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Abstract

Certain observations are assumed to be missed while studying finite continual extended Fourier
transformations of time series with precisely stable (i+j) vector values. This is assumed to be the case.
This is because the procedure requires studying extended finite Fourier transforms in a standardized
manner. The goal is to get as close to an exact interpretation of the results as possible with the data at
hand. The results will be put to use in decision-making, which is why this is being done. As a result of
this new data, the continuously Fourier transformation will take a starring role in the findings.
Asymptotic moments are currently receiving a lot of consideration from researchers all over the world.
Case studies on the topic of electrical energy will be used to test our theoretical concepts.

Keywords: Autocovariance, continuously fixed time process, power spectrum, spectrum density, tapered
data

1. Introduction

We examine the statistical properties of the linearity relationship between X(t) and Y(t) as
represented by the extended finite Fourier transformation, following proposals by D.R.
Brillinger (1967) B, M. Rosenblatt, (1967) BI; D.R. Brillinger (2001) ™, Ghazal and Farag
(2005) B, Teamah (2004) ™M and Elhassain (2014) 2 and Ghazal, et al. (2005) 1, For a brief
overview, of the format of the article, consider the following: (Partl) is an introductory
section., Part (2) explored the Approximate Attributes of process as observed, investigated the
Approximating aspects of the process as unobserved in Part (3), and in Part (4) we implement
our theoretic ideas into practical application, Our method was applied to a study of Average
monthly energy imports and exports of the General Electric Corporation between January 2011
and December 2020.

2. The Observed Process’'s Approximate Attributes
Presume of a fixed sequence that is a vector of values (i + j)
R = [X(©) YOI (2.2)

t=0,%1,+%2,.., X(t) i- valued-vector and Y (t) j- valued-vector. In a definition of the mean
function, we suppose that the process (2.1) is a fixed (i + j) valued- vector sequence with
parameters [X,.(t) Ys(®)],r =1,2,...,j,s = 1,2,..,i and that its moments is valid, thus we
may deduce the mean function as follow.

EX(t) =0,EY(t) =0 (2.2)

With covariance

E{[X(t + g) - Tx] [X(t) - Tx]T} = Txx(g)

E{X(t+9) —T][Y(®) = 1y]"} = Ty (9) (2.3)
E{[Y(t + 9) = 5, ][Y(©) = 51"} = 7,,(9)
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With density spectrums

fex () = 0, Y o) B=-0 Tax (@) Exp(~ihg)

fir M) = 12, Y (o) -0 Ty (@) Exp (= ihg) (24)
fiv M = 17 (o) 9 Ziemea Tyy (9 Exp(=ihg), for =0 < h <

That 8,(t),a = 1,2,...,i, (t € R) exists for all t, which is independent on

ROP[Ba(t) = 1] = pg, P[Ba(t) = 0] = qq, (2.9)
Take note that
E{p.()} =P, (2.6)

Independent data can be used successfully without caring about the results of another. For the modified series perception,
considering

5(t) = B(ORQ), 2.7)
Where

8a(t) = Ba(t)Ra (1), (2.8)
and .

Bu(t) = {é:lg t); Z gta;i};,;(t)are recorded’ 2.9)

Assumption

The time interval (t) is limited in the data window {’ff)(t) so that it has a restricted range, a finite variation, and vanishes
between0 and T — 1. Let

T W[ (@)dy, a=Li

T—ow

.....

VD au () = [ [T €5 (0] exp{—iht} dt

3. Approximating Aspects of the Unobserved Procedure

Theorem 3.1. [7]

If we assume that the fixed stochastic procedure is represented by X, (t), Y, (t), a = 1,2,...,min(i,j), that missing data points are
represented by 8, (t) = B, ()R, (t),a = 1,2,....min(i,j), We obtain the following if 8,(t) is a Bernoulli sequence of stochastic
process that satisfies (2.8) and (2.9).

E{6.(1)} =0, (1)

) (@) Te(@)K)T
Covl3u, 80, E} = Puve [ 510 ementaythy ) (3.2)

Lemma 3.1.

Specifically, if we set wflT)(h), a=1,....,min(j,i) similar to

_1
0P (h) = [Zn fOT(fg”(t))z] /2 2 60 (£)8,(t) exp{—iht} dt, forh € R (3.3)

Then the dispersion of wff) (h) is thus determined to be as follows:
Dw, T (h) =
[ faaCh = ) X g (Y)dyp Vo faa(h = YIK(R)T X Saa (W)
oo KR faa(h — ) X Caa @)y [ K () faa(h — P)K(R)T X {ou()dip (3.4)

aa X

Where . -
@) = [ @em " ®at] 0.0 .

2.7 (x) = [ £a™(t) exp(— ixt)dt,x € R
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Proof.
Using equation (3.3) we have

Dw, " (h) =
[ fa,a, () X {a,a,(hy —u, hy — u)du f : faluz(u)K(h)T X Caya, (hy = u, h, — u)du

= Paya, | e >
f KR o0y () X a0 (hy — . hy — ) f KR o, 0, WK (R)T X G (hy — 4, by — )

Whena; =a, =a,a=12,..., min(i,j),and h; = h, = h,h € R, via Substitution
h —u =1, Hence, we get equation (3.4).

Theorem 3.2. If ¢, P (x), a=1,...,min(i,j),x € R is limited and continually function at the pointx = h, h € R, then the
spectral density functionf,,(x),a = 1,..., min(i,j), x € R is also limited and continuously at this point then.

(T)(h) — faa(h)) faa(h)K(U)T

a0 = [ K faatory] ¢ = 1) e
Proof
To prove formula (3.5), we have to establish that
. faa(M) faa(MK@)" _
Lim |Pou ) = paa [y 5% keaticor) = (30
Lemma (3.1) provides the following.
h)) faa(WK@)"
Dw () h) — }211( aa <
@ " Pee [k ) (1) KoMK )T

T foa (=) T fn (h-v’)K(U)‘T’|
=% 1 -

- -
-

I K@) f,, (h—w) ]'| K@), (h -{//)K(v)‘”'

-

Jlf;!a (h)l I Fa (h)K(u)‘-”|
Tz - Mo @)Y <
“K(U)fm ()| HK(Z))_)‘:M (h-l//)K(z))”"|
[ £ =) (1. =)k
SPul, - ~
“K(U)faa (h=w) HK(U)fmz (1;_.;/,)]{(0)(‘1")'

T o () Tlﬁ,a (K )"
i - ()

“Bas 1o w Maw W)Y+
[IK@)f,, (1) [|K@)f0 G-p)K ()|

fIth) f| £ h-wk)' |
Pl o s .
,“ k() f,, (h=y) | ”k(u)fw (h=y)k(v)' |
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[ W w
g P2 (h)| i |1, ke "
-V, _v,
~Paq v -
| |""“’faa (h)l | K@)f,, (h—y/)K(u)(T)|
il 1
(1 =) [| £ =)k () |
[ W
= Padl ,

[ k@), (h=w) |

[

x x

[| fra ) [|fue K@)

v W

[IK@)1,, (h)

- pau

We'll clarify each one. In particular, we obtain since f,;, (y)is continuoue at ¥ = h ,a,b

T fuuh=y)| TI s (h=9)k(v)'|

Blzprm

]’ fow (W) T[ (WK ()"
=P | t
[IK@)f,, ()] [| k@)1, (h=w)K@)" |

]

—

=puu

W

[| k@) f.., (h=y)~ .. (k)|

Soa (h=9) = £, (B)|

= 4

By <2 [ 0aa ) < 0 [ Naa(@)dtp Nag® W)y

]I k() £, (h=y)k (V)|

f|K@)f -p)k@) |

jl kW) f,, (h=y) | Iv|k(z))fw (h-y)k)" |

(T)
M ga Wy +

(r)

N Wdy

1,

0. w)dy +

Assuming that f,, (1) is continuing at = h,a,b = 1,..,min(i, j), we've got
B, < 0. Now, B, is very small, so any 2 very small, so B, = 0. With a constant G that limits the value of f,,(h),a =

min(i,j),h € R to be limited, we have
By <26 [ naa @)y = 0,

In a similar manner, B 2 0. Therefore
(oo}

fra) faa(WK@)T ]
KW faa(h)  KW)faa(WK@)T

The theorem has been proved, then.

Dwa ™ (h) — Paa

- 0
T—coo

~g7~
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4. Practical Study

4.1 Energy Import/Export Investigation

From January 2011 to December 2020, this analysis gives a monthly average of the Energy exported by General Electric
Company and the Energy imported by the company.

4.1.1 Energy Import Analytics

We will compare the results we get using our model of time process with missed values to the results from the standard procedure,
when all values are recorded.

Assuming the dataX, (t), (t = (1,2,...,T], which is the average monthly Energy that is imported, where all data of the series are
recorded, and recorded with some missed, we can write the findings as{,(t) = B,(t)X,(t),a = 1,2,...,i, such that X,(¢t), (t =
0,%1,..... ) is a fixed i-valued-vector process. Table (1) compares Findings for the normal Scenario 8 = 1,{,(t) = X,(t) and
that results when some values are missed at random (8 = 0.)

Table 1: Investigation of Imported Energy Findings both with and without missed data

without missing data with missing data
Towe Sevies ol fnperind Laergy Time Series Plot of Imporied Energy
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ARIMA Model: imported Energy without missing data ARIMA Model: imported Energy with missing data
ARIMA(LLY) ARIMA(1,1,1)
Final Estimates of Parameters Final Estimates of Parameters
Type Co-cl SECoel T P Type Cocl SE Co-ef T P
AR 1 0.6234 0.0821 819 0,000 AR 1 (0.5486 0.0798 780 0.000
MA 1 (.8981 0.0100 4794 (.000 MA 1 09014 0.0100 T35 0000
Residuals: S8 =4021137281 , M§ =27791227, DF=116 Residuals: S8 =3901621742 , MS =27576233, DF= 116
Modified Box-Picree (Ljung-Box) Chi-Square statistic Modified Box-Pieree (Ljung-Box) Chi-Square statistic
Lag 22 36 48 Lag 1224 36 48
Chi-Square 875 200 312 4496 Chi-Square 598 185 294 355
DF 9 2 33 45 DF 9 21 33 45
P-Value 0450 0.605 0501 0432 P-Value 0,721  0.803 0.628 0.794
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4.1.2 Analytical Exported of Energy

In this study, we will compare the results produced using the standard methods, in which all data is observed, with those obtained
using a fixed-time process model with partial missed of data.

With a fixed j- valued-vector time process,Y, (t), (t = (1,2,...,T] and a stochastically independent Bernoulli sequence, B, (t), the
results can be written as @, (t) = B, (t)Y,(t),a = 1,2,...,j, an average monthly energy exports with complete records is denoted
by Y, (t), where a = 1,2,...,j. Table 2 compares the results for the two scenarios where some data are missing at random (8 = 0)
and results for the standard case(8 = 0).

Table 2: Analyzing the Differences between Outcomes for Exported Energy with and Without Missed Data

without missing data with missing data
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ARIMA Model: The exported Energy with missing data ARIMA Model: The exported Energy without missing
ARIMA(1,11) data
Final Estimates of Parameters ARIMA(1,1.1)
Type Co-cf SE Co=ef T p Final Estimates of Parameters
AR 1 0.7536  0.0615 898  0.000 Type Co-cf SECo-ef T p
AM 2 05014 00151 4747 0.000 AR | 0.7656  0.0589  98.69 0.000
Residuals: S8 = 89431624, MS = 638140, DF =116 AM 1 0.8902 00093 6798 0.000
Modified Box-Pierce (Ljung-Box) Chi-Square statistic Residuals: SS= 90135160, MS = 682338, DF=116
Lag 12 24 36 48 Modified Box-Picree (Ljung-Box} Chi-Squarc statistic
Chi-Square 8.1 1995 2589 4.8 Lag 12 24 36 48
DF 9 21 33 45 Chi-Square 121 2598 3589 5L
P-Value 0515 0522 0720 0.622 DF 8 21 33 45
P-Value 0.202 0205 0317 0258
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4.1.3 Regression Model Analysis of Energy Imports and Exports

https://www.mathsjournal.com

In this analysis, we will evaluate the two scenarios listed in the table below using our outcomes from monthly averages of energy
imports and exports are analyzed using a regression model where the outcomes from model with some missed of observations and
the classical results from the same model when all observations are available is shown through table (3).

Table 3: Missing Data in Regression Analysis: A Comparison to Complete Data

4.1.4 Conclusion

1.

The findings of missing data time process analysis were
identical to those obtained from regular time series
analysis.

As with missed data, the results of the investigated for
both the X(t) and Y(t) regression models are equivalent
since they met the analytical, numerical, and least squares
constraints for a regression model between standard time
series.
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