International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452
Maths 2023; 8(3): 44-47
© 2023 Stats \& Maths https://www.mathsjournal.com
Received: 13-03-2023
Accepted: 21-04-2023
Nada K Abdullah
Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Iraq

Summer W Omar

Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Iraq

Corresponding Author:

Nada K Abdullah
Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Iraq

Several features of a complete graphs and regularity graphs in the rings

Nada K Abdullah and Summer W Omar

DOI: https://doi.org/10.22271/maths.2023.v8.i3a. 977

Abstract

Suppose that $\operatorname{Reg}(\psi(\mathrm{R}))$ and $\Omega(\psi(R))$ have been the sub-graphs of complete graph $\mathrm{C}(\psi(R))$ generated as the sets of all regularity components and nil in R. We find out when every one of the graphs $\mathrm{C}(\psi(R)), \operatorname{Reg}(\psi(\mathrm{R}))$ and $\Omega(\psi(R))$ is linked and homogenous. Whenever $\operatorname{Reg}(\psi(\mathrm{R}))$ and $\Omega(\psi(R))$ are both Eulerian and regularity.

Keywords: Graphs of eulerian, regularity graphs, complete graphs

1. Introduction

The concept of graph theory was introduced via (Harary, F. 1972) ${ }^{[11]}$. Also, in 1981 Vince introduced the concept of locally homogeneous graphs in the groups (Vince, A. 1981). R shall be employed during this whole study to signify ring having unity $1 \neq 0$. Have $\Omega(R)$ denote the sets of all R is nil and R entire graphs are a simple graph having vertices subset R in which two different vertices ζ and η are contiguous if $\zeta+\eta \in \Omega(R)$. Anderson and Badawi presented these graphs, designated as $\mathrm{C}(\psi(R))$ in (Anderson, D. F. and Badawi, A. 2008) ${ }^{[1]}$, where the researchers provided a detailed discussion of the situation whenever $\Omega(R)$ is indeed an ideal. They did, however, calculate several graphic symmetries including the radius and circumference of $C(\psi(R))$. In 2009 (Akbari, S. et al. 2009) ${ }^{[5]}$ demonstrated that only if R is a ring, a connecting complete graph is Hamilton. After that (Maimani, H. R. et al. 2012) ${ }^{[12]}$ explored the species $C(\psi(R))$. Pucanovi and Petrov, (Pucanovi, Z. and Petrovi, Z. 2011; Anderson, D. F., \& Badawi, A. 2012) ${ }^{[15,2]}$ estimated the circumference of $C(\psi(R))$. In 2012 (Shekarriza, M. H. et al. 2012) provides the properties of Eulerian $C(\psi(R))$. The concept of $\mathrm{C}(\psi(R))$ predominance number is calculated separately in (Chelvam, T. T., \& Asir, T. 2013; Chelvam, T. T., \& Selvakumar, K. 2014) ${ }^{[8-9]}$. Ramin discusses the vertices connectivity of $\mathrm{C}(\psi(R))$ wherein R is a ring (Ramin, A. 2013) ${ }^{[16]}$ and (Asir, T., \& Chelvam, T. T. 2013) ${ }^{[8]}$ investigates the complements of $\mathrm{C}(\psi(R))$. for a finite ring R (Sander, T., \& Nazzal, K. 2014) ${ }^{[17]}{ }^{[17]}$ considers minimal nil k-flows for $\mathrm{C}(\psi(R))$. Akbari and Heydari (Akbari, S., \& Heydari, F. 2013) ${ }^{[6]}$ investigates several characteristics of a regular graphs $\operatorname{Reg}(\psi(R))$. Erić and Pucanović (Erić, A. L., \& Pucanović, Z. S. 2013) ${ }^{[10]}$ investigates the graphic of $C(\psi(R))$. Additionally, (Anderson, D. F., \& Badawi, A. 2013) ${ }^{[3]}$ defines R 's generalized complete graphs. The readers can consult (Müller, H. et al. 2014; Nazzal, K. 2016; Singh, P. and Bhat, V. K. 2020; Anderson, D. F. et al. 2012; Tamizh Chelvam, T. 2022) ${ }^{[13,14,19,2,20]}$ for just a review on the complete graphs of a ring.
The result that follows fully describes the graphs $\mathrm{C}(\psi(R))$. whenever $\mathrm{C}(R)$ is an ideal of R .
1.1. Remark (Anderson, D. F., \& Badawi, A. 2008) ${ }^{[1]}$: Assume R is a ring, and $\Omega(R)$ is an ideal of R. Suppose that $|\Omega(R)|=\omega,|R / \Omega(R)|=\varphi$.
a) $\quad \Omega(\psi(R))$ is the complete graph K_{ω}.
b) If $2 \in \Omega(R)$, then $\operatorname{Reg}(\psi(R))$ is indeed the unions of $\varphi-1 \cap K_{\omega} s$.
c) $R / \Omega(R) \cong \mathbb{Z}_{2}$ or $R / \Omega(R) \cong \mathbb{Z}_{3}$ iff $\operatorname{Reg}(\psi(R))$ is linked.
d) If $2 \in \operatorname{Reg}(R)$, then $\operatorname{Reg}(\psi(R))$ is indeed the unions of $(\varphi-1) / 2 \cap K_{\omega^{\prime} \omega} s$.

We discuss whether every of those graphs $\mathrm{C}(\psi(R)), \operatorname{Reg}(\psi(R))$, and $\Omega(\psi(R))$ is locally linked in this work. Likewise, we studied regularity of the graphs $\operatorname{Reg}(\psi(R))$ and $\Omega(\psi(R))$. Finally, the Eulerian graphs $\operatorname{Reg}(\psi(R))$ and $\Omega(\psi(R))$ are investigated.

2. Some Properties of $C(\Psi(R)), \operatorname{Reg}(\Psi(R))$, and $\Omega(\Psi(R))$

First, we will start with the following definition

2.1 Definition

Consider G to be a graph having vertices and edges collections $\mathrm{M}(G)$ and $\mathrm{N}(G)$, correspondingly. Take $m \in$ $\mathrm{M}(G)$ be the open neighbor of m, which is given as $\Lambda(m)=$ $\{s \in \mathrm{M}(G): \varsigma m \in \Lambda(G)\}$.If for all $m \in \mathrm{M}(G) \Lambda(m)$ the graph G is considered to be local linked. Therefore, when G is a union of whole graph, G is local linked; otherwise, if G has such vertices and edges part besides the $K_{1,1} G$ isn't really local linked.

2.2 Proposition

Suppose $\Omega(R)$ be an ideal of R.

1. $\Omega(\psi(R))$ is a locally linked graph.
2. $\quad R$ is an integral domain iff $\operatorname{Reg}(\psi(R))$ and $\mathrm{C}(\psi(R))$ are locally connected graphs.

2.3 Proposition

Suppose R be the sum of two rings R_{1} and R_{2}. If neither R_{1} nor R_{2} is an integral domain, so $\Omega(\psi(R))$ is locally linked. Proof. There is no pathway linking $(1,0)$ and $(0,1)$ in $\Lambda((0,0))$ when R is a combination of two integral domain. As a result, $\Omega(\psi(R))$ is not locally linked. Suppose that neither R_{1} nor R_{2} are integral domains. Because $(0,0)$ in $\Lambda((\varsigma, \sigma))$ is a pathway combining (ζ, η) and (λ, ξ) in $\Lambda((\varsigma, \sigma))$, we have $(\zeta, \eta)-(0,0)-(\lambda, \xi)$. As a result, $\Lambda((\varsigma, \sigma))$ is locally linked for all (ς, σ) in $\Omega(R)-0$. Therefore, the connectedness of a graphs created by $\Lambda((0,0))$ must still be investigated. If (ζ, η) and (λ, ξ) are two non-neighboring vertex in $\Lambda((0,0))$, then $\zeta \in \Omega\left(R_{1}\right) \backslash\{0\}$ means that $(\zeta, \eta)-(-\zeta,-\xi)-$ (λ, ξ) is a pathway in $\Lambda((0,0))$ and η is a pathway in $\Omega(R)$ 0 . Then $\eta \in \Omega\left(R_{1}\right) \backslash\{0\}$ denotes a pathway in $\Lambda((0,0))$ as $(\zeta, \eta)-(-\lambda, \eta)-(\lambda, \xi)$.

Suppose R be a ring product and. If neither R_{1} nor R_{2} is an integral domain. Consequently, $\operatorname{Reg}(\psi(R))$ is locally linked.
Proof. Assuming that $(\varsigma, \sigma) \in \operatorname{Reg}(R)$ and $(\zeta, \eta),(\lambda, \xi)$ are two non-contiguous vertexes in $\Lambda((\varsigma, \sigma))$. Thus, $\zeta \in \Lambda(\varsigma)$ offers the pathway $(\zeta, \eta)-(\varsigma,-\sigma)-(-\varsigma,-\xi)-(\lambda, \xi)$ in $\Lambda((\zeta, \eta))$ and $\eta \in \Lambda(\sigma)$ offers the pathway $(\zeta, \eta)-(-\varsigma, \sigma)-$ $(-\lambda,-\sigma)-(\lambda, \xi)$ in $\Lambda((\zeta, \eta))$.Now, since R be a ring product it becomes obvious that if $\left|\operatorname{Reg}\left(R_{1}\right)\right|=\left|\operatorname{Reg}\left(R_{2}\right)\right|=2$, so neither R_{1} nor R_{2} is an integral domain (According to the Proposition. 2.3) and $\operatorname{Reg}(\psi(R))$ is a full graph. Thus, locally linked.

2.5 Proposition

If $R=\prod_{j=2}^{n+1} R_{i}, n \geq 2$, so $\operatorname{Reg}(\psi(R))$ is locally linked.
Proof. Let $\varsigma=\left(\varsigma_{i}\right) \in \operatorname{Reg}(R)$ and $\varphi=\left(\varphi_{j}\right)$ and $\phi=\left(\phi_{j}\right)$ represent two non-neighboring vertexes in $\Lambda(\varsigma)$. Because $\varphi \in$ $\Lambda(\varsigma), \varsigma_{i}+\varphi_{i} \in \Omega\left(R_{j}\right)$, for some $j=2$. If take $\varrho=\left(\varrho_{j}\right)$ so $\varrho_{1}=\varphi_{1}, \varrho_{2}=-\varphi_{2}, \varrho_{3}=-\phi_{3}, \varrho_{4}=-\phi_{4}$ and $\varrho_{i}=2 \forall j+$ $1 \geq 5$, therefore $\varphi-\varrho-\phi-1$ is a pathway in $\Lambda(\varsigma)$.

2.6 Definition

Consider G to be a graph having vertices and edges collections $\mathrm{M}(G)$ and $\mathrm{N}(G)$, correspondingly. Then

1. $C\left(\Psi\left(\mathbb{Z}_{k}\right)\right)$ is not locally linked iff $k=v^{p+1}$, with v is a prime and $p \geq 3$ or $k=v_{1} v_{2} v_{3}$, and v_{1}, v_{2} and v_{3} are separate primes.
2. $\Omega\left(\psi\left(\mathbb{Z}_{k}\right)\right)$ is not locally linked iff $k=v_{1} v_{2} v_{3}$ where v_{1}, v_{2} and v_{3} are distinct primes.
3. $\operatorname{Reg}\left(\psi\left(\mathbb{Z}_{k}\right)\right)$ is not locally linked iff $k=v^{p+1}$, where v is prime and $p \geq 3$.

2.7 Proposition

Assume R is the product of two rings R_{1} and R_{2} are two rings for which $\left|\operatorname{Reg}\left(R_{1}\right)\right|=k_{1}$ and $\left|\operatorname{Reg}\left(R_{2}\right)\right|=k_{2}$. Set $\left(\varphi_{1}, \varphi_{2}\right) \in \operatorname{Reg}(R)$ and $\operatorname{deg}_{1}\left(\varphi_{1}\right)=\varepsilon_{1}$ and $\operatorname{deg}_{2}\left(\varphi_{2}\right)=\varepsilon_{2}$ with $\operatorname{deg}_{j}\left(\varphi_{j}\right)$ is indeed the grade of φ_{j} in $\operatorname{Reg}\left(\psi\left(R_{j}\right)\right)$.The vertices grade $\left(\varphi_{1}, \varphi_{2}\right)$ in $\operatorname{Reg}\left(\Psi\left(R_{j}\right)\right)$ is therefore provided as,

2.4 Proposition

$$
\operatorname{deg}\left(\left(\varphi_{1}, \varphi_{2}\right)\right)= \begin{cases}k_{2} \varepsilon_{1}+k_{1} \varepsilon_{2}-\varepsilon_{1} \varepsilon_{2}-1, & \text { if } 2 \in \operatorname{Reg}(R) ; \\ k_{1} \varepsilon_{2}+k_{2} \varepsilon_{1}+\left(k_{1}+k_{2}\right)-\left(\varepsilon_{1}+\varepsilon_{2}\right)-\varepsilon_{1} \varepsilon_{2}-3, & \text { if } 2 \in Z\left(R_{1}\right) \text { and } Z\left(R_{2}\right) \\ k_{1} \varepsilon_{2}+k_{2} \varepsilon_{1}-\varepsilon_{2}+k_{2}-\varepsilon_{1} \varepsilon_{2}-2, & \text { if } 2 \in Z\left(R_{1}\right) \text { and } 2 \in \operatorname{Reg}\left(R_{2}\right)\end{cases}
$$

Proof. Suppose that $2 \in \operatorname{Reg}(R)$ so $\Lambda\left(\left(\varphi_{1}, \varphi_{2}\right)\right)=$ $\left\{(\varsigma, \sigma) \in \operatorname{Reg}(R): \varsigma \in \Lambda\left(\varphi_{1}\right) \quad\right.$ or $\left.\in \quad \Lambda\left(\varphi_{2}\right)\right\}$. So, $\left|\Lambda\left(\left(\varphi_{1}, \varphi_{2}\right)\right)\right|=k_{2} \varepsilon_{1}+k_{1} \varepsilon_{2}-\varepsilon_{1} \varepsilon_{2}-1$. Now, If $2 \in Z\left(R_{1}\right)$ and $\quad Z\left(R_{2}\right)$, thus $\quad \Lambda\left(\left(\varphi_{1}, \varphi_{2}\right)\right)=\{(\varsigma, \sigma) \in \operatorname{Reg}(R) \backslash$ $\left\{\left(\varphi_{1}, \varphi_{2}\right)\right\}: \varsigma \in \Lambda\left(\varphi_{1}\right) \cup\left\{\varphi_{1}\right\}$ or $\left.\sigma \in \Lambda\left(\varphi_{2}\right) \cup\left\{\varphi_{2}\right\}\right\}$. Hence, $\left|\Lambda\left(\left(\varphi_{1}, \varphi_{2}\right)\right)\right|=\left(\varepsilon_{2}+1\right) k_{1}+\left(\varepsilon_{1}+1\right) k_{2}-\left(\varepsilon_{1}+1\right)\left(\varepsilon_{2}+\right.$ 1) - 3. If $2 \in Z\left(R_{1}\right)$ and $2 \in \operatorname{Reg}\left(R_{2}\right)$, then $\Lambda\left(\left(\varphi_{1}, \varphi_{2}\right)\right)=$ $\left\{(\varsigma, p) \in \operatorname{Reg}(R) \backslash\left\{\left(\varphi_{1}, \varphi_{2}\right)\right\}: \varsigma \in \Lambda\left(\varphi_{1}\right) \cup\left\{\varphi_{1}\right\} \quad\right.$ or $\quad \sigma \in$ $\left.\Lambda\left(\varphi_{2}\right)\right\}$. Therefore, $\quad\left|\Lambda\left(\left(\varphi_{1}, \varphi_{2}\right)\right)\right|=\left(\varepsilon_{1}+1\right) k_{2}+k_{1} \varepsilon_{2}-$ $\left(\varepsilon_{1}+1\right) \varepsilon_{2}-2$.
2.8 Remark Assume R is a ring. Consequently

1. If $|R|$ is an even number, so $|\Omega(R)|$ and $|\operatorname{Reg}(R)|$ are indeed odd if R is a field with even order,
2. When $|R|$ is an odd number, then $|\operatorname{Reg}(R)|$ is an even number, while $|\Omega(R)|$ is an odd number.
2.9 Definition Assume R is a ring, so
3. if R is a ring then $\Omega(\psi(R))$ is a regular graph,
4. $\quad R$ is a field iff $\Omega(\psi(R))$ is a regular graph of even grade.

2.10 Remark

Suppose R be a product of two rings R_{1} and $R_{2}\left(\varphi_{1}, \varphi_{2}\right) \in$ $\operatorname{Reg}(R)$. The grade of vertices $\left(\varphi_{1}, \varphi_{2}\right)$ in $\operatorname{Reg}(\psi(R))$ then is even iff $\left|\operatorname{Reg}\left(R_{1}\right)\right|: \quad\left|\operatorname{Reg}\left(R_{2}\right)\right| \quad$ are even and deg $\operatorname{deg}_{1}\left(\varphi_{1}\right), \operatorname{deg}_{2}\left(\varphi_{2}\right)$ are odd.

2.11 Proposition

Suppose R be a ring. Consequently $\operatorname{Reg}(\psi(R))$ is a regular graph of odd grade iff R is a field.
Proof. Assume that $R=\prod_{j=2}^{n+1} R_{i}, n \geq 3$, and R_{j} is a finite ring $\forall i$. By using Definition 2.9. and Remark 2.10. we obtain $\operatorname{Reg}(\psi(R))$ is a regular graph of odd grade. Next consider the situation if R is a product of fields of odd orders then $R \cong$
$H \times L$, with H is the product including all fields $R_{j}^{\prime} h$ and $R_{j}^{\prime} l$ is the product of all rings which are not field of odd orders. Therefore $\operatorname{Reg}(\psi(R))$ is a regular graph of odd order. Lastly, if $|R|=2^{k+1} p^{k}$, with $p>1$, we can construct $R \cong H \times L$, where $|H|=2^{k+1}$, and $|L|=p^{k}$. $\operatorname{Reg}(\psi(R))$ is thus a regular graph of odd order. Therefore, R is a field.

3. Some Properties of Eulerian Graphs

First, we will start with the following definition:

3.1 Definition

If a graph seems to have a complete path that contains each of its edges, it is classified as Eulerian. Alternatively, a linked graph G is Eulerian iff every vertices in $\mathrm{M}(G)$ has an even grade.
$\operatorname{Reg}(\psi(R))$ is obviously Eulerian iff $R \cong \mathbb{Z}_{2}$, whereas $\Omega(\psi(R))$ is Eulerian iff $|R|$ is even, but
$C(\psi(R))$ not Eulerian if R is a finite ring.

3.2 Proposition

If R is a finite ring, thus $\mathrm{C}(\psi(R))$ is Eulerian graph iff R is a product of odd-ordered fields.
Proof: Allow R to be the straight product of two rings. Thus $\operatorname{Reg}(\psi(R))$ is linked, because for every two non-adjacent vertex (ς, σ) and (ζ, η) in $\operatorname{Reg}(\psi(R)),(\varsigma, \sigma)-(-\varsigma,-\eta)-$ (ζ, η) is a pathway. As a result, for every finite ring R, $\operatorname{Reg}(\psi(R))$ is linked.

3.3 Proposition

If R is a finite ring, thus $\Omega(\psi(R))$ is Eulerian graph iff R is a product of even-ordered fields.
Proof: obvious.

3.4 Proposition

Assume R is a finite ring. Then $\operatorname{Reg}(\psi(R))$ is Eulerian graph iff $R \cong \mathbb{Z}_{2}$ or R is a product of odd order fields.
Proof: By applying Proposition. 2.11, we get the result.

3.5 Proposition

Assume R is a ring. If $|R|$ is odd, then $\Omega(\psi(R))$ is Eulerian graph.
Proof. If R is a ring, so $\Omega(\psi(R))$ is obviously Eulerian graph iff R is a field or $|R|$ is even. Assume $R=\prod_{j=1}^{k+1} R_{j+1}$, with R_{j+1} being a finite ring for every i. Thus, there are two possibilities.
Situation 1: $|R|$ is an odd number. If $\Omega(\psi(R))$ is Eulerian graph, $\operatorname{deg}((0,0, \ldots, 0))=|\Omega(R)|-2$ is an odd number. Since R is a product of field of odd orders, according to Remark 2.8. So $\operatorname{deg}((1,1,0, \ldots, 0)=|\Omega(R)|-2-$ $\prod_{j=3}^{k}\left|\operatorname{Reg}\left(R_{j+1}\right)\right|$ is strange, even contradictory.
Situation 2: Assume that $|R|$ is even. Then $\left|R_{j+1}\right|$ is odd for all $j+1$. Consider $\varrho=\left(\varrho_{j+1}\right) \in \Omega(R)$.Now, $L=$ $\left\{l \in\{1,2, ., k+1\}: \varrho_{l} \in \Omega\left(R_{l+1}\right)\right\}$ and $H=\{1,2, ., k+1\} \backslash$ $(L+1)$ are defined. About any finite ring of even order P , the summation of every two components are a zero-divisor iff all elements are zero-divisors. Thus, whenever $\varsigma=\left(\varsigma_{j+1}\right) \in$ $\Omega(R) \backslash\left\{\varrho_{j+1}\right\}$ including all $j+1 \in L$, and left, the vertices $\left.\varsigma_{j+1} \in R_{j+1} \backslash-\varrho_{j+1}+\Omega\left(R_{j+1_{-}}\right)\right) \forall j+1 \in \Phi$ and $\varsigma_{j+1} \in$ $\Omega\left(R_{j+1}\right)$ for some $j+1 \in \Phi$ is non-adjacent to ϱ. Because $\left|-\varrho_{j+1}+\Omega\left(R_{j+1}\right)\right|=\left|\Omega\left(R_{j+1}\right)\right| \forall j+1$ we have $\operatorname{deg}\left(\varrho_{j+1}\right)=\left(\left|\Omega\left(R_{j+1}\right)\right|-1\right)-$
$\left(\prod_{(j+1) \in L}\left|\operatorname{Reg}\left(R_{j+1}\right)\right|\left(\prod_{(j+1) \in L}\left|\operatorname{Reg}\left(R_{j+1}\right)\right|-\right.\right.$
$\left.\prod_{(j+1) \in L}\left(\left|\operatorname{Reg}\left(R_{j+1}\right)\right|-\left|\Omega\left(R_{j+1}\right)\right|\right)\right)$. Because $\left|\Omega\left(R_{j+1}\right)\right|$ is even and $\left|\operatorname{Reg}\left(R_{j+1}\right)\right|$ is odd $\forall j+1 \in \Phi$ we may conclude that $\operatorname{deg}\left(\varrho_{j+1}\right)$ is odd. Furthermore, $\Omega(\psi(R))$ is a linked graph because there are 0 neighboring vertex to every other vertex in $\Omega(\psi(R))$. As a result, $\Omega(\psi(R))$ is Eulerian graph.

3.6 Corollary

Assume R is a finite ring. Then $\Omega(\psi(R))$ is Eulerian graph iff $R \cong \mathbb{Z}_{2}$ or R is a product of odd order fields.
Proof: By applying Proposition. 2.11, we get the result.

4. Conclusion

In this study we obtained the following results:

1. $C\left(\Psi\left(\mathbb{Z}_{k}\right)\right)$ is not locally linked iff $k=v^{p+1}$, with v is a prime and $p \geq 3$ or $k=v_{1} v_{2} v_{3}$, and v_{1}, v_{2} and v_{3} are separate primes.
2. $\Omega\left(\psi\left(\mathbb{Z}_{k}\right)\right)$ is not locally linked iff $k=v_{1} v_{2} v_{3}$ where v_{1}, v_{2} and v_{3} are distinct primes.
3. $\operatorname{Reg}\left(\psi\left(\mathbb{Z}_{k}\right)\right)$ is not locally linked iff $k=v^{p+1}$, where v is prime and $p \geq 3$.
4. $\quad \Omega(\psi(R))$ is a regular graph, if R is a ring.
5. $\quad R$ is a field iff $\Omega(\psi(R))$ is a regular graph of even grade.
6. $\quad R$ is a field iff $\operatorname{Reg}(\psi(R))$ is a regular graph of odd grade.
7. $\operatorname{Reg}\left(\psi\left(\mathbb{Z}_{k}\right)\right)$ is Eulerian iff $k=3$.
8. $\Omega\left(\psi\left(\mathbb{Z}_{k}\right)\right)$ is Eulerian iff $k=3$ or k is an even number.
9. $C\left(\psi\left(\mathbb{Z}_{k}\right)\right)$ is never Eulerian.
10. $\operatorname{Reg}(\psi(R))$ is Eulerian graph iff $R \cong \mathbb{Z}_{2}$.
11. $\Omega(\psi(R))$ is Eulerian graph iff $R \cong \mathbb{Z}_{2}$.

5. References

1. Anderson DF, Badawi A. The total graph of a commutative ring. Journal of Algebra. 2008;320(7):27062719.
2. Anderson DF, Badawi A. On the total graph of a commutative ring without the zero element. Journal of Algebra and Its Applications. 2012;11(4):1-18.
3. Anderson DF, Badawi A. The generalized total graph of a commutative ring. Journal of Algebra and its Applications. 2013;12(5):1-15.
4. Anderson DF, Asir T, Badawi A, Chelvam TT. Graphs from rings. Springer International Publishing; c2021.
5. Akbari S, Kiani D, Mohammadi F, Moradi S. The total graph and regular graph of a commutative ring. Journal of Pure and Applied Algebra. 2009;213(12):2224-2228.
6. Akbari S, Heydari F. The regular graph of a commutative ring. Periodica Mathematica Hungarica. 2013;67(2):211220.
7. Asir T, Chelvam TT. On the total graph and its complement of a commutative ring. Communications in Algebra. 2013;41(10):3820-3835.
8. Chelvam TT, Asir T. Domination in the total graph of a commutative ring. Journal of Combinatorial Mathematics and Combinatorial Computing. 2013;87:147-158.
9. Chelvam TT, Selvakumar K. Central sets in the annihilating-ideal graph of commutative rings. Journal of Combinatorial Mathematics and Combinatorial Computing. 2014;88:277-288.
10. Erić AL, Pucanović ZS. Some properties of the line graphs associated to the total graph of a commutative ring. Pure and Applied Mathematics Journal. 2013;2(2):51-55.
11. Harary F. Graph Theory. Publishing Company Reading Massachusetts. c1972.
12. Maimani HR, Wickham C, Yassemi S. Rings whose total graphs have genus at most one. The Rocky Mountain Journal of Mathematics. 2012;42(5):1551-1560.
13. Müller H, Sedley A, Ferrall-Nunge E. Survey research in HCI. Ways of Knowing in HCI; c2014. p. 229-266.
14. Nazzal K. Total graphs associated to a commutative ring. Palestine Journal of Mathematics. 2016;5(1):108-126.
15. Pucanović Z, Petrović $Z Z$. On the radius and the relation between the total graph of a commutative ring and its extensions. Publications de l'Institut Mathematique. 2011;89(103):1-9.
16. Ramin A. The total graph of a finite commutative ring. Turkish Journal of Mathematics. 2013;37(3):391-397.
17. Sander T, Nazzal K. Minimum flows in the total graph of a commutative ring. Transactions on Combinatorics 2014;3:11-40
18. Shekarriz MH, Shirdareh Haghighi MH, Sharif H. On the total graph of a finite commutative ring. Communications in algebra. 2012;40(8):2798-2807.
19. Singh P, Bhat VK. Zero-divisor graphs of finite commutative rings: A survey. Surveys in Mathematics \& its Applications. 2020;15(14):371-397.
20. Chelvam TT. Complement of the Generalized Total Graph of Commutative Rings: A Survey. In Algebra and Related Topics with Applications: ICARTA-2019, Aligarh, India, December 17-19. Singapore: Springer Nature Singapore; c2022. p. 477-499.
21. Vince A. Locally homogeneous graphs from groups. Journal of Graph Theory. 1981;5(4):417-422.
