 + 𝑝2𝑚−1𝑠 + (𝑝2𝑚−1)2𝑠)𝜁2𝑟−2𝑗−1(𝑠; 𝑘, 1)]𝑧2𝑟+1

 + ∑  

∞

𝑟=1

  (𝑝2𝑚−1)6𝑟𝑠𝑟𝑧2𝑟+1

=
𝑧

1 − (𝑝2𝑚−1)6𝑠𝑧2
+

𝑞2𝑚−1(1 + 𝑝2𝑚−1 + (𝑝2𝑚−1)2𝑠)𝑧Ξeven (𝑧; 𝑘, 1)

1 − (𝑝2𝑚−1)6𝑠𝑧2

 +
𝑞2𝑚−1(𝑝2𝑚−1)3(1 + 𝑝2𝑚−1𝑠 + (𝑝2𝑚−1)2𝑠)Ξodd(𝑧; 𝑘, 1)

1 − (𝑝2𝑚−1)6𝑠𝑧2
.

 

 

The above equation can be simplified to yield 

 

(1 − 𝑧2(𝑝2𝑚−1)3(𝑞2𝑚−1 + 𝑝2𝑚−1𝑠))Ξodd (𝑧; 𝑘, 1)

 = 𝑧 + 𝑞2𝑚−1(1 + 𝑝2𝑚−1 + (𝑝2𝑚−1)2𝑠)𝑧Ξeven (𝑧; 𝑘, 1).
 

 

Similar calculations may be carried out to obtain the other equation as 

 

(1 − 𝑧2(𝑝2𝑚−1)3(𝑞2𝑚−1 + 𝑝2𝑚−1𝑠))Ξeven (𝑧; 𝑘, 1)

 = (𝑝2𝑚−1)3𝑧2 + 𝑞2𝑚−1(1 + 𝑝2𝑚−1 + (𝑝2𝑚−1)2𝑠)𝑧Ξodd (𝑧; 𝑘, 1).
 

 

On solving the above two linear equations we get the following expressions of Ξodd (𝑧; 𝑘, 1) and Ξeven (𝑧; 𝑘, 1). 

 

Ξodd (𝑧; 𝑘, 1) = [ 𝑧−𝑧3(𝑝2𝑚 − 1)4(𝑝2𝑚−1 − 𝑠(1 − 𝑝2𝑚−1𝑞2𝑚−1))][[1 − 𝑧2(𝑞2𝑚−1(𝑝2𝑚−1)3

+(𝑝2𝑚−1)4𝑠)]2 − 𝑧2(𝑞2𝑚−1 + 𝑞2𝑚−1𝑝2𝑚−1 + 𝑞2𝑚−1(𝑝2𝑚−1)2𝑠)2]−1.
 

 

And 

 

Ξeven (𝑧; 𝑘, 1)  = [𝑧2(𝑞2𝑚−1 + 𝑞2𝑚−1𝑝2𝑚−1 + 𝑞2𝑚−1(𝑝2𝑚−1)2𝑠 + (𝑝2𝑚−1)3)

−𝑧4(𝑝2𝑚−1)6(𝑞2𝑚−1 + 𝑝2𝑚−1𝑠)][[1 − 𝑧2(𝑞2𝑚−1(𝑝2𝑚−1)3 + (𝑝2𝑚−1)4𝑠)]2

−𝑧2(𝑞2𝑚−1 + 𝑞2𝑚−1𝑝2𝑚−1 + 𝑞2𝑚−1(𝑝2𝑚−1)2𝑠)2]−1.

 

 

The expressions for 𝜁𝑟(𝑠; 𝑘, 1) can be obtained from the above expressions. But their form becomes complicated and the 

underlying distributions are difficult to identify. Finally, this method can be employed for the general case, where we can obtain a 

system of linear equations which can be solved to obtain the expressions for 𝜁𝑟(𝑠; 𝑘, 1). 
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