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Abstract 
The impact of the immune system's cumulative damage as a result of HIV infection is explored. This 
paper concentrates on the study of shock models and the cumulative damage process. The term "random 
antigenic diversity threshold" refers to the antigenic diversity threshold that causes seroconversion. Every 
interaction creates and adds to the antigenic variety, which when it reaches a certain threshold level 
causes seroconversion in the individual. The exponential distribution is used as the threshold in the 
statistical analysis of the time to seroconversion for HIV-infected individuals. 
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1. Introduction 
The entire world witnessed a pandemic situation with the advent of the terrible and disastrous 
disease called Acquired Immune Deficiency Syndrome (AIDS) caused by the Human 
Immunodeficiency Virus (HIV). HIV is a retrovirus, which is RNA-biased and has no DNA. 
Antigenic diversity is an important determinant of the outcome of HIV infection. Successive 
invasion through various modes of HIV transmission may contribute to increased HIV 
antigenic diversity. The idea of the immune system's antigenic variety threshold has been 
examined by Nowak and May (1991) [3] and Stilianakis et al (1994) [5]. If the overall antigenic 
diversity produced by HIV exceeds the antigenic diversity threshold, the immune system is 
unable to defend itself against HIV, which results in immune system collapse and 
seroconversion occurs rapidly.  
The probability of transmission through contact is called infectivity. Shiboski and Jewell 
(1992) [4] obtained the prevalence function expression using available data from partner 
studies. In the present study, it is assumed that an HIV-uninfected person is infected by an 
infected person through sexual contact. 
Every encounter results in the transmission of a small number of HIV particles, which in turn 
add to the antigenic variety throughout the replication process, which is the regenerative 
process. The seroconversion occurs when and when the total antigenic diversity reaches a 
certain level due to the decreasing T4 Cells. The principles of the cumulative damage process 
and the shock model served as the foundation for the development of the current model. In 
Esary et al (1973) [2], the same was covered in detail. The intercontact times between contacts 
are considered to be Poisson random variables for the sake of this study. A Generalized 
Poisson distribution and the uses for it that Anil (2001) [1] mentioned are employed in the 
creation of the stochastic model. At this point, we assume the following. 
We view sexual contact as the only source of HIV transmission and assume that a random 
amount of HIV is transmitted when an uninfected person has sexual contact with an HIV-
infected partner. Thus, the individual in this case is subjected to a process of damage acting on 
the immune system, and the damage is assumed to be nonlinear and cumulative. The 
transmission of HIV results in harm to persons at each point of contact, and the intervals 
between encounters are taken to be Poisson random variables. If the total amount of damage 
surpasses a predetermined limit, which is also subject to random variables. The seroconversion 
takes place, and the individual is identified as seropositive.
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We also assume that the process that creates contacts, the 

order of damages, and the threshold are independent of one 

another. 

We use the symbol Xi to indicate the rise in antigenic 

diversity brought on by HIV transmission during the ith 

interaction. Assumed to be continuous random variables are 

X1, X2,... Let's assume that the antigenic diversity threshold's 

random variable, Y, has an exponential distribution with 

parameter. Let G(.) stand for the Xi distribution function and 

g(.) for the associated p.d.f. The distribution function of the 

random variable indicating the intervals between subsequent 

encounters is denoted by the letter F(.). Let gk(.) be the 

random variable's p.d.f 



k

i

iX
1

. To denote the Laplace 

transform of g(x), we will use g*(s). Assume that T represents 

the period until seroconversion and is a continuous random 

variable. 

 

2. Results 
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If we assume that the inter–arrival times between contacts 

follow an exponential distribution. 
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Let g(.) follows an exponential distribution with parameter μ 
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The expected time to seroconversion is given by 
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(On Simplification) 

Substitute (3) in (2), we get 
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3. Numerical Illustrations 

 
Table 1: Shows the values of statistical measures of seroconversion 

time 
 

 𝜃 = 0.2, 𝜇 = 0.5 

a Mean Variance 

1 0.0600 36.0000 

2 0.0300 9.0000 

3 0.0200 4.0000 

4 0.0150 2.2500 

5 0.0120 1.4400 

6 0.0100 1.0000 

7 0.0086 0.7347 

8 0.0075 0.5625 

9 0.0067 0.4444 

10 0.0060 0.3600 

 

 
 

Fig 1: Shows the values of statistical measures of seroconversion time 
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Table 2: Contribution to the antigenic diversity threshold in which 

increases then both E(T) and V(T) are increases 
 

 𝒂 = 𝟑, 𝜽 = 𝟎. 𝟏 

𝝁 Mean Variance 

0.5 1.3333 4.0000 

1.0 2.1667 13.4444 

1.5 3.0000 28.4444 

2.0 3.8333 49.0000 

2.5 4.6667 75.1111 

3.0 5.5000 106.7778 

3.5 6.3333 144.0000 

4.0 7.1667 186.7778 

4.5 8.0000 235.1111 

5 8.8333 289.0000 

 

 
 

Fig 2: Contribution to the antigenic diversity threshold in 

which increases then both E(T) and V(T) are increases 

 
Table 3: The value of θ is the parameter of exponential distribution 

of the threshold increases E(T) and V(T) are decreases 
 

 𝒂 = 𝟐, 𝝁 = 𝟏. 𝟓 

𝜽 Mean Variance 

0.1 8.0000 64.0000 

0.2 4.2500 18.0625 

0.3 3.0000 9.0000 

0.4 2.3750 5.6406 

0.5 2.0000 4.0000 

0.6 1.7500 3.0625 

0.7 1.5714 2.4694 

0.8 1.4375 2.0664 

0.9 1.3333 1.7778 

1 1.2500 1.5625 

 

 
 

Fig 3: The value of θ is the parameter of exponential distribution of 

the threshold increases E(T) and V(T) are decreases 

 

4. Conclusion 

 In table (1), shows the values of statistical measures of 

seroconversion time corresponding to the variation in ‘a’ 

the parameter of the distribution of inter-arrival time 

when θ and μ are kept fixed. As ‘a’ increases, the value 

of 
a

1 decreases which means the inter-arrival time 

between contacts becomes smaller and so there is a 

corresponding decrease in E(T) and V(T). 

 It is observed from the contribution to the antigenic 

diversity threshold which increases then both E(T) and 

V(T) increases as indicated in the Table (2) and Fig.(2) 

 From Table (3), as the value of θ is the parameter of 

exponential distribution of the threshold increases E(T) 

and V(T) decreases as indicated in Fig.(3) 
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