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Abstract 
Cryptocurrency, also known as crypto is a type of digital currency that operates as an exchange 
mechanism over a computer network and is not supported or maintained by any governing authority. 
Compared to other equities and bonds, the price of crypto-currencies is highly volatile in nature. Its 
fluctuations are highly influenced by supply and demand, sentiments of investors and media hype. This 
paper introduces quantum harmonic oscillator model to measure the value at risk for the fix amount of 
investment to identify the maximum risk behaviour of cryptocurrency. 
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1. Introduction 
It is known that the financial market can be considered risky because it involves the allocation 
of capital to investments with the potential for both profit and loss. There are several sources 
of risk in the financial market, including: 
 Market risk: This refers to the risk of changes in market conditions, such as changes in 

interest rates, currency exchange rates, and equity prices, that can impact the value of 
financial assets. 

 Credit risk: This refers to the risk of default or creditworthiness of a borrower or issuer 
of financial instruments, such as bonds. 

 Liquidity risk: This refers to the risk of an inability to buy or sell a financial asset due to 
a lack of market participants or market depth. 

 Operational risk: This refers to the risk of loss due to operational failures, such as system 
failures or human error. 

 Political risk: This refers to the risk of loss due to changes in government policies or 
regulations that can impact the financial market. 

 
These are just a few examples of the many sources of risk in the financial market. The level of 
risk associated with a particular investment or trade depends on several factors, including the 
type of asset, the investor's goals, and the market conditions. 
In summary, the financial market is inherently risky due to the potential for profit and loss, and 
it is important for investors to understand and manage the risks associated with their 
investments and trading activities.  
To make financial market easily accessible, many different risk management tools are used to 
get sustainable position in financial market. Risk management tools are critical as they help 
market participants to identify, assess, and manage risks associated with their investments and 
trading activities.  
These methods are used to identify, assess, and control potential losses or uncertainties in 
financial or business operations. Some of the common risk management tools include: 
 Value at Risk (VaR): provides an estimate of the potential loss that could occur on an 

investment portfolio over a specified time and with a given level of confidence. 
 Monte Carlo Simulation: uses statistical modelling to simulate various outcomes of a 

financial decision and estimate the potential losses. 
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 Sensitivity Analysis: assesses the impact of changes in 

key variables on the outcome of a financial decision. 

 Stress Testing: simulates extreme market scenarios to 

assess the potential impact on an investment portfolio. 

 Portfolio Diversification: spreading investments across 

multiple assets to reduce the impact of market risks. 

 Hedging: using financial instruments to reduce the impact 

of market risks. 

 Insurance: purchasing insurance policies to mitigate 

potential losses from unforeseen events. 

 

These tools are used by financial institutions, risk managers, 

and regulators to effectively manage risks and make informed 

investment decisions. The choice of a particular tool depends 

on the nature and level of risk involved and the specific needs 

of the organization. 

In this huge range of methods, Value at Risk (VaR) is a 

widely used risk management tool that provides an estimate 

of the potential loss that could occur on an investment 

portfolio over a specified period, with a given level of 

confidence. It is an essential tool for financial institutions, risk 

managers, and regulators to measure and manage market risk. 

VaR helps investors to make informed investment decisions 

by providing an assessment of the level of risk involved in a 

particular investment. 

The value at risk (VaR) concept can be applied to the 

quantum harmonic oscillator, which is a fundamental model 

in quantum mechanics that describes the behaviour of a 

particle confined in a potential well. In this context, the VaR 

can be used to assess the risk associated with the uncertainty 

in the position or momentum of the particle. The calculation 

of VaR involves estimating the probability distribution of the 

position or momentum and determining the threshold loss that 

would not be exceeded with a given level of confidence. 

The use of VaR in the context of the quantum harmonic 

oscillator can provide insights into the underlying quantum 

mechanical principles and help in the development of new 

quantum-based technologies and applications. However, the 

calculation of VaR in a quantum mechanical system is more 

complex than in a classical system, due to the intrinsic 

quantum mechanical uncertainties and the difficulty in 

obtaining exact solutions for quantum mechanical problems. 

Nevertheless, researchers and practitioners are actively 

exploring new approaches to apply VaR in quantum 

mechanics, including the use of quantum algorithms and 

quantum simulation techniques. 

Calculating Value at Risk (VaR) using a quantum harmonic 

oscillator involves accounting for the intrinsic quantum 

mechanical uncertainties. Howev0.er, there are some 

approaches that can be used to estimate the VaR for a 

quantum harmonic oscillator mentioned below: 

 Numerical Methods: Numerical methods such as Monte 

Carlo simulation or finite-difference methods can be used 

to estimate the VaR for a quantum harmonic oscillator by 

simulating the position or momentum distributions and 

calculating the threshold loss that would not be exceeded 

with a given level of confidence. 

 Analytical Methods: Analytical methods such as the 

Wigner function or the Husimi function can be used to 

estimate the position or momentum distribution for the 

quantum harmonic oscillator. The VaR can then be 

calculated by determining the threshold loss that would 

not be exceeded with a given level of confidence. 

 Quantum Algorithms: Quantum algorithms such as 

quantum Monte Carlo or quantum phase estimation can 

be used to estimate the position or momentum 

distributions for the quantum harmonic oscillator. The 

VaR can then be calculated using the same methods as in 

numerical or analytical methods. 

 

The choice of method depends on the complexity of the 

system, the computational resources available, and the level 

of accuracy required. In general, numerical methods are 

widely used due to their simplicity and computational 

efficiency, although they may not always provide an exact 

solution. Analytical methods and quantum algorithms are 

more complex but can provide more accurate results. 

 

1.1 Literature Review 

Goncalves (2013) [4] describes financial volatility risk and its 

relation to a business cycle-related intrinsic time. This relation 

was addressed through a multiple round evolutionary 

quantum game equilibrium which leads to turbulence and 

multifractal signatures in the financial returns and in the risk 

dynamics. The model is simulated, and the results are 

compared with actual financial volatility data. 

Linsmeier (2000) [7] explain the concept of VAR and then 

describe in detail the three methods for computing it-historical 

simulation, the delta-normal method, and Monte Carlo 

simulation. We also discuss the advantages and disadvantages 

of the three methods for computing VAR. Finally, we briefly 

describe stress testing and two alternative measures of market 

risk. 

Ahn et al. (2018) [1] demonstrate that the quantum harmonic 

oscillator model outperforms traditional stochastic process 

models, e.g., geometric Brownian motion and the Heston 

model, with smaller fitting errors and better goodness of fit 

statistics. The solution of the Schrodinger equation for the 

quantum harmonic oscillator shows that stock returns follow a 

mixed distribution, which describes Gaussian and non-

Gaussian features of the stock return distribution. In addition, 

they provide an economic rationale of the physics concepts 

such as the eigenstate, eigenenergy, and angular frequency, 

which sheds light on the relationship between finance and 

Physics literature.  

Jeknić-Dugić (2018) [5] pursued the quantum-mechanical 

challenge to the efficient market hypothesis for the stock 

market by employing the quantum Brownian motion model. 

He also introduced the external harmonic field for the 

Brownian particle and use the quantum Caldeira-Leggett 

master equation as a potential phenomenological model for 

the stock market price fluctuations. 

Lee et al. (2020) [6] examined the weak-form efficient market 

hypothesis of the crude palm oil market by adopting the 

quantum harmonic oscillator. This method permits Lee to 

analyse market efficiency by approximating one constraint: 

the probability of finding the market in a ground state where 

conclusion established that the crude palm oil market is more 

efficient than the West Texas Intermediate crude oil market. 

Orrell (2020) [9] addressed issues regarding intrinsically 

uncertain demand by consuming a quantum context to model 

supply and demand as, not a cross, but a probabilistic wave, 

with an allied entropic force. The approach is used to derive 

from first principles a technique for modelling asset price 

changes using a quantum harmonic oscillator that has been 

previously used and empirically tested in quantum finance. 

The method is established for a simple system and claims in 

other areas of economics are discussed. 

Ryu (2021) [10] looked at the weak-form efficient market 

theory because the log price series for REIT stocks for US 

https://www.mathsjournal.com/


 

~115~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

REIT equities, contradicted the random walk theory as a 

model specification, the variance ratio test revealed that the 

general stock market and REIT markets were not efficient in 

the weak-form. Instead, he used the quantum harmonic 

oscillator to present definite evidence. The ground state 

solution for a random walk included in the quantum harmonic 

oscillator turned out to be a more effective way to test the 

efficient market hypothesis. 

Bhatt and Gor (2022) [2] showcased an interesting structure of 

Risk Neutral system. They also examine single step and 

multistep quantum binomial option pricing model. This 

approach elaborates circuit proposed by A. Meyer.  

Bhatt and Gor (2022) [3] review applications of quantum 

harmonic oscillator model in financial mathematics and 

discussed about different applications of quantum harmonic 

oscillator and its characteristics. 

Zhang (2022) [11] enhances the IOAS algorithm's 

neighbourhood and out-of-bounds movement rules. It then 

suggests the DETS support vector regression algorithm, 

which is based on enhanced tabu search and differential 

evolution and uses error indicators to compare related 

algorithms. The findings demonstrate the algorithm's 

effectiveness and viability in exchange rate prediction. 

Mba, (2022) [8] examined the typical mean-variance (MV) 

optimization model in this work by means of two 

modifications to the MV formulation. Additionally, these 

results demonstrate that equities with lower behavioural 

scores do better than counterpart portfolios with higher 

behavioural scores. 

 

2. Methodology and Data Collection 

In this paper, historical data of Ethereum is collected from 

YAHOO Finance website. Historical data for the Ethereum to 

Indian currency is collected here in the time span of one year 

from 1st January 2021 to 1st January 2022.  

Calculating Value at Risk for a quantum harmonic oscillator 

involves estimating the probability distribution of the position 

or momentum and determining the threshold loss that would 

not be exceeded with a given level of confidence. Here's an 

example of how to calculate Value at Risk for the position of 

a quantum harmonic oscillator using a numerical method. 

Assuming that the position of the particle in the quantum 

harmonic oscillator is described by the Hamiltonian 

operator𝐻 =
𝑝2

2𝑚
 +  𝑚𝜔2 𝑥2

2
, where 𝑝 is the momentum 

operator, 𝑚 is the mass of the particle, and 𝜔 is the frequency 

of the oscillator. Monte Carlo simulation can be used to 

estimate the position distribution and to calculate the Value at 

Risk. Descriptive analysis of the Ethereum is provided in the 

table mentioned below: 
 

Table 1:  Shows Parameters and Ethereum 
 

Parameters Ethereum 

Planck Constant 6.26E-34 

Mean (average return) 0.021812537 

Standard Deviation 0.119814155 

Delta T (Holding Period) 7 

Average Square Value 2.173929057 

Average Value 1.474424992 

Diffusion Coefficient 1.086964528 

mass 1.80E-67 

Elastic Constant (k) 0.0001 

Angular Frequency (w) 2.35531E+31 

mw 4.25E-36 

Gamma 0.00737 

b (Business Evolutionary Pressure) 0.0001 

 

As the Fick's First Law states, flux is proportional to the 

concentration gradient, and the proportionality constant D is 

the diffusion coefficient. Diffusion coefficient is the ratio of 

flux density to the negative of the concentration gradient in 

direction of diffusion. Here different physical entities of the 

Ethereum are mentioned in below table for different states. 

Variance of the quantum harmonic oscillator is given by: 

 

𝜎𝑛
2 = (2𝑛 + 1) (

ℏ

2𝑚𝑤
) 

 

Moreover, the time evolution of the probability density 

function (PDF) refers to how the PDF changes over time for a 

given stochastic system. The PDF represents the distribution 

of a set of random variables and its time evolution can be 

described by mathematical models, such as the Fokker-Planck 

equation or other partial differential equations. Here 

probability distribution function can be calculated by the 

eigenfunction developed by the model. Below table 

showcases different values for respective states of Ethereum: 

 
Table 2:  Shows Quantum Harmonic Oscillator and Ethereum 

 

Quantum Harmonic Oscillator 

Ethereum 

State 0 1 2 3 4 

Energy 0.007372 0.022116 0.036861 0.051605 0.066349 

Hermite Polynomial 1 0.242852 -1.941023 -1.442788 11.295754 

Amplitude 0.215554 0.152420 0.076210 0.031113 0.011000 

Eigen Function 0.213971 0.036744 -0.146839 -0.044559 0.123340 

Eigen Value 0.009942 0.004898 0.001207 0.000198 0.000024 

Probability 0.794995 0.192974 0.011710 0.000316 0.000005 

Variance of QHO 73.72 221.16 368.61 516.05 663.49 

SD of QHO 8.586107942 14.87158 19.199121 22.716706 25.7583238 

 

2.1 Algorithm to find Value at risk with quantum 

harmonic oscillator 

 Step 1: Generate N random samples of the position 𝑥𝑖 by 

sampling from the wavefunction ψ(x). 

 Step 2: Calculate the expected position x̄ and the 

standard deviation σ of the position distribution. 

 Step 3: Determine the threshold loss that would not be 

exceeded with a given level of confidence, for example, 

95%. The threshold loss can be calculated as 𝑥  −  𝑍𝜎, 

where Z is the z-score corresponding to the given level of 

confidence. 

 Step 4: The Value at Risk is the maximum loss that can 

be expected with a given level of confidence, which is 

equal to the threshold loss in this case: 

 

𝑉𝑎𝑅 =  𝑥  −  𝑍𝜎 
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The actual calculation of value at risk depends on the specific 

system, the wave function and the level of confidence 

interval. These steps are used to find VaR of Ethereum for 

fixed investment of rupees 2,00,000/- with 95% level of 

confidence.  

 

3. Results 

Let the investment is fixed for rupees 2,00,000/- in Ethereum 

and as the probability distribution function and probability 

density function for the quantum harmonic oscillator is given 

as: 

 

|ᴪ(𝑥)|2 = (
𝑚𝜔

𝜋ℏ
) exp (−

𝑚𝜔𝑥2

ℏ
) and ᴪ(𝑥) (

2𝜋ℏ

𝑚𝜔
) exp (−

𝑥2

2𝑚ℏ𝜔
)  

 

Respectively. 

 

After computing all the values mentioned in the above table, 

probability distribution function and probability density 

function of Ethereum is 0.2139 and 0.0458. Even the value of 

standard deviation is 8.5861. 

Now z-value for 45% is 1.6 because 100% Accuracy 

interpolation between 0.4505 and 0.4495 can be done. As the 

Monte Carlo method derives 

 

(Value at risk) = (Standard deviation in Value) ∗ (Z
− Score) 

 

Here value at risk is found to be 27475.216.  

Here hypothetical situation of Investing Rs. 2,00,000 for 1 

Week in Ethereum gives expected loss of 27,475.54 with 95% 

Confidence Level.  

 

4. Graphical Representation 

 

 
 

Fig 1: Graphical Representation 
 

 This graph represents standard deviation for different 

quantum states of Ethereum. 

 It can be seen clearly that as quantum states increases, 

Ethereum deviates more from its expected value. 

 

5. Conclusion 

This paper proposes quantum harmonic oscillator to find the 

Value at Risk (VaR) for cryptocurrency. However, calculating 

VaR for a quantum harmonic oscillator is more complex than 

in a classical system due to the intrinsic quantum mechanical 

uncertainties and the difficulty in obtaining exact solutions. 

The approach involves generating random samples of the 

position or momentum, calculating the expected value and 

standard deviation, and determining the threshold loss. The 

Monte Carlo method provides an efficient and flexible way to 

estimate VaR in the context of quantum harmonic oscillators, 

as it can be adapted to different systems, wave functions, and 

levels of confidence. Overall, the application of Monte Carlo 

method to the quantum harmonic oscillator can provide 

valuable insights into the underlying quantum mechanical 

principles and contribute to the development of new quantum-

based technologies and applications.  
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