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Abstract 

Certain observations are assumed to be missed while studying finite continual extended Fourier 

transformations of time series with precisely stable (i+j) vector values. This is assumed to be the case. 

This is because the procedure requires studying extended finite Fourier transforms in a standardized 

manner. The goal is to get as close to an exact interpretation of the results as possible with the data at 

hand. The results will be put to use in decision-making, which is why this is being done. As a result of 

this new data, the continuously Fourier transformation will take a starring role in the findings. 

Asymptotic moments are currently receiving a lot of consideration from researchers all over the world. 

Case studies on the topic of electrical energy will be used to test our theoretical concepts. 

 

Keywords: Autocovariance, continuously fixed time process, power spectrum, spectrum density, tapered 

data 

 

1. Introduction 

We examine the statistical properties of the linearity relationship between X(t) and Y(t) as 

represented by the extended finite Fourier transformation, following proposals by D.R. 

Brillinger (1967) [3], M. Rosenblatt, (1967) [3]; D.R. Brillinger (2001) [4], Ghazal and Farag 

(2005) [8], Teamah (2004) [1] and Elhassain (2014) [2] and Ghazal, et al. (2005) [8]; For a brief 

overview, of the format of the article, consider the following: (Part1) is an introductory 

section., Part (2) explored the Approximate Attributes of process as observed, investigated the 

Approximating aspects of the process as unobserved in Part (3), and in Part (4) we implement 

our theoretic ideas into practical application, Our method was applied to a study of Average 

monthly energy imports and exports of the General Electric Corporation between January 2011 

and December 2020. 

 

2. The Observed Process's Approximate Attributes 

Presume of a fixed sequence that is a vector of values (𝑖 + 𝑗)   

ℜ(𝑡) = [𝑋(𝑡) 𝑌(𝑡)]𝑇 (2.1) 

 

𝑡 = 0, ±1, ±2, . .., 𝑋(𝑡) i- valued-vector and 𝑌(𝑡) j- valued-vector. In a definition of the mean 

function, we suppose that the process (2.1) is a fixed (𝑖 + 𝑗) valued- vector sequence with 

parameters [𝑋𝑟(𝑡) 𝑌𝑠(𝑡)]𝑇 , 𝑟 = 1,2, . . . , 𝑗, 𝑠 = 1,2, . . , 𝑖 and that its moments is valid, thus we 

may deduce the mean function as follow. 

𝐸𝑋(𝑡) = 0, 𝐸𝑌(𝑡) = 0 (2.2) 

 

With covariance 

𝐸{[𝑋(𝑡 + 𝑔) − 𝜏𝑥][𝑋(𝑡) − 𝜏𝑥]𝑇} = 𝜏𝑥𝑥(𝑔)  

𝐸{[𝑋(𝑡 + 𝑔) − 𝜏𝑥][𝑌(𝑡) − 𝜏𝑦]𝑇} = 𝜏𝑥𝑦(𝑔) (2.3) 

𝐸{[𝑌(𝑡 + 𝑔) − 𝜏𝑦][𝑌(𝑡) − 𝜏𝑦]𝑇} = 𝜏𝑦𝑦(𝑔)  
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With density spectrums 

𝑓𝑥𝑥(ℎ) = ∫ 1
(2𝜋)⁄ ∑ 𝜏𝑥𝑥(𝑔)𝐸𝑥𝑝(−𝑖ℎ𝑔)∞

𝑔=−∞
∞

−∞
  

𝑓𝑥𝑦(ℎ) = ∫ 1
(2𝜋)⁄ ∑ 𝜏𝑥𝑦(𝑔)𝐸𝑥𝑝(−𝑖ℎ𝑔)∞

𝑔=−∞
∞

−∞
 (2.4) 

𝑓𝑦𝑦(ℎ) = ∫ 1
(2𝜋)⁄ 𝑔 ∑ 𝜏𝑦𝑦(𝑔)𝐸𝑥𝑝(−𝑖ℎ𝑔)∞

𝑢=−∞
∞

−∞
, 𝑓𝑜𝑟 − ∞ < ℎ < ∞ 

 

That 𝛽𝑎(𝑡), 𝑎 = 1,2, . . . , 𝑖, (𝑡 ∈ 𝑅) exists for all t, which is independent on 

ℜ(𝑡)𝑃[𝛽𝑎(𝑡) = 1] = 𝑝𝑎, 𝑃[𝛽𝑎(𝑡) = 0] = 𝑞𝑎, (2.5) 

 

Take note that  

𝐸{𝛽𝑎(𝑡)} = 𝑃, (2.6) 

 

Independent data can be used successfully without caring about the results of another. For the modified series perception, 

considering 

𝛿(𝑡) = 𝛽(𝑡)ℜ(𝑡), (2.7) 

 

Where  

𝛿𝑎(𝑡) = 𝛽𝑎(𝑡)ℜ𝑎(𝑡), (2.8)  

 

and 

𝛽𝑎(𝑡) = {
1,if 𝑋𝑎(𝑡), 𝑌𝑎(𝑡)are recorded

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (2.9) 

 

Assumption 

The time interval (t) is limited in the data window ℓ𝑎
(𝑇)

(𝑡) so that it has a restricted range, a finite variation, and vanishes 

between0 𝑎𝑛𝑑 𝑇 − 1. Let 
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𝛾𝑎1,...,𝑎𝑘

(𝑇)
(ℎ) = ∫ [∏ ℓ𝑎𝑟

(𝑇)
(𝑡)𝑁

𝑟=1 ]
𝑇

0
𝑒𝑥𝑝{−𝑖ℎ𝑡} 𝑑𝑡  

 

3. Approximating Aspects of the Unobserved Procedure 

Theorem 3.1. [7] 

If we assume that the fixed stochastic procedure is represented by𝑋𝑎(𝑡), 𝑌𝑎(𝑡), 𝑎 = 1,2, . . . , 𝑚𝑖𝑛( 𝑖, 𝑗), that missing data points are 

represented by 𝛿𝑎(𝑡) = 𝛽𝑎(𝑡)ℜ𝑎(𝑡), 𝑎 = 1,2, . . . . 𝑚𝑖𝑛( 𝑖, 𝑗), We obtain the following if 𝛽𝑎(𝑡) is a Bernoulli sequence of stochastic 

process that satisfies (2.8) and (2.9). 

𝐸{𝛿𝑎(𝑡)} = 0, (3.1) 

𝐶𝑜𝑣{𝛿𝑎1
(𝑡1), 𝛿𝑎2

(𝑡2)} = 𝑃𝑎1𝑎2
[

𝜏𝑥𝑥(𝑔) 𝜏𝑥𝑥(𝑔)𝐾(ℎ)𝑇

𝐾(ℎ)𝜏𝑥𝑥(𝑔) 𝐾(ℎ)𝜏𝑥𝑥(𝑔)𝐾(ℎ)𝑇], (3.2)  

 

Lemma 3.1. 

Specifically, if we set 𝜔𝑎
(𝑇)

(ℎ), 𝑎 = 1, . . . . , 𝑚𝑖𝑛( 𝑗, 𝑖) similar to 

𝜔𝑎
(𝑇)

(ℎ) = [2𝜋 ∫ (ℓ𝑎
(𝑇)

(𝑡))
2𝑇

0
]

−1
2⁄

∫ ℓ𝑎
(𝑇)

(𝑡)𝛿𝑎(𝑡) 𝑒𝑥𝑝{−𝑖ℎ𝑡} 𝑑𝑡, 𝑓𝑜𝑟ℎ ∈ 𝑅
∞

−∞
 (3.3) 

 

Then the dispersion of 𝜔𝑎
(𝑇)

(ℎ) is thus determined to be as follows: 

 (3.4) 

 

Where 
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Proof. 

Using equation (3.3) we have  

  
 

When 𝑎1 = 𝑎2 = 𝑎, 𝑎 = 1,2, . . . , 𝑚𝑖𝑛( 𝑖, 𝑗), and ℎ1 = ℎ2 = ℎ, ℎ ∈ 𝑅, via Substitution 

 ℎ − 𝑢 = 𝜓, Hence, we get equation (3.4). 

 

Theorem 3.2. If  𝜁𝑎𝑎
(𝑇)(𝑥), 𝑎 = 1, … , 𝑚𝑖𝑛( 𝑖, 𝑗), 𝑥 ∈ 𝑅 is limited and continually function at the point𝑥 = ℎ, ℎ ∈ 𝑅, then the 

spectral density function𝑓𝑎𝑎(𝑥), 𝑎 = 1, . . . , 𝑚𝑖𝑛( 𝑖, 𝑗), 𝑥 ∈ 𝑅 is also limited and continuously at this point then. 

𝐿𝑖𝑚
𝑇→∞

𝐷𝜔𝑎
(𝑇)(ℎ) = [

𝑓𝑎𝑎(ℎ) )  𝑓𝑎𝑎(ℎ)𝐾(𝜐)𝑇

𝐾(𝜐)𝑓𝑎𝑎(ℎ) ) 𝐾(𝜐)𝑓𝑎𝑎(ℎ)𝐾(𝜐)𝑇] , 𝑎 = 1, . . . , 𝑚𝑖𝑛( 𝑖, 𝑗) (3.5) 

 

Proof 

To prove formula (3.5), we have to establish that 

𝐿𝑖𝑚
𝑇→∞

|𝐷𝜔𝑎
(𝑇)(ℎ) − 𝑝𝑎𝑎 [

𝑓𝑎𝑎(ℎ) )  𝑓𝑎𝑎(ℎ)𝐾(𝜐)𝑇

𝐾(𝜐)𝑓𝑎𝑎(ℎ) ) 𝐾(𝜐)𝑓𝑎𝑎(ℎ)𝐾(𝜐)𝑇]| = 0, (3.6)  

 

Lemma (3.1) provides the following. 
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𝐵1 + 𝐵2 + 𝐵3  

We'll clarify each one. In particular, we obtain since 𝑓𝑎𝑏(𝜓)is continuoue at Ψ = h , 𝑎, 𝑏 = 1, . . , 𝑚𝑖𝑛(𝑖, 𝑗), then we have 

 
 

𝐵2 ≤ ∫ 𝜂𝑎𝑎
(𝑇)(𝜓)𝑑𝜓

𝜓

−𝜓
≤ 𝛺 ∫ 𝜂𝑎𝑎(𝜓)𝑑𝜓

∞

−∞
𝜂𝑎𝑎

(𝑇)(𝜓)𝑑𝜓 

 

Assuming that 𝑓𝑎𝑏(𝜓) is continuing at 𝜓 = ℎ, 𝑎, 𝑏 = 1, . . , 𝑚𝑖𝑛(𝑖, 𝑗), we've got 

𝐵2 ≤ 𝛺. Now, 𝐵2 is very small, so any 𝛺 very small, so  𝐵2 = 0. With a constant G that limits the value of 𝑓𝑎𝑎(ℎ), 𝑎 =
1, . . . , 𝑚𝑖𝑛( 𝑖, 𝑗), ℎ ∈ 𝑅 to be limited, we have 

𝐵1 ≤ 2𝐺 ∫ 𝜂𝑎𝑎
(𝑇)(𝜓)𝑑𝜓 →

𝑇→∞
0

−𝜓

−∞
, 

 

In a similar manner, 𝐵3 →
𝑇→∞

0. Therefore 

|𝐷𝜔𝑎
(𝑇)(ℎ) − 𝑝𝑎𝑎 [

𝑓𝑎𝑎(ℎ) )  𝑓𝑎𝑎(ℎ)𝐾(𝜐)𝑇

𝐾(𝜐)𝑓𝑎𝑎(ℎ) ) 𝐾(𝜐)𝑓𝑎𝑎(ℎ)𝐾(𝜐)𝑇]| →
𝑇→∞

0  

 

The theorem has been proved, then. 
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4. Practical Study 

4.1 Energy Import/Export Investigation 

From January 2011 to December 2020, this analysis gives a monthly average of the Energy exported by General Electric 

Company and the Energy imported by the company. 

 

4.1.1 Energy Import Analytics 

We will compare the results we get using our model of time process with missed values to the results from the standard procedure, 

when all values are recorded. 

Assuming the data𝑋𝑎(𝑡), (𝑡 = (1,2, . . . , 𝑇], which is the average monthly Energy that is imported, where all data of the series are 

recorded, and recorded with some missed, we can write the findings as𝜁𝑎(𝑡) = 𝛽𝑎(𝑡)𝑋𝑎(𝑡), 𝑎 = 1,2, . . . , 𝑖, such that 𝑋𝑎(𝑡), (𝑡 =
0, ±1, . . . . . ) is a fixed i-valued-vector process. Table (1) compares Findings for the normal Scenario 𝛽 = 1, 𝜁𝑎(𝑡) = 𝑋𝑎(𝑡) and 

that results when some values are missed at random (𝛽 = 0.) 

 
Table 1: Investigation of Imported Energy Findings both with and without missed data 
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4.1.2 Analytical Exported of Energy 

In this study, we will compare the results produced using the standard methods, in which all data is observed, with those obtained 

using a fixed-time process model with partial missed of data. 

With a fixed j- valued-vector time process,𝑌𝑎(𝑡), (𝑡 = (1,2, . . . , 𝑇] and a stochastically independent Bernoulli sequence, 𝛽𝑎(𝑡), the 

results can be written as 𝜛𝑎(𝑡) = 𝛽𝑎(𝑡)𝑌𝑎(𝑡), 𝑎 = 1,2, . . . , 𝑗, an average monthly energy exports with complete records is denoted 

by 𝑌𝑎(𝑡), where 𝑎 = 1,2, . . . , 𝑗. Table 2 compares the results for the two scenarios where some data are missing at random (𝛽 = 0) 

and results for the standard case(𝛽 = 0). 

 
Table 2: Analyzing the Differences between Outcomes for Exported Energy with and Without Missed Data 
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4.1.3 Regression Model Analysis of Energy Imports and Exports 

In this analysis, we will evaluate the two scenarios listed in the table below using our outcomes from monthly averages of energy 

imports and exports are analyzed using a regression model where the outcomes from model with some missed of observations and 

the classical results from the same model when all observations are available is shown through table (3). 

 
Table 3: Missing Data in Regression Analysis: A Comparison to Complete Data 

 

 
 

4.1.4 Conclusion 

1. The findings of missing data time process analysis were 

identical to those obtained from regular time series 

analysis. 

2. As with missed data, the results of the investigated for 

both the X(t) and Y(t) regression models are equivalent 

since they met the analytical, numerical, and least squares 

constraints for a regression model between standard time 

series. 
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