International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452 Maths 2023; 8(3): 44-47 © 2023 Stats & Maths <u>https://www.mathsjournal.com</u> Received: 13-03-2023 Accepted: 21-04-2023

Nada K Abdullah Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Iraq

Summer W Omar

Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Iraq

Corresponding Author: Nada K Abdullah Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Iraq

Several features of a complete graphs and regularity graphs in the rings

Nada K Abdullah and Summer W Omar

DOI: https://doi.org/10.22271/maths.2023.v8.i3a.977

Abstract

Suppose that $\text{Reg}(\psi(R))$ and $\Omega(\psi(R))$ have been the sub-graphs of complete graph $C(\psi(R))$ generated as the sets of all regularity components and nil in *R*. We find out when every one of the graphs $C(\psi(R))$, $\text{Reg}(\psi(R))$ and $\Omega(\psi(R))$ is linked and homogenous. Whenever $\text{Reg}(\psi(R))$ and $\Omega(\psi(R))$ are both Eulerian and regularity.

Keywords: Graphs of eulerian, regularity graphs, complete graphs

1. Introduction

The concept of graph theory was introduced via (Harary, F. 1972) [11]. Also, in 1981 Vince introduced the concept of locally homogeneous graphs in the groups (Vince, A. 1981). R shall be employed during this whole study to signify ring having unity $1 \neq 0$. Have $\Omega(R)$ denote the sets of all R is nil and R entire graphs are a simple graph having vertices subset R in which two different vertices ζ and η are contiguous if $\zeta + \eta \in \Omega(R)$. And erson and Badawi presented these graphs, designated as $C(\psi(R))$ in (Anderson, D. F. and Badawi, A. 2008) ^[1], where the researchers provided a detailed discussion of the situation whenever $\Omega(R)$ is indeed an ideal. They did, however, calculate several graphic symmetries including the radius and circumference of $C(\psi(R))$. In 2009 (Akbari, S. *et al.* 2009) ^[5] demonstrated that only if R is a ring, a connecting complete graph is Hamilton. After that (Maimani, H. R. et al. 2012)^[12] explored the species $C(\psi(R))$. Pucanovi and Petrov, (Pucanovi, Z. and Petrovi, Z. 2011; Anderson, D. F., & Badawi, A. 2012) ^[15, 2] estimated the circumference of $C(\psi(R))$. In 2012 (Shekarriza, M. H. *et al.* 2012) provides the properties of Eulerian $C(\psi(R))$. The concept of $C(\psi(R))$ predominance number is calculated separately in (Chelvam, T. T., & Asir, T. 2013; Chelvam, T. T., & Selvakumar, K. 2014) [8-9]. Ramin discusses the vertices connectivity of $C(\psi(R))$ wherein R is a ring (Ramin, A. 2013) ^[16] and (Asir, T., & Chelvam, T. T. 2013) ^[8] investigates the complements of $C(\psi(R))$. for a finite ring R (Sander, T., & Nazzal, K. 2014) ^[17] [17] considers minimal nil k-flows for $C(\psi(R))$. Akbari and Heydari (Akbari, S., & Heydari, F. 2013) ^[6] investigates several characteristics of a regular graphs $\text{Reg}(\psi(R))$. Erić and Pucanović (Erić, A. L., & Pucanović, Z. S. 2013) ^[10] investigates the graphic of $C(\psi(R))$. Additionally, (Anderson, D. F., & Badawi, A. 2013)^[3] defines R's generalized complete graphs. The readers can consult (Müller, H. et al. 2014; Nazzal, K. 2016; Singh, P. and Bhat, V. K. 2020; Anderson, D. F. et al. 2012; Tamizh Chelvam, T. 2022) [13, 14, 19, 2, 20] for just a review on the complete graphs of a ring.

The result that follows fully describes the graphs $C(\psi(R))$. whenever C(R) is an ideal of R.

- **1.1. Remark** (Anderson, D. F., & Badawi, A. 2008) ^[1]: Assume *R* is a ring, and $\Omega(R)$ is an ideal of *R*. Suppose that $|\Omega(R)| = \omega$, $|R/\Omega(R)| = \varphi$.
- a) $\Omega(\psi(R))$ is the complete graph K_{ω} .
- b) If $2 \in \Omega(R)$, then $\text{Reg}(\psi(R))$ is indeed the unions of $\varphi 1 \cap K_{\omega}s$.
- c) $R/\Omega(R) \cong \mathbb{Z}_2$ or $R/\Omega(R) \cong \mathbb{Z}_3$ iff $\operatorname{Reg}(\psi(R))$ is linked.
- d) If $2 \in \text{Reg}(R)$, then $\text{Reg}(\psi(R))$ is indeed the unions of $(\varphi 1)/2 \cap K_{\omega\omega}s$.

International Journal of Statistics and Applied Mathematics

We discuss whether every of those graphs $C(\psi(R))$, $\text{Reg}(\psi(R))$, and $\Omega(\psi(R))$ is locally linked in this work. Likewise, we studied regularity of the graphs $\text{Reg}(\psi(R))$ and $\Omega(\psi(R))$. Finally, the Eulerian graphs $\text{Reg}(\psi(R))$ and $\Omega(\psi(R))$ are investigated.

2. Some Properties of $C(\psi(R))$, $\text{Reg}(\psi(R))$, and $\Omega(\psi(R))$

First, we will start with the following definition

2.1 Definition

Consider *G* to be a graph having vertices and edges collections M(G) and N(G), correspondingly. Take $m \in M(G)$ be the open neighbor of *m*, which is given as $\Lambda(m) = \{\varsigma \in M(G): \varsigma m \in \Lambda(G)\}$. If for all $m \in M(G) \Lambda(m)$ the graph *G* is considered to be local linked. Therefore, when *G* is a union of whole graph, *G* is local linked; otherwise, if *G* has such vertices and edges part besides the $K_{1,1}$ *G* isn't really local linked.

2.2 Proposition

Suppose $\Omega(R)$ be an ideal of *R*.

- 1. $\Omega(\psi(R))$ is a locally linked graph.
- 2. *R* is an integral domain iff $\text{Reg}(\psi(R))$ and $C(\psi(R))$ are locally connected graphs.

2.3 Proposition

Suppose *R* be the sum of two rings R_1 and R_2 . If neither R_1 nor R_2 is an integral domain, so $\Omega(\psi(R))$ is locally linked. Proof. There is no pathway linking (1,0) and (0,1) in $\Lambda((0,0))$ when *R* is a combination of two integral domain. As a result, $\Omega(\psi(R))$ is not locally linked. Suppose that neither R_1 nor R_2 are integral domains. Because (0,0) in $\Lambda((\varsigma, \sigma))$ is a pathway combining (ζ, η) and (λ, ξ) in $\Lambda((\varsigma, \sigma))$, we have $(\zeta, \eta) - (0,0) - (\lambda, \xi)$. As a result, $\Lambda((\varsigma, \sigma))$ is locally linked for all (ς, σ) in $\Omega(R) - 0$. Therefore, the connectedness of a graphs created by $\Lambda((0,0))$ must still be investigated. If (ζ, η) and (λ, ξ) are two non-neighboring vertex in $\Lambda((0,0))$, then $\zeta \in \Omega(R_1) \setminus \{0\}$ means that $(\zeta, \eta) - (-\zeta, -\xi) - (\lambda, \xi)$ is a pathway in $\Lambda((0,0))$ and η is a pathway in $\Omega(R) - 0$. Then $\eta \in \Omega(R_1) \setminus \{0\}$ denotes a pathway in $\Lambda((0,0))$ as $(\zeta, \eta) - (-\lambda, \eta) - (\lambda, \xi)$. Suppose *R* be a ring product and. If neither R_1 nor R_2 is an integral domain. Consequently, $\operatorname{Reg}(\Psi(R))$ is locally linked. Proof. Assuming that $(\varsigma, \sigma) \in \operatorname{Reg}(R)$ and $(\zeta, \eta), (\lambda, \xi)$ are two non-contiguous vertexes in $\Lambda((\varsigma, \sigma))$. Thus, $\zeta \in \Lambda(\varsigma)$ offers the pathway $(\zeta, \eta) - (\varsigma, -\sigma) - (-\varsigma, -\xi) - (\lambda, \xi)$ in $\Lambda((\zeta, \eta))$ and $\eta \in \Lambda(\sigma)$ offers the pathway $(\zeta, \eta) - (-\varsigma, \sigma) - (-\lambda, -\sigma) - (-\lambda, \xi)$ in $\Lambda((\zeta, \eta))$.Now, since *R* be a ring product it becomes obvious that if $|\operatorname{Reg}(R_1)| = |\operatorname{Reg}(R_2)| = 2$, so neither R_1 nor R_2 is an integral domain (According to the Proposition. 2.3) and $\operatorname{Reg}(\Psi(R))$ is a full graph. Thus, locally linked.

2.5 Proposition

If $R = \prod_{j=2}^{n+1} R_i$, $n \ge 2$, so $\operatorname{Reg}(\psi(R))$ is locally linked. Proof. Let $\varsigma = (\varsigma_i) \in \operatorname{Reg}(R)$ and $\varphi = (\varphi_j)$ and $\varphi = (\phi_j)$ represent two non-neighboring vertexes in $\Lambda(\varsigma)$. Because $\varphi \in \Lambda(\varsigma)$, $\varsigma_i + \varphi_i \in \Omega(R_j)$, for some j = 2. If take $\varrho = (\varrho_j)$ so $\varrho_1 = \varphi_1, \varrho_2 = -\varphi_2, \varrho_3 = -\phi_3, \ \varrho_4 = -\phi_4$ and $\varrho_i = 2 \forall j + 1 \ge 5$, therefore $\varphi - \varrho - \phi - 1$ is a pathway in $\Lambda(\varsigma)$.

2.6 Definition

Consider G to be a graph having vertices and edges collections M(G) and N(G), correspondingly. Then

- 1. $C(\psi(\mathbb{Z}_k))$ is not locally linked iff $k = v^{p+1}$, with v is a prime and $p \ge 3$ or $k = v_1v_2v_3$, and v_1, v_2 and v_3 are separate primes.
- 2. $\Omega(\Psi(\mathbb{Z}_k))$ is not locally linked iff $k = v_1 v_2 v_3$ where v_1, v_2 and v_3 are distinct primes.
- 3. Reg $(\psi(\mathbb{Z}_k))$ is not locally linked iff $k = v^{p+1}$, where v is prime and $p \ge 3$.

2.7 Proposition

Assume *R* is the product of two rings R_1 and R_2 are two rings for which $|\text{Reg}(R_1)| = k_1$ and $|\text{Reg}(R_2)| = k_2$. Set $(\varphi_1, \varphi_2) \in \text{Reg}(R)$ and $\deg_1(\varphi_1) = \varepsilon_1$ and $\deg_2(\varphi_2) = \varepsilon_2$ with $\deg_j(\varphi_j)$ is indeed the grade of φ_j in $\text{Reg}(\psi(R_j))$. The vertices grade (φ_1, φ_2) in $\text{Reg}(\psi(R_j))$ is therefore provided as,

$$\deg((\varphi_1,\varphi_2)) = \begin{cases} k_2\varepsilon_1 + k_1\varepsilon_2 - \varepsilon_1\varepsilon_2 - 1, & \text{if } 2 \in \operatorname{Reg}(R); \\ k_1\varepsilon_2 + k_2\varepsilon_1 + (k_1 + k_2) - (\varepsilon_1 + \varepsilon_2) - \varepsilon_1\varepsilon_2 - 3, & \text{if } 2 \in Z(R_1) \text{and } Z(R_2); \\ k_1\varepsilon_2 + k_2\varepsilon_1 - \varepsilon_2 + k_2 - \varepsilon_1\varepsilon_2 - 2, & \text{if } 2 \in Z(R_1) \text{ and } 2 \in \operatorname{Reg}(R_2). \end{cases}$$

Proof. Suppose that $2 \in \operatorname{Reg}(R)$ so $\Lambda((\varphi_1, \varphi_2)) = \{(\varsigma, \sigma) \in \operatorname{Reg}(R): \varsigma \in \Lambda(\varphi_1) \text{ or } \in \Lambda(\varphi_2)\}$. So, $|\Lambda((\varphi_1, \varphi_2))| = k_2 \varepsilon_1 + k_1 \varepsilon_2 - \varepsilon_1 \varepsilon_2 - 1$. Now, If $2 \in Z(R_1)$ and $Z(R_2)$, thus $\Lambda((\varphi_1, \varphi_2)) = \{(\varsigma, \sigma) \in \operatorname{Reg}(R) \setminus \{(\varphi_1, \varphi_2)\}: \varsigma \in \Lambda(\varphi_1) \cup \{\varphi_1\} \text{ or } \sigma \in \Lambda(\varphi_2) \cup \{\varphi_2\}\}$. Hence, $|\Lambda((\varphi_1, \varphi_2))| = (\varepsilon_2 + 1)k_1 + (\varepsilon_1 + 1)k_2 - (\varepsilon_1 + 1)(\varepsilon_2 + 1) - 3$. If $2 \in Z(R_1)$ and $2 \in \operatorname{Reg}(R_2)$, then $\Lambda((\varphi_1, \varphi_2)) = \{(\varsigma, p) \in \operatorname{Reg}(R) \setminus \{(\varphi_1, \varphi_2)\}: \varsigma \in \Lambda(\varphi_1) \cup \{\varphi_1\} \text{ or } \sigma \in \Lambda(\varphi_2)\}$. Therefore, $|\Lambda((\varphi_1, \varphi_2))| = (\varepsilon_1 + 1)k_2 + k_1\varepsilon_2 - (\varepsilon_1 + 1)\varepsilon_2 - 2$.

2.8 Remark Assume R is a ring. Consequently

- 1. If |R| is an even number, so $|\Omega(R)|$ and |Reg(R)| are indeed odd if R is a field with even order,
- 2. When |R| is an odd number, then |Reg(R)| is an even number, while $|\Omega(R)|$ is an odd number.

2.9 Definition Assume *R* is a ring, so

- 1. if *R* is a ring then $\Omega(\psi(R))$ is a regular graph,
- 2. *R* is a field iff $\Omega(\psi(R))$ is a regular graph of even grade.

2.10 Remark

Suppose *R* be a product of two rings R_1 and $R_2(\varphi_1, \varphi_2) \in \text{Reg}(R)$. The grade of vertices (φ_1, φ_2) in $\text{Reg}(\Psi(R))$ then is even iff $|\text{Reg}(R_1)|$: $|\text{Reg}(R_2)|$ are even and deg $\deg_1(\varphi_1), \deg_2(\varphi_2)$ are odd.

2.11 Proposition

Suppose R be a ring. Consequently $\text{Reg}(\psi(R))$ is a regular graph of odd grade iff R is a field.

Proof. Assume that $R = \prod_{j=2}^{n+1} R_i$, $n \ge 3$, and R_j is a finite ring $\forall i$. By using Definition 2.9. and Remark 2.10. we obtain $\text{Reg}(\Psi(R))$ is a regular graph of odd grade. Next consider the situation if R is a product of fields of odd orders then $R \cong$

 $H \times L$, with *H* is the product including all fields $R'_j h$ and $R'_j l$ is the product of all rings which are not field of odd orders. Therefore $\text{Reg}(\psi(R))$ is a regular graph of odd order. Lastly, if $|R| = 2^{k+1}p^k$, with p > 1, we can construct $R \cong H \times L$, where $|H| = 2^{k+1}$, and $|L| = p^k$. $\text{Reg}(\psi(R))$ is thus a regular graph of odd order. Therefore, *R* is a field.

3. Some Properties of Eulerian Graphs

First, we will start with the following definition:

3.1 Definition

If a graph seems to have a complete path that contains each of its edges, it is classified as Eulerian. Alternatively, a linked graph G is Eulerian iff every vertices in M(G) has an even grade.

Reg($\psi(R)$) is obviously Eulerian iff $R \cong \mathbb{Z}_2$, whereas $\Omega(\psi(R))$ is Eulerian iff |R| is even, but

 $C(\psi(R))$ not Eulerian if R is a finite ring.

3.2 Proposition

If R is a finite ring, thus $C(\psi(R))$ is Eulerian graph iff R is a product of odd-ordered fields.

Proof: Allow *R* to be the straight product of two rings. Thus $\text{Reg}(\psi(R))$ is linked, because for every two non-adjacent vertex (ς, σ) and (ζ, η) in $\text{Reg}(\psi(R)), (\varsigma, \sigma) - (-\varsigma, -\eta) - (\zeta, \eta)$ is a pathway. As a result, for every finite ring *R*, $\text{Reg}(\psi(R))$ is linked.

3.3 Proposition

If *R* is a finite ring, thus $\Omega(\psi(R))$ is Eulerian graph iff *R* is a product of even-ordered fields. Proof: obvious.

3.4 Proposition Assume *R* is a finite ring. Then $\text{Reg}(\psi(R))$ is Eulerian graph iff $R \cong \mathbb{Z}_2$ or *R* is a product of odd order fields.

Proof: By applying Proposition. 2.11, we get the result.

3.5 Proposition

Assume R is a ring. If |R| is odd, then $\Omega(\psi(R))$ is Eulerian graph.

Proof. If *R* is a ring, so $\Omega(\psi(R))$ is obviously Eulerian graph iff *R* is a field or |R| is even. Assume $R = \prod_{j=1}^{k+1} R_{j+1}$, with R_{j+1} being a finite ring for every i. Thus, there are two possibilities.

Situation 1: |R| is an odd number. If $\Omega(\psi(R))$ is Eulerian graph, deg $((0,0,...,0)) = |\Omega(R)| - 2$ is an odd number. Since *R* is a product of field of odd orders, according to Remark 2.8. So deg $((1,1,0,...,0) = |\Omega(R)| - 2 - \prod_{j=3}^{k} |\text{Reg}(R_{j+1})|$ is strange, even contradictory.

Situation 2: Assume that |R| is even. Then $|R_{j+1}|$ is odd for all j + 1. Consider $\varrho = (\varrho_{j+1}) \in \Omega(R)$.Now, L = $\{l \in \{1,2,.,k+1\}: \varrho_l \in \Omega(R_{l+1})\}$ and $H = \{1,2,.,k+1\} \setminus (L+1)$ are defined. About any finite ring of even order P, the summation of every two components are a zero-divisor iff all elements are zero-divisors. Thus, whenever $\varsigma = (\varsigma_{j+1}) \in$ $\Omega(R) \setminus \{\varrho_{j+1}\}$ including all $j + 1 \in L$, and left, the vertices $\varsigma_{j+1} \in R_{j+1} \setminus -\varrho_{j+1} + \Omega(R_{j+1})) \quad \forall j + 1 \in \Phi$ and $\varsigma_{j+1} \in$ $\Omega(R_{j+1})$ for some $j + 1 \in \Phi$ is non-adjacent to ϱ . Because $|-\varrho_{j+1} + \Omega(R_{j+1})| = |\Omega(R_{j+1})| \forall j + 1$ we have $\deg(\varrho_{j+1}) = (|\Omega(R_{j+1})| - 1) (\prod_{(j+1)\in L} |\operatorname{Reg}(R_{j+1})| (\prod_{(j+1)\in L} |\operatorname{Reg}(R_{j+1})| -$ $\prod_{(j+1)\in L} (|\operatorname{Reg}(R_{j+1})| - |\Omega(R_{j+1})|)).$ Because $|\Omega(R_{j+1})|$ is even and $|\operatorname{Reg}(R_{j+1})|$ is odd $\forall j + 1 \in \Phi$ we may conclude that $\operatorname{deg}(\varrho_{j+1})$ is odd. Furthermore, $\Omega(\Psi(R))$ is a linked graph because there are 0 neighboring vertex to every other vertex in $\Omega(\Psi(R))$. As a result, $\Omega(\Psi(R))$ is Eulerian graph.

3.6 Corollary

Assume *R* is a finite ring. Then $\Omega(\psi(R))$ is Eulerian graph iff $R \cong \mathbb{Z}_2$ or *R* is a product of odd order fields.

Proof: By applying Proposition. 2.11, we get the result.

4. Conclusion

In this study we obtained the following results:

- 1. $C(\psi(\mathbb{Z}_k))$ is not locally linked iff $k = v^{p+1}$, with v is a prime and $p \ge 3$ or $k = v_1v_2v_3$, and v_1, v_2 and v_3 are separate primes.
- 2. $\Omega(\psi(\mathbb{Z}_k))$ is not locally linked iff $k = v_1 v_2 v_3$ where v_1, v_2 and v_3 are distinct primes.
- 3. Reg $(\psi(\mathbb{Z}_k))$ is not locally linked iff $k = v^{p+1}$, where v is prime and $p \ge 3$.
- 4. $\Omega(\psi(R))$ is a regular graph, if *R* is a ring.
- 5. *R* is a field iff $\Omega(\psi(R))$ is a regular graph of even grade.
- 6. *R* is a field iff $\text{Reg}(\psi(R))$ is a regular graph of odd grade.
- 7. $\operatorname{Reg}(\psi(\mathbb{Z}_k))$ is Eulerian iff k = 3.
- 8. $\Omega(\psi(\mathbb{Z}_k))$ is Eulerian iff k = 3 or k is an even number.
- 9. $C(\psi(\mathbb{Z}_k))$ is never Eulerian.
- 10. Reg($\psi(R)$) is Eulerian graph iff $R \cong \mathbb{Z}_2$.
- 11. $\Omega(\psi(R))$ is Eulerian graph iff $R \cong \mathbb{Z}_2$.

5. References

- 1. Anderson DF, Badawi A. The total graph of a commutative ring. Journal of Algebra. 2008;320(7):2706-2719.
- Anderson DF, Badawi A. On the total graph of a commutative ring without the zero element. Journal of Algebra and Its Applications. 2012;11(4):1-18.
- 3. Anderson DF, Badawi A. The generalized total graph of a commutative ring. Journal of Algebra and its Applications. 2013;12(5):1-15.
- 4. Anderson DF, Asir T, Badawi A, Chelvam TT. Graphs from rings. Springer International Publishing; c2021.
- 5. Akbari S, Kiani D, Mohammadi F, Moradi S. The total graph and regular graph of a commutative ring. Journal of Pure and Applied Algebra. 2009;213(12):2224-2228.
- 6. Akbari S, Heydari F. The regular graph of a commutative ring. Periodica Mathematica Hungarica. 2013;67(2):211-220.
- Asir T, Chelvam TT. On the total graph and its complement of a commutative ring. Communications in Algebra. 2013;41(10):3820-3835.
- 8. Chelvam TT, Asir T. Domination in the total graph of a commutative ring. Journal of Combinatorial Mathematics and Combinatorial Computing. 2013;87:147-158.
- 9. Chelvam TT, Selvakumar K. Central sets in the annihilating-ideal graph of commutative rings. Journal of Combinatorial Mathematics and Combinatorial Computing. 2014;88:277-288.
- 10. Erić AL, Pucanović ZS. Some properties of the line graphs associated to the total graph of a commutative ring. Pure and Applied Mathematics Journal. 2013;2(2):51-55.
- 11. Harary F. Graph Theory. Publishing Company Reading Massachusetts. c1972.

- 12. Maimani HR, Wickham C, Yassemi S. Rings whose total graphs have genus at most one. The Rocky Mountain Journal of Mathematics. 2012;42(5):1551-1560.
- 13. Müller H, Sedley A, Ferrall-Nunge E. Survey research in HCI. Ways of Knowing in HCI; c2014. p. 229-266.
- 14. Nazzal K. Total graphs associated to a commutative ring. Palestine Journal of Mathematics. 2016;5(1):108-126.
- 15. Pucanović Z, Petrović ZZ. On the radius and the relation between the total graph of a commutative ring and its extensions. Publications de l'Institut Mathematique. 2011;89(103):1-9.
- 16. Ramin A. The total graph of a finite commutative ring. Turkish Journal of Mathematics. 2013;37(3):391-397.
- 17. Sander T, Nazzal K. Minimum flows in the total graph of a commutative ring. Transactions on Combinatorics 2014;3:11-40
- 18. Shekarriz MH, Shirdareh Haghighi MH, Sharif H. On the total graph of a finite commutative ring. Communications in algebra. 2012;40(8):2798-2807.
- 19. Singh P, Bhat VK. Zero-divisor graphs of finite commutative rings: A survey. Surveys in Mathematics & its Applications. 2020;15(14):371-397.
- Chelvam TT. Complement of the Generalized Total Graph of Commutative Rings: A Survey. In Algebra and Related Topics with Applications: ICARTA-2019, Aligarh, India, December 17-19. Singapore: Springer Nature Singapore; c2022. p. 477-499.
- 21. Vince A. Locally homogeneous graphs from groups. Journal of Graph Theory. 1981;5(4):417-422.