International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452 Maths 2023; 8(3): 16-21 © 2023 Stats & Maths <u>https://www.mathsjournal.com</u> Received: 16-02-2023 Accepted: 26-03-2023

Jaisankar R

Professor, Department of Statistics, Bharathiar University, Coimbatore, Tamil Nadu, India

Ranjani M

Assistant Professor, Department of Statistics & Analytics, Mount Carmel College Autonomous, Bengaluru, Tamil Nadu, India

Corresponding Author: Jaisankar R Professor, Department of Statistics, Bharathiar University, Coimbatore, Tamil Nadu, India

Bayesian cluster detection of dengue incidences in Tamil Nadu

Jaisankar R and Ranjani M

DOI: https://doi.org/10.22271/maths.2023.v8.i3a.973

Abstract

In epidemiology, the local properties of the relative risk surface are important rather than modelling the relative risk by itself. These surface properties may consist of boundaries between areas of risk, peaks of risk, local heterogeneities in risk etc. These features do not directly relate to a value at a specific location. The main concern of the Relative risk estimation is the 'global' smoothing of risk and estimating the true underlying risk level. But the cluster detection is mainly focused on the local features of the risk surface where some elevations or depressions of risk are found. In this article, analysis for disease clustering has been carried out and the high and low levels of disease clusters in dengue incidences are identified in the Coimbatore district, and also for overall Tamil Nadu.

Keywords: Relative risk, disease clustering, bayesian disease clustering, dengue incidences

1. Introduction

A spatial cluster may generally be defined as any spatially-bounded area of significantly elevated risk. This is very general and a lot of points are to be included further. The term 'spatially bounded' refers that the cluster must have some sort of spatial integrity. This may be a neighborhood criterion like that the 'areas must be adjoining' or in other words, at least two adjoining areas must meet a criterion, or the regions could be defined to have some type of 'external boundary'. A simple criterion which is called hot-spot clustering is often assumed. In such clustering, any area or region can be observed as a cluster. This is due to the assumption that 'no insistence on adjacency of regions within clusters' is called the zero-neighbourhood criterion. This is a simple criterion often assumed and commonly used in epidemiology (Rischardson *et al.*, 2004) ^[11]. This criterion is appealing when there is no prior knowledge of the behaviour of the disease is available and useful for such as the preliminary screening of data.

This definition of hot spot clusters ignores any contiguity that may be inherent in relevant clusters. For instance, the investigation of clusters of a given threshold size may be important. The size of the threshold is the minimum number of contiguous areas. Therefore, only groups of contiguous or adjacent regions of 'unusual' risk can be considered as clusters. In the case of infectious diseases, for understanding disease spread, a certain shape and size of the cluster may be are important. Apart from the above several definitions of clusters and clustering are available which leads to differences in the ability of detection methods. Sometimes the correlated heterogeneity term in relative risk models is considered a clustering term. Consideration of this term captures aggregation in the risk and which lead to an effect where neighbouring areas with similar risk levels which is a global feature of the risk, hence called the global clustering. This induces a smoothing of risk also.

The assumption of the global clustering is that the risk surface is clustered or has areas of elevated (reduced) risk. The localized behaviour or the location of clusters per se are not addressed by the global clustering and it is also termed general clustering (Besag and Newell 1991)^[4]. But, an uncorrelated surface displays random changes in risk with location changes and so much more variable in both risk level and have few contiguous areas of similar risk. In essence, there are three major scenarios for clustering. The first one involves single region hot spot relative risk detection. The next one is that clusters may also be considered as objects or groupings with a specific criterion which includes a neighbourhood or proximity condition.

The third one is that clusters are defined as residuals. The Bayesian methodology may easily be adopted when clusters are defined as residuals.

2. The Dengue fever

Dengue Fever is an acute febrile disease caused by the dengue virus which is transmitted by the Aedes Aegypti mosquito. It is a serious public health problem in the world causing death within a short time. Every year a considerable proportion of people get victims of this disease around the world. The proportion of people infected with dengue is identified more particularly in tropic and sub-tropic regions. According to the report of the World Health Organization (WHO) in 2019, about half of the world's population are at risk with an estimate of 400 million infections per year. Tamil Nadu is one among five Dengue worst-hit states in South India, placed as the second among all the states of India. Hence, the controlling measures for dengue should be seriously implemented by the health authorities.

Dengue fever is an epidemiological disease with spatial characteristics that may be used to determine its distribution. Monitoring the spatial spread of disease, particularly for a disease like Dengue with a very high diffusion rate, is required to identify areas that have great potential to become endemic. Hence, mapping the spatial distribution of dengue fever cases may act as a guide for the reduction of further incidence.

3. Methodology

3.1 Clusters Defined as Residuals

A convenient method for clustering is based on the residual feature of the data. Assuming that Y_i is the count of disease within the *i*th study region, the basic model for the average count μ_i

(i. e, $E(Y_i) = \mu_i$) is, given by, $\log \mu_i = \alpha_i + u_i$

Here, α may be as a function of covariates which act as a linear or non-linear predictor and may also consist of different kinds of random effects. For simplicity, consider α_i as the "smooth" part and *i* as the rough residual part. If α_i consists of all pertinent non-clustering confounder effects then residual clustering information will be in the residual component. Hence, the estimated value of u_i will contain the information on any clusters unaccounted for in α_i , which does not account for any pure noise in u_i . Hence, there would be at least two components an estimate of u_i , namely, clustered and unclustered (or frailty) components. Some additional components may be included which depends on whether the confounding in α_i was sufficiently specified or estimated.

There are several approaches that exist in isolating residual clustering. First, a pure noise term within α_i and u_i as a cluster term may be included. For instance, the assumption that

 $\alpha_i = (v_i; \text{ covariates})$, a function of uncorrelated noise, in which v_i is the frailty or random effect term, and a function of covariates can be taken up. Second, a smoothed version of u_i , say, (u_i) where the pure noise is smoothed out is examined. The choice of the component that should be included in clustering depends on the following: If the clustering is likely to be irregular and that no clustering confounding effects are to be found, then a residual or smoothed residual is chosen. But, if there exists any prior information of the form of clustering, then including some of that information within the model itself is more important. The real issue behind here is

the ability of models and estimation procedures to differentiate spatial scales of clustering.

3.2. Cluster Detection using Residuals

In the case of count data, the suitable likelihood possibilities are either Poisson or a Binomial. For Poisson likelihood, it is assumed that Y_i , i = 1, 2, n are counts of disease cases in the i^{th} region and E_i , i = 1, 2, ..., n are the corresponding expected counts of the disease in *n* small areas. Here, $_i \sim Pois(E_i\theta_i)$ given relative risk θ_i . The log relative risk is usually modelled and hence the main focus of the model is log θ_i . The standardized form of Bayesian residuals for this likelihood is $r_i = (Y_i - E_i\widehat{\theta}_i)/\sqrt{E_i\widehat{\theta}_i}$, where $\widehat{\theta}_i$ is the converged posterior sample average value of the θ_i .

Here, the Poisson likelihood was taken to examine the Dengue disease data and the model assumed is $\log \theta_i = \alpha_0 + v_i$, where the priors are $\alpha_0 \sim (a, b)$ and $v_i \sim N(0, \tau_v)$. The term τ_v set large and a large negative to positive range (a, b). As the methodology is residual clustering, no correlated random effect is included in the analysis.

It is also possible to examine the predictive residuals for any given model. The predictive residual for each observation is $r_i^{pr} = Y_i - Y_i^{pr}$ where $Y_i^{pr} = \frac{1}{a} \sum_{g=1}^{a} f(Y_i | \theta^g)$. $f(Y_i | \theta^g)$ is the likelihood given the value of θ^g , which would usually be small when compared to the standard Bayesian residual. An alternative approach to residual analysis could be based on the construction of a residual envelope, based on the comparison of the Bayesian residual: $r_i = Y_i - Y_i$ with $r_i^* = V_i^{pred} = \hat{V}$.

 $Y_i^{pred} - \hat{Y}_i$. Unusual residuals could be assessed by assessing the ranking of r_i among the series

of *B* simulated $\{r_{ib^*}\} = b = 1, ..., B$. Further, *p*-values surface can be computed from a tally of exceedances:

$$P_{v_l} = \Pr(|r_i| > r_l^*) = \frac{1}{B} \sum_{b=1}^{B} I(|r_i| > r_{lb}^*)$$

The areas of unusually elevated values can be found using the mapped surface of P_{vi} for hot spot detection.

In this Chapter residual clustering analysis has been performed for dengue disease counts data observed from the state of Tamil Nadu using the Poisson likelihood model. As the district of Coimbatore consists of many zero counts of dengue disease cases, the zero-inflated Poisson likelihood is considered for residual clustering in the Coimbatore district.

4. Results of Residual clustering in Tamil Nadu 4.1 High Rate Clusters Tamil Nadu

The total number of locations taken up in 32 districts in the state of Tamil Nadu. The analysis of the cluster detection is done by Win BUGS software with the assumption of events in a geographical location is Poisson distributed. The shapefile of the clusters is generated and saved by the package is imported by ArcGIS software so that interpretations can be made. The following are the details of cluster points.

The locations included in the high rate clusters are, Coimbatore, Tirunelvelli, Madurai, Thoothukudi, Coimbatore, with the number of observed cases is 8866 and the expected number of cases 1367.43, highest among clusters which is found to be statistically significant and hence the occurrences are not by chance. The next significant cluster is found in Tiruppur, Theni, Salem, Kanniyakumari, Thanjavur, Tiruvallur, Tiruchirappalli, with the observed and expected

International Journal of Statistics and Applied Mathematics

number of cases is 5745 and 1797.82. The third significant cluster is found in Ramanathapuram, Villupuram, Dharmapuri, The fourth significant cluster is Cuddalore, Tiruvannamalai, Krishnagiri, Dindigul, Kancheepuram. The fifth cluster is found in Virudhunagar, Thiruvarur, Erode, Pudukkottai. On the basis of data collected from 2007 to 2018, the infected cases are highest for the year 2017, almost in all the districts. While making comparisons among the districts, Coimbatore and Tirunelvelli with highest incidences of dengue disease and Chennai is placed second.

4.2 Low Rate Clusters in Tamil Nadu

The locations included in the most likely cluster are Krishnagiri, Dharmapuri, Salem, Tiruvannamalai, Vellore,

Erode, Namakkal, with the number of cases observed to be 245 and the expected number of cases as 1676.70, highest among the detected clusters with low rates, which is found to be significant and hence the occurrences are not by chance. The next significant cluster is found in Nagapattinam, Karur, Sivaganga, Perambalur, Ariyalur, The Nilgiris with the observed and expected number of cases as 2007 to 2018, the infected cases are lowest for the year in 2014, almost in all the districts. The detailed information is presented in Table. It is observed that there is a significant difference between the proportion of males and females affected by dengue. Males are affected more than females. A higher proportion of dengue cases are observed for patients above 15 years of age. This behavior is also seen both in males and females.

Table 1 a: First High Rate Cluster Areas

Location	Latitude	Longitude	Mean	Std.Dev	Median	2.50%	50%	97.5%
Theni	10.00832	77.47338	2772	1.128	0.0528	2771	2772	2773
Tiruppur	11.10795	77.34068	2781	0.5827	0.01811	2780	2781	2782
Coimbatore	11.01601	76.970306	3412	0.5166	0.01215	3411	3412	3413
Thoothukkudi	8.79299	78.14242	3844	1.005	0.044	3843	3844	3845
Madurai	9.94472	78.13078	4565	0.811	0.02784	4564	4565	4566
Tirunelveli	8.72879	77.70458	6389	1.518	0.07917	6388	6389	6390
Chennai	13.08268	80.270721	7729	0.9249	0.03307	7728	7729	7730

Location	Latitude	Longitude	Mean	Std.Dev	Median	2.50%	50%	97.5%
Dharmapuri	12.106527	78.136139	1200	0.4971	0.01094	1199	1200	1201
Viluppuram	11.94551	79.4903	1210	0.7769	0.02878	1209	1210	1211
Ramanathapuram	9.35886	78.83747	1292	0.51	0.0128	1291	1292	1293
Vellore	12.916517	79.1325	1600	1.103	0.06091	1599	1600	1601
Tiruchirappalli	10.75961	78.78736	1871	0.5172	0.01299	1870	1871	1872
Thiruvallur	11.59089	75.672707	1896	0.6496	0.02149	1895	1896	1897
Thanjavur	10.7836	79.1336	2126	0.5146	0.01057	2125	2126	2127
Kanniyakumari	8.0933	77.54909	2267	0.5985	0.0211	2266	2267	2268
Salem	11.65212	78.157982	2625	0.5169	0.01324	2624	2625	2626

Table 2a: Low Rate Cluster Areas

Location	Latitude	Longitude	Mean	Std.Dev	Median	2.50%	50%	97.5%
Karur	10.95958	78.08195	522.6	0.5326	0.01363	521.6	522.6	523.6
Namakkal	11.219439	78.167725	754	0.5972	0.01378	753	754	755
Nagappattinam	10.77318	79.84145	791.3	0.5954	0.01704	790.4	791.4	792.3
Pudukkottai	10.3829	78.8155	854.3	0.5995	0.02053	853.2	854.2	855.2
Erode	11.329926	77.727757	870	0.7557	0.02947	868.9	870	870.9
Thiruvarur	10.76508	79.63356	920.2	0.5052	0.01126	919.2	920.2	921.2
Virudunagar	9.59375	77.9575	995.9	0.6058	0.01742	995	995.9	996.9

Table 2b: Second Low Rate Cluster Areas

Location	Latitude	Longitude	Mean	Std.Dev	Median	2.50%	50%	97.5%
The Nilgiris	11.41131	76.6927	147.2	0.7497	0.03197	146.3	147.2	148.2
Ariyalur	11.1521	79.0694	222.5	0.6276	0.02165	221.5	222.5	223.4
Perambalur	11.2341	78.8805	318.6	0.5112	0.01193	317.6	318.7	319.6
Sivaganga	9.85498	78.5005	439.5	0.6538	0.02659	438.5	439.5	440.5

5. Results of Residual clustering in Coimbatore District **5.1** High Rate Clusters in Coimbatore

In Coimbatore, there is a considerable number of Dengue cases has been reported in Health and Welfare Department portals. It has 503 geographical locations based on the shapefile was taken up in the district of Coimbatore in Tamil Nadu. The analysis of the cluster detection is done by WinBUGS software with the assumption of events in a geographical location is Poisson distributed. The shapefile of the clusters is generated and saved by the package is imported

by ArcGIS software so that interpretations can be made. The following are the details of cluster points.

The locations included in the high rate clusters are Irugur village. The next significant clusters are Achipatti, Muthugoundenpudur, Kuniyamuthur, Perur villages and the third clusters are Saravanampatti, Sulur, Ashokapuram, Vellanaipatti villages. Highest among clusters which is found to be statistically significant and hence the occurrences are not by chance.

5.2 Low Rate Clusters in Coimbatore District

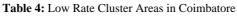
The locations included in the low rate clusters are Palangarai A/b, Thekkampatti, Chinnathadagam, Idigarai villages, the next significant low rate clusters are Jadayampalayam, Vedasithur A/b, Poravipalayam, Alagumalai villages, and the

third clusters are Malaipalayam, Chinnakallipatty, Pachapalayam, Panappatti, Vadavalli, Jilobanaikenpalayam, Solapalayam villages. Lowest among clusters which is found to be statistically significant and hence the occurrences are not by chance.

Table 3: High Rate Cluster Areas in Coimbatore

S. No	Location	Mean	Std. dev	Median	2.50%	Median	97.50%
1	Irugur A/B	2147	0.7802	0.04208	2146	2147	2148
2	Achipatty	237.1	0.5475	0.0202	236.1	237.2	238
3	Muthugoundenpudur Rly. Clny.	237.1	0.5085	0.01943	236.1	237.1	238.1
4	Kuniyamuttur	236.9	10.2	0.2066	236.1	237.1	238.1
5	Perur	218.7	0.5284	0.01954	217.7	218.8	219.7
6	Saravanampatti	201.3	1.342	0.04713	200.3	201.3	202.4
7	Sulur	155.8	5.351	0.1982	155	156	156.9
8	Ashokapuram	133.9	0.5339	0.01695	133	133.9	134.8
9	Vellanaipatti	110	0.5051	0.01801	109.1	110	111

S. No	Location	Mean	Std.dev	Median	2.50%	Median	97.50%
1	Solapalayam	0.6994	0.4786	0.01115	-0.366	0.7275	1.5
2	Jilobanaickenpalayam	0.6922	0.4613	0.008892	-0.3045	0.721	1.518
3	Vadavalli	0.6825	0.4989	0.01136	-0.4291	0.7175	1.513
4	Panappatti	0.6796	0.4857	0.0108	-0.3621	0.7259	1.498
5	Pachapalayam	0.6759	0.475	0.01091	-0.3301	0.7329	1.453
6	Chinnakallipatty	0.6744	0.4808	0.01127	-0.3895	0.7126	1.496
7	Malaipalayam	0.6547	0.4757	0.01079	-0.3644	0.6766	1.482



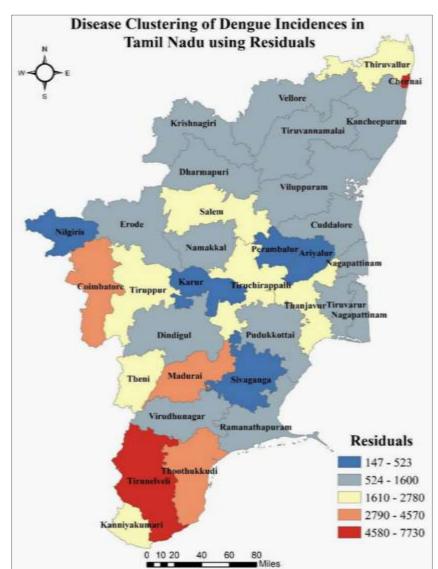


Fig 1: Disease Clustering of Dengue Incidences in Tamil Nadu using Residuals

~19~

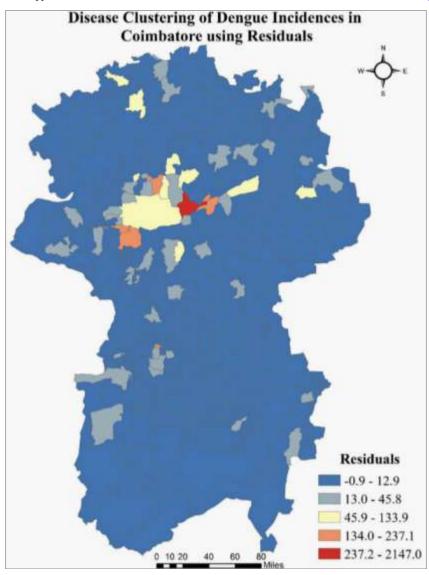


Fig 2: Disease Clustering of Dengue Incidences in Coimbatore using Residuals

6. Conclusion

The spatial and geographical visualizations are developed in this Chapter using the Bayesian Spatial Disease clustering method, which provides an efficient representation of the results of statistical analysis in geographical space. The disease clusters are detected using WinBUGS software and maps which are generated using ArcGIS software. These maps show the density of cases within each region. Proactive actions can be taken to prevent disease outbreaks, using these results. The health department of the Government of Tamil Nadu may be advised to take extra measures for the prevention and control of dengue in high-risk areas.

For the present analysis, the dengue fever outbreaks in Tamil Nadu for the last twelve years were taken as a sample case. On performing similar kinds of analysis for every district, taluk, etc. According to that, the dengue incidences of the Coimbatore, districts of Tamil Nadu were analyzed over the period of 2012 to 2020. One may get productive information based on which disease surveillance can be taken for the control of outbreaks.

7. References

 Anderson C, Lee D, Dean N. Identifying clusters in Bayesian Disease Mapping. Biostatistics. 2014;15(3):457-469.

- Lawson AB, Rolejanaprasert C. Childhood Brain Cancer in Florida A Bayesian Clustering Approach. Statistics and Public Policy. 2014;1(1):99-107
- Bernadinelli L, Clayton D, Pascutto C, Montomoli C, Ghislandi M, Songini M. Bayesian Analysis of Space-Time Variation in Disease Risk. Statistics in Medicine. 1995;14(21-22):2433-2443.
- 4. Besag J, York JC, Mollie A. Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics. 1991;43(1):1-20.
- Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of Royal Statistical Society, Series-B. 1974;36(2):192-236.
- Clayton D, Kaldor J. Empirical Bayes Estimates of Age-Standardised Relative Risks for use in Disease Mapping. Biometrics. 1987;43(3):671-691.
- Cressie N. Statistics for spatial data. John Wiley & Sons; New York; c1993.
- Kulldorff M, Nagarwalla N. Spatial Disease Clusters: Detection and Inference. Statistics in Medicine. 1995;14(8):799-810.
- Nivedha R, Duraisamy MR, Patil Santhosh Ganapathi, Monomani S. Genetic Diversity analysis of Sesame-A Bayesian Clustering Approach. Electronic Journal of Plant Breeding. 2019;10(2):743-753.

International Journal of Statistics and Applied Mathematics

- Gangon RE, Clayton M. Bayesian Detection and Modelling of Spatial Disease Clustering. Biometrics. 2000;56(3):922-935.
- Richardson S, Thomson A, Best N, Elliott P. Interpreting Posterior Risk Estimators in Disease Mapping Studies. Environmental Health Perspectives. 2004;112(9):1016-1025.
- Tiefelsdorf M. Modelling Spatial Processes The Identification and Analysis of Spatial Relationships in Regression Residuals by Means of Moran's I. Lecture Notes in Earth Sciences, Springer-Verlag, Berlin; c2000. p. 87.
- 13. Wakefield J, Albert KIM. A Bayesian Model for Cluster Detection. Biometrics; 2013;14(4):752-765.
- 14. WHO, Dengue in World Health Organization in India; c2019.

[http://www.searo.who.int/india/topics/dengue/en/]