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Abstract 
This study compares ways for improving regression calibration. This is a method for combining two 
samples in order to reduce measurement error and improve the relative efficiency of linear regression 
models. Since two or more samples are more likely than a single sample to accurately represent the 
population under study, two samples are used in regression calibration to produce a realistic picture of 
the actual population. In this investigation, we compared independent estimates derived from two 
samples using a weight equal to the reciprocal of the estimated sampling probability. The study also 
examined the estimations produced after combining the two datasets into one, and modified the weight of 
each sample unit accordingly. The most typical application of regression calibration methods is to 
account for bias in projected responses induced by measurement inaccuracies in variables. Because of its 
simplicity, this method is commonly utilized. The conditional expectation of the genuine response is 
estimated using regression calibration, given that the predictor variables are measured with error and the 
other covariates are assessed without error. Instead of the unknown genuine response, predictors are 
estimated and used to examine the link between response and result. Regression calibration programs 
necessitate extensive knowledge of unobservable true predictors. This information is frequently collected 
from validation studies that employ unbiased measurements of true predictors. The results of two sample 
strategies were employed and compared in this study. Device fault, laboratory mistake, human error, 
difficulty documenting or completing measurements, self-reported errors, and intrinsic vibrations of the 
underlying instrument can all cause measurement inaccuracies. Covariate measurement error has three 
consequences: In addition to obscuring data features and making graphical model analysis more difficult, 
estimates of statistical model parameters might be skewed, and effectiveness in detecting correlations 
between variables can be severely impaired. This study's two sampling procedures produced satisfactory 
results. 
 
Keywords: Two samples, regression calibration, population, error free, inclusion probabilities 
 
1. Introduction 
The enhanced relative efficacy of statistical analyses obtained by modeling and resolving 
measurement error using regression calibration by merging estimates from two samples is 
examined in this work. All statistical errors can be traced back to imperfections in 
measurement. This is referred to as "measurement error," and it occurs when one or more 
variables in an interest model cannot be measured consistently. Such errors can occur for a 
variety of reasons, the most common of which are sample and instrument faults. 
 
1.1 Exposure variable measurement error 
In a variety of study disciplines, measurement inaccuracy in exposure factors has been 
frequently shown. Measurement error is defined as the difference between a variable's true and 
measured values [8]. Memory bias can occur while doing historical studies that necessitate the 
researcher recalling and documenting earlier experiences. Biological variations and laboratory 
equipment faults can also create measurement errors in a study. Assessing exposure accuracy 
has long been an issue in research on exposures and health effects [7]. 
This study investigates the bias in exposure-outcome correlations that occurs when exposure 
variables are recorded incorrectly. Due to the various exposures and accompanying  
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inaccuracies, the exposure-outcome connection may be skewed in any way [5]. The presence of measurement error in the exposure 
problem has sparked a wave of technique research, with the initial focus on understanding the effects of measurement error on the 
relationship between exposure and outcome and, more recently, on developing statistical approaches to correct for exposure 
measurement error [1, [3, 8, 4]. 
 
1.2 The two sample approach for improving the efficiency of measurement error correction  
In this study, two-sample approaches for enhancing measurement error regression and calibration accuracy were examined. 
Assume two distinct samples and gather pertinent information about the population as a whole. The study offered four approaches 
for integrating data from the two samples in order to provide a single set of more accurate estimates of a population number or 
population characteristic.  
In general, this issue has been solved by combining independent estimates from the two samples and weighting them by the 
reciprocal of their calculated variances [6]. The two data sets might alternatively be combined and the weights on each sampled 
unit adjusted proportionately [5]. 
The study also generated a variation of the Horvitz-Thompson estimate by taking the square root of the conditional expectation of 
the product of the estimates from the two samples based on the predictor variables of a regression function. 
 
2. Objectives 
2.1 General Objective 
A comparison of two sample approaches to regression calibration for measurement error correction. 
 
2.2 Specific Objective 
Comparison of four approaches using coefficients of determination, small sample bias and standard error. 
 
3. Design-based approaches  
3.1 Blended Methodology I 
The blended model for the study is a weighted regression of the conditional expectations of predictor variables, where the weights 
are the expected values of the outcomes from the two samples [9]: 
 

( )
( )
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( ) ( )mix
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3.1.1 Blended Methodology II 
The blended model, which is the regression of the conditional expectancies of the predictor variables, was developed from the 
study, where the weights are the variance values of the outcomes from the two samples, and greater weight is given to the result 
with the lowest variance, as shown below [9]: 
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3.2 Model-assisted Semi-parametric regression 
In this study, model-assisted semi-parametric regression was used to estimate non-parametric regression, which was adapted from 
[2]. [2] defines a model-assisted estimator as a design-unbiased estimator, as seen below [9]: 
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                    (3.3) 
 
While (3.4) is another type of equation (3.3), 
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Also, equation (3.5) is a variant, as is (3.3). 
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3.3 The Horvitz-Estimator 
In our investigation, the Horvitz-Thompson estimator was used as a baseline to examine the performance of the novel models in 
terms of coefficient of determination, confidence intervals, sample bias, and standard error [9]. 
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3.4 Model-assisted Semi-parametric Conditional regression  
In the study, the Horvitz-Thompson model was tweaked in the same way to develop models that outperformed it. It is the 
regression of the conditional expectation of the square root of the product of two weighted Horvitz-Thompson estimators [9]: 
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4. Strategies for combining the two samples 
The table 1 below gives strategies used to combined estimates from the two, [9] 
 

[1.] Combining estimates from two samples by blended methodology using expected values of the outcomes 

Blended 
Methodology I, 

BMI 
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[2.] Combining estimates from two samples by blended methodology using variance values of the outcomes 

Blended 
Methodology 

II, BMII 
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v̂l= Larger variance, 
v̂s= Smaller variance 

[3.] Combining estimates from two samples by using residuals 
Semi-

parametric 
regression I, 

SPRI 
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[4.] Combining estimates from two samples by using weighted residuals 
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[5.] Combining estimates from two samples by using conditional expectation of the weighted outcomes 
Semi-

parametric 
Conditional 
Regression, 

SPCR 
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[6.] Combining estimates from two samples by using the Weighted Horvitz-Thompson estimates 
Weighted 
Horvitz-

Thompson, 
WHT 
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4.1 Strategies used for combining the two samples 
Table 2 shows the techniques employed to compare the models. 
 

Strategies used for matching the Models 
s/n Model Type of Model Equation of Model Comments 

1. BMI Blended Methodology I 
BMI = ,m̂ix IT

 
Refer to table 1, [1.] 

2. BMII Blended Methodology II 
BMII = ,m̂ix IIT

 
Refer to table 1, [2.] 

3. SPRI Semi-Parametric I 
SPRI = ŜPRIT

 
Refer to table 1, [3.] 

4.* SPRIIπ* Semi-Parametric II,π* 
SPRII,π* = 

*,ŜPRII
T

π  
Refer to table 1, [4.] 

5.* SPCRπ* Semi-Parametric Conditional Regression,π* 
SPCR,π*= 

*,ŜPCR
T

π  
Refer to table 1, [5.] 

6.* WHTπ* Weighted Horvitz-Thompson 
WHT,π* = 

*,ŴHT
T

π  
Refer to table 1, [6.] 

 
5. Finite small sample properties of estimators  
The first attribute is concerned with the mean position of the estimator's distribution. 
 
Biasedness - An estimator's bias is defined as 
 

( ) ( )ˆ ˆBias Eθ θ θ= −
                       (5.1) 

 

where θ̂  is an estimator of θ , an unknown population parameter. If E (θ̂ ) = θ  then the estimator is unbiased. If E(θ̂ ) ≠ θ  then 
the estimator has either a positive or negative bias. That is, the estimator tends to overestimate (or underestimate) the population 
parameter on average. 
 
A second attribute addresses the variance of the estimator's distribution. Efficiency is a characteristic that is often reserved for 
unbiased estimators. 
 

Efficiency - Let 1̂θ  and 2̂θ  be unbiased estimators of θ  with equal sample sizes. Then, 1̂θ  is a more efficient estimator than 2̂θ  
if 
 

( ) ( )1 2
ˆ ˆvar varθ θ<

                        (5.2) 
 
6. Results 
For each model plan, we ran the simulation 10,000 times. We used software programs built for statistical analysis in R. 
 

Table 3: Summaries of Comparison of Performance for n = 12 
 

s/n Models Coeff. Det. Sample 
Bias 

Standard 
error AIC BIC Mean Variance 

One Sample 
1. RCOne 0.99686728617276577 0.00089062 0.0020194 42.17611 43.35945 113.7289 697.7151 

Two Sample Blending 
2. BMI 0.99999999999997935 1.8874e-15 3.0170e-14 -198.6773 -197.4939 113.1562 224.0303 
3. BMII 0.99999999999998446 6.1062e-15 6.9533e-15 -211.3863 -210.203 112.3345 297.6319 

Two samples by using residuals 
4. SPRI 0.99999999999999600 1.1102e-15 2.9054e-15 -211.7374 -210.554 119.4911 637.9479 

Two samples by using weighted residuals 
5. SPRIIπ* 0.99999999999999756 1.1102e-15 1.2338e-15 -209.9142 -208.7308 117.7882 663.9409 

Two samples by using conditional expectation of the weighted outcomes 
6. SPCRπ* 0.99999999999999456 2.3315e-15 2.1163e-15 -211.0884 -209.9051 55.72434 236.6314 

Two samples by using the Weighted Horvitz-Thompson estimates 
7. WHTπ* 0.73081861025125028 0.08816741 0.14013330 78.00064 79.18399 55.72434 323.7895 

 
Table 3 shows that the Models have greater coefficients of determination, sample bias and sample standard error than the WHTπ*, 
and so are more efficient for real Data for n = 12. Where WHTπ* is our reference estimator, the Weighted Horvitz-Thompson 
Estimator. RCone is the regression calibration done using only one sample and it is evident from the coefficient of determination 
that ii falls short when compared to the other estimators while it out-performs WHTπ*. 
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Table 4: Summary of the Performance of Coefficients of Weighted Estimators based on Bias and Standard Error for n = 12 
 

s/n Estimators 0β̂  1̂β  2β̂  3β̂  4β̂  
Bias Error Bias Error Bias Error Bias Error Bias Error 

1 RCOne -98.7971100 -0.0385395 -0.0033699 0.2209781 0.0966125 
1.87879 57.8639 0.02534 0.51551 0.00067 0.01479 -0.0034 0.09661 -0.0043 0.02808 

2 BMI -22.771935 0.745697 -0.029919 -0.055867 0.167310 
3.3e-07 9.8e-05 1.9e-07 7.3e-06 -4.1e-09 1.7e-07 -4.8e-08 2.2e-06 2.0e-08 9.3e-07 

3 BMII 190.297040 -1.400425 0.026908 -0.182007 0.171984 
1.4e-06 7.4e-05 -2.3e-08 7.2e-07 -5.0e-10 1.7e-08 -3.3e-09 6.4e-08 4.6e-09 3.2e-08 

4 SPRI 10.556382 -1.068235 0.019519 0.152907 0.110634 
1.4e-06 4.5e-05 -5.4e-08 3.7e-07 3.7e-10 1.4e-08 3.9e-09 5.6e-08 1.5e-09 3.3e-08 

5 SPRIIπ* 
-180.532386 0.751331 -0.038316 0.263383 0.058071 

2.3e-06 3.5e-05 -5.4e-09 3.3e-07 1.0e-09 8.7e-09 2.3e-09 3.4e-08 -6.1e-09 1.9e-08 

6 WHTπ* -180.532363 0.751331 -0.038316 0.263383 0.058071 
7.16062 225.862 0.29692 2.32003 0.00316 0.05329 -0.0281 0.23865 -0.0295 0.12627 

 
The results in Table 4 show a summary of the performance of Coefficients of the two sample estimates based on Bias and 
Standard Error for n = 12, and the summary shows that the coefficients of the two sample estimates appear to have smaller bias 
and standard errors than the Horvitz-Thompson Estimator for n = 12. 
 
7. Conclusion 
Using two sample procedures and regression equations to 
estimate the coefficients of weighted likelihood regression, 
this study suggested four approaches for enhancing the 
efficiency of Regression Calibration. All the five estimators 
out-performed WHTπ* which was the reference estimator of 
our study. 
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