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Abstract 

We prove, by means of matrix-valued stochastic processes, the convergence, in a suitable scaling limit, 

of the position vectors along a polymer in the discrete freely rotating chain model to that of the 

continuous Kratky Porod model, building on an earlier result for the original model without a force, and 

showing that it holds when an external force field is added to the system. In doing so, we also prove that 

the process of tangent vectors satisfies a stochastic differential equation, showing that it is the sum of a 

spherical Brownian motion and a projective drift term, and we analyze this equation to derive properties 

about the polymer in the regimes of high and low values of the force parameter and persistence length, or 

stiffness parameter of the molecule. If the force is much stronger than the persistence length, the polymer 

tends toward the rigid rod limit, aligned in the direction of the force; while if the force is much weaker, 

the polymer is aligned in its original direction, as in the case of the unforced model. The most interesting 

case occurs when both force and stiffness parameters are very large, in which case the polymer takes on 

the shape of a deterministic curve that satisfies an ordinary differential equation. 

 

Keywords: Polymer, kratky-porod model, convergence, spherical brownian motion with drift, stochastic 

differential equation 

 

1. Introduction 

The Kratky-Porod model is a basic representation of semi-flexible polymer molecules in 

which thermal effects, noticeable on small time and length scales, balance the elastic or 

mechanical effects. This model is particularly useful for representing polymers, which are 

molecules composed of many copies of the same monomer unit or the same statistical 

segment, that are immersed in a dilute solution, such as DNA or proteins. The actual model is 

a secondary result of a 1949 paper by Austrian chemical physicists O. Kratky and G. Porod [15] 

in which they describe the X-ray scattering of cellulose macromolecules in colloidal 

suspension. 

The foundations for this model date back to the period immediately following the Second 

World War. In [14], H.A. Kramers in 1946 introduced a bead-rod model, called the freely 

rotating chain, in which all segments have the same length, and the bond angles between 

successive segments are constant, but the torsional angles are independent and identically 

distributed. Later, Kirkwood and Riseman introduced another bead-rod model, called the 

freely jointed chain, where all rods or segments between beads, of a polymer have the same 

length and are independent, identically distributed random variables [12, 13]. Prince Rouse in 

1953 formulated his own model, which involves Gaussian-distributed segments [20]. The Rouse 

model and Kirkwood-Riseman chain describe flexible polymers, in contrast to the Kramers 

chain, which models semi-flexible polymers. There are thousands of papers published in the 

chemical physics literature since the introduction of these models. We make no attempt to 

survey this vast body of work here, other than to refer to standard reference texts such as [5, 23, 9, 

24] and references therein. More recently, Bryant and Lavrentovich have applied a similar 

stochastic model to biology, namely, to survival probabilities of cell populations, as the 

branching process can be modeled with a geometric figure that resembles a polymer [1]. 
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Building on the results of [11], which prove the convergence of the freely rotating chain to the Kratky-Porod model and describe its 

behavior for extreme values of the persistence length, we seek to extend this results to the model with an external force. Here is 

the first major result of this paper. 

 

Theorem 1.1: Let R  be the forced chain polymer model with parameters (N, a, θ, f), where N is the number of statistical 

segments, a is the common length of each segment, θ is the angle between each pair of segments, and f = ∥f∥ˆf is the external force 

vector, and whose torsional angles follow the Boltzmann-Gibbs distribution of statistical mechanics. Let Rf(s) be the forced. 

Kratky-Porod model with parameters (L,ℓp,ζ,ˆf), where L is the total length of the polymer, ℓp is its persistence length, ζ is a 

dimensionless external force parameter, and ˆf is the unit vector in the direction of the force, and suppose the parameters satisfy 

 (1) 

 

 (2) 

 

 (3) 

 

Let τ = kBT and set 

 

 (4) 

 

If RN(s) is the forced chain interpolated linearly, then, as N → ∞, RN
f converges in distribution to Rf, and the process of tangent 

vectors T(s) to the polymer is the solution to the stochastic differential equation. 

 

 (5) 

 

The tangent vector therefore is an Itˆo process consisting of a diffusion term, the scaled Brownian motion on S2, and a quadratic 

drift term, which is proportional to the orthogonal projection of the unit force vector fˆ onto the plane perpendicular to T(s). This 

means that T is a spherical Brownian motion with a bias towards the direction of the force. While this differential equation cannot 

be solved explicitly for T(s), the behavior of the polymer can be described fully in several limiting cases. 

If we fix the persistence length ℓp and consider extreme values of ζ, we expect to see two radically different behaviors. If ζ → 0, 

the Brownian motion term dQ(s) dominates equation (5), and the polymer behaves exactly as in the Kratky-Porod model, as 

described in [11]; while if ζ → ∞, the drift term dominates, and the polymer becomes a rigid rod pointing in the direction of the 

force, ˆf. 

The more interesting cases, however, occur when ζ and ℓp are proportional and both tend towards infinity. In this case, the 

Brownian motion can be ignored, but the polymer is stiff enough that it does not point completely in the direction of the force. 

Rather, it forms a deterministic curve in the plane, whose shape changes with the constant of proportionality between the two 

large parameters. 

Here is the second main result of this article. 

 

Theorem 1.2: The forced Kratky-Porod model has the following behavior: 

1. Fix ℓp and let ζ → 0. Then the polymer Rf(s) converges to the Kratky Porod model R(s). 

2. Fix ℓp and let ζ → ∞. Then the polymer converges in probability to a rigid rod in the direction of the force: Rf(s) → sˆf. 

3. Let C = ζ/ℓp be constant, and let ζ → ∞. Then, Rf(s) converges in probability to the curve. 

 

X  (6) 

 

Where x is the solution of the ordinary differential equation x˙ = V(x), x(0) = e3, where 

 

V(x) = C(I − x ⊗ x)ˆf (7) 

 

This equation can be solved explicitly, leading to an exact formula for X(s). 

4. (Trivial Case) Let C = ζ/ℓp be constant as above, and let ζ → 0. Then, in probability, Rf(s) shrinks to a point. 

 

With these results having been stated, the paper is organized according to the following structure. 

Section 2 gives some background information on the construction of the freely rotating chain as described in [11] and how the force 

is added to the system. 

Section 3 is concerned with the construction of the forced rotating chain by means of the Boltzmann-Gibbs distribution. Under 

this probability measure, the segments in the discrete forced model form a Markov chain, and this allows us to compute the 

driving process Bf(s) of the polymer by its Doob-Meyer decomposition. The main result of this chapter is that the discrete model 
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converges in distribution to a continuous model and the tangent vector traces a spherical Brownian motion with a drift 

proportional to the orthogonal projection of the force vector. 

Section 4 deals with several limiting cases and proves the behavior of the forced Kratky-Porod model in various regimes, such as 

the rigid rod and random coil limits. The main result is that as both the force parameter and stiffness increase together, the 

polymer converges in probability to a deterministic curve that can be described explicitly. 

 

2. Foundations 

The freely rotating chain (FRC) models a polymer as a collection of vectors, 

 

 (8) 

 

Where RN
k is the location of the kth bead and 

 

Q  (9) 

 

is the kth rod or segment connecting adjacent beads. One can envision this chain as a ball-and-stick model, commonly used to build 

molecules in chemistry classes. The model depends on a set of parameters (N,a,θ), where N ∈ N is the number of segments, a ∈ 

R+ is the common length of each segment, and θ ∈ (0,π) is the angle supplementary to the common bond angle between any pair 

of adjoining segments, so that the steric angle between segments is actually π − θ. This is chosen so that an angle of θ = 0 

corresponds to no bending between segments. Setting 

 

 (10) 

 

We have, 

 

∥QN
k ∥ = a (11) 

 

Q  (12) 

 

Throughout this paper, we choose a specific coordinate system for RN by specifying the location and orientation of the polymer. 

We pin the polymer at one end and set R0 = (0,0,0) and R1 = (0,0,a), so that the first segment Q1 = ae3 points along the positive z-

axis. If we describe each segment by its spherical coordinates centered at the base of Qk, with the north pole in the direction of Qk, 

then the radius (a) and polar angle (θ) are determined for the next segment Qk+1, but the azimuthal angle, or torsional angle, ϕk, 

remains unspecified. These angles measure the extent to which a given segment twists out of the plane determined by the previous 

two segments. and they vary randomly with the thermal forces that the solution exerts on the polymer. (Notice, that since Q1 is 

determined, the first torsional angle ϕ1 gives the orientation of Q2, and the indices of the torsional angles trail those of the 

immediately affected segments by one.) If we know the set of torsional angles Φ = {ϕ1,..., ϕN−1}, then we know the locations of all 

the segments and beads; since each segment Qk can be considered as a rotation of the previous segment Qk−1 through an angle θ, in 

a direction determined by the angle ϕk−1. By convention, the value of ϕk = 0 results in the segments Qk−1 and Qk+1 on the same side 

of Qk, that is, in the cis position, while ϕk = π corresponds to the zig-zag, or trans position, following the definition of the terms in 

organic chemistry. Thus, the torsional angles provide coordinates for the polymer, and the randomness inherent in the FRC and its 

variants is fully reflected in the randomness of the torsional angles. 

Since the thermal forces acting on the polymer serve to randomize the torsional angles, we consider these angles to be random 

variables. The FRC corresponds to the case in which the ϕk are independent and identically distributed on the circle [0,2π). In this 

case, if a segment Qk is known, then the endpoint of the next segment Qk+1 is uniformly distributed on the base of a cone with 

vertex Rk, axis in the direction of Qk, lateral length a and aperture angle θ. This model is the basis for the other polymer models 

that we will discuss. 

The Kratky-Porod polymer model, or wormlike chain, introduced in [15] and expounded upon in [11], is a similar model that can be 

seen as a continuous analog of the freely rotating chain. Let Q(s) be a standard Brownian motion process on the unit sphere S2 and 

let (L,ℓp) be auxiliary parameters. We interpret the time parameter s of Q(s) as the arc length distance from the fixed end s = 0 of 

the polymer and we let L > 0 be the total contour length of the polymer and ℓp > 0 be its persistence length. Letting R(s) be the 

position of the segment a distance of arc length s along the polymer, we have 

 

R  (13) 

 

Recall that the persistence length ℓp is a length scale that represents the exponential decay of tangent-tangent correlations; that is, 

if T(s) denotes the unit tangent vector to the polymer at an arc length distance of s from the fixed end, then 

 

E[T(0) · T(s)] ∼= e−s/ℓp (14) 

 

The main result of this dissertation concerns the inclusion of a constant force field to the freely rotating and Kratky-Porod models. 

The force f, a vector quantity, is first added to the discrete model via a potential energy function: 
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N 

U(QN) = −αXQN
k · f 

 (15) 

k=1 in which α is a constant that represents the fact that the strength of the electric dipole moment of each segment is constant as 

N → ∞. (To show this, we must let α = N.) This energy is defined as a function of the segment vectors that comprise the polymer. 

We wish to use this energy to define a probability measure, the Boltzmann-Gibbs distribution with potential U, for the torsional 

angles Φ . This is possible because both QN and ΦN can be written as deterministic functions of each other 

so that knowledge of one set of variables determines the other set. With this in mind, we can write 

 

U(QN) = U(QN(ΦN)) = U(ΦN) (16) 

 

Letting Φ) represent the uniform product measure on the set [0,2π)N−1, which is the distribution of the set of angles in the 

original FRC model, and letting τ = kBT be the thermal energy of the system, we define the Gibbs measure for the torsional angles 

of the forced model as follows: 

 

 (17) 

 

As with the freely rotating chain, the forced chain converges in distribution to a continuous model, Rf(s), which is a forced version 

of the Kratky-Porod model. 

The forced Kratky-Porod model is described in terms of a stochastic differential equation for the tangent process T(s), that is, the 

derivative with respect to arc length of Rf(s), and a set of parameters (L,ℓp,ζ,ˆf), where ζ is a dimensionless number that measures 

the relative magnitude of the force, and ˆf is the unit vector in the direction of the force vector f. More precisely, if 

 

 (18) 

 

with initial condition 

 

T(0) = e3 (a.s.) (19) 

 

Then 

 

R  (20) 

 

In order to add the force, we must consider how it affects the distribution of the torsional angles, which are no longer uniform as 

in the unforced Kratky Porod model, described in [11]. The distribution will show a bias in the direction that causes the polymer to 

line up in a single plane, according to the following lemma: 

 

Lemma 2.1: To achieve minimum energy, all segments of the discrete polymer must be coplanar with the force vector f and the 

initial segment Q1; that is, for all k = 2,...,N, 

 

f · (Q1 × Qk) = 0 (21) 

 

Proof. Since the vectors f and Q1 are fixed, Q2 must be chosen to be in the plane determined by f and Q1, so that f · ϕˆ
1 = 0. Assume 

that f, Q1,...,Qk all lie in the same plane. Then in order that f · ϕˆ
k = 0, the vector Qk+1 must be in the same plane as f and Qk, 

meaning that all k + 2 segment vectors are in the same plane. Therefore, by induction, in the state of lowest energy, the entire 

polymer is coplanar, and it sits in the plane defined by the force vector f and the initial direction vector Q1. 

 

3. Convergence of the Forced Polymer 

In [11], we have described the freely rotating chain and Kratky-Porod model of semi-flexible polymers without the external force, 

and shown that in the scaling limit, the Kramers chain converges to the Kratky-Porod model. Now, let us add the force as a vector 

that acts equally at all points of the polymer. We wish to show the same results for the polymer in the field, namely, that the force-

driven Kramers chain converges to the force-driven Kratky-Porod model. We do this by deriving a stochastic differential equation 

for the tangent vector, which is no longer simply a scaled Brownian motion as in the unforced model. The equation will now 

contain a drift term, which introduces a bias in the direction of the force. This is the equation that the tangent vector in the Kratky-

Porod model satisfies, and we show that it is the limiting equation for the forced model. This theorem about the forced Kratky-

Porod model is the main focus of this section. 

 

Potential Energy and the Boltzmann-Gibbs Distribution 

According to Lemma 2.1, the lowest potential energy state for each segment of the discrete polymer corresponds to the case in 

which the segment points as closely as possible to the direction of the force. Therefore, the energy due to each segment must 

attain its minimum at the most likely position of each segment; thus, define the energy due to each segment to be a negative 

constant multiplied by the dot product of the segment with the vector f: 
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uk = −α(Qk · f). (22) 

 

Then, take the sum of all terms for the energy over all segments of the polymer to obtain the total potential energy, since the inner 

product is linear and the cumulative sum of the Qk is RN: 

 

U = −α(RN · f) (23) 

 

This definition, in which the energy for each segment is proportional to the inner product of the force and each segment vector, 

and the total potential energy is proportional to the dot product of f with the position of the free end, is consistent with other 

sources [22, 6, 17, 19]. In these cases, the energy due to the force is a linear term added to the Hamiltonian. 

The most important property, however, of the potential energy formula in [23] is its additivity. This is what facilitates the 

calculations of the conditional probability distributions for the torsion angles, and in turn, the position of the polymer. In these 

calculations, the energy of a single segment must be O(1), even as the length of the segment goes to zero. To maintain these 

properties and to give a physically consistent explanation of the mathematics, suppose that f is the force due to an external electric 

field, and it induces a potential energy because each segment has a dipole moment proportional to the length. As N → ∞, the 

length a = L/N of each segment goes to zero, so to keep the proper scaling for the energy, the dipole moment must be kept 

constant, and this is done by increasing the charge. Thus, we let α = N, and the potential energy for one segment Qk is 

 

 (24) 

 

Motivated to define a potential energy for the polymer, we can use this quantity to determine the distribution of the torsional 

angles, using the Boltzmann-Gibbs distribution. If the potential energy U, depending on the configuration of polymer segments, is 

known for a system, and each state of torsional angles Φ corresponds to a value of U, then the Boltzmann-Gibbs probability 

measure P for each state is determined thus: 

 

 (25) 

 

Where τ = kBT is the thermal energy, and Z is the partition function: 

 

 Z 

Z = e−U(Φ)/τdΦ (26) 

 TN−1 

 

While the integral above is over the N −1-dimensional torus, the product space of the interval [0,2π) with itself N−1 times. Since 

the formula for U is additive, the probability density is multiplicative. 

However, in formula (25), the differential is the product measure on the 

 

N − 1-tuple of angles, 

 

dΦ = dϕ1 × dϕ2 × ··· × dϕN−1 (27) 

 

while the exponential factor depends on the segments of the polymer (the exponent is the normalized inner product of the force 

vector and the position vector of the free end of the polymer, which can be broken up into the segment vectors). Thus, if we wish 

to use the multiplicativity of the density function, it helps to convert the product measure of torsional angles into the product of 

transition probabilities of the segments. 

This can be done by showing that the sequence of segments in the discrete polymer is a Markov chain; then it becomes possible to 

calculate conditional expectations of functions of the torsional angles, which are necessary to find the Doob-Meyer decomposition 

of the driving process of the polymer, by iterated integration. If the measure in the integral is left as the product measure of the 

torsional angles, then the integral cannot be evaluated segment-wise. By using the Markov property of the segments, the 

calculations are facilitated, as the positions of the segments can be evaluated as single integrals. 

 

Lemma 3.1: For an N-segment polymer, under the Boltzmann-Gibbs measure on the angles Φ = {ϕ1,...,ϕN−1} corresponding to the 

potential energy due to a constant force field f, the functions Q = {Q1,...,QN} form a Markov chain, and the induced measure is the 

transition probability πN
f. 

 

Proof. The full proof appears in the original dissertation, which can be found on-line. 

 

Driving Process of the Forced Kramers Chain 

Now that we have established that the segments of the forced Kramers chain form a Markov chain, the next step is to use this 

property to characterize the matrix-valued driving process, BN(s), in terms of drift and diffusion. This will lead to the two terms in 

the differential equation [18] for the tangent vector in the Kratky-Porod model with the added force. 

Recall, as in [11], that BN is given by the formula 
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[Ns/L] 

B  (28) 

 

in which the matrices bk are infinitesimal rotations, which comprise the segments of the polymer in the following manner: 

 

Q  (29) 

 j=1 

 

Where the product is written so that j increases from left to right, and Q1 = ae3. The formula for each infinitesimal rotation is 

 

 0 0 sin bk(ϕk) =  0 0. (30) 

−sinϕk 

 

In the original model without a force, the torsional angles ϕk all had a uniform distribution on the circle; therefore, the expected 

values of the sines and cosines of the angles were all zero. This meant that the mean of each infinitesimal rotation, E[bk(ϕk)], was 

0, and so the mean of the driving process E[BN(s)] was 0 for all s ∈ [0,L]. In fact, since each increment bk of the driving process 

had mean zero, their scaled cumulative sum BN(s), or BN
k with a discrete index, was a martingale. 

But now, the distribution of each torsional angle is biased towards a favored value ϕ0
k, which would make the segment Qk+1 line up 

as closely to the vector of the force field f as possible. Thus, the mean of the driving process will no longer be 0, but instead will 

show a bias, or a drift, in the direction of the applied external force. 

Additionally, the driving process BN(s) is no longer a martingale; however, it can be expressed as a semimartingale. To show this, 

we can write BN in the form of its Doob-Meyer decomposition. This formulation of BN will greatly aid us in our proof of the 

convergence of the discrete forced polymer model to the continuous model. 

 

Lemma 3.2: For an N-segment forced Kramers chain, the driving process BN(s) can be expressed as 

 

B  (31) 

p j=1 

 

where MN(s) is a martingale and ζ is a dimensionless parameter. The righthand side of the equation, apart from MN(s), constitutes 

the drift term of the process. 

 

Proof. We will omit most of the details, but touch on the major points of the proof. Let us first re-write BN in terms of a discrete 

index k, rather than a continuous parameter s, because the Doob-Meyer decomposition requires a discrete index. Thus BN
k is given 

by 

 

k 

B ) (32) 

j=1 

 

and we decompose it as the sum 

 

BNk = MNk + ANk (33) 

 

Where MN is a martingale, just like the driving process in the unforced model, and AN
k ∈ Fk−1, the σ-field generated by the first k − 

1 segments; that is, AN is an adapted process. This decomposition can be found by direct calculation, which we can do because of 

the Markov property of the torsional angles. As an example, let us consider in depth the top-right entry in E[bk(ϕk)|Fk−1], that is, 

the conditional expectation of sinϕk. (The conditional expectation of cosϕk will turn out to be very similar.) This is given by 

 

 (34) 

 

The lower integral in equation (34) equals 

 

Z eζzk−1 cosθ exp(ζ sinθψk)dϕk 

T 
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Where, for simplicity, we have made the substitutions 

 

 (35) 

 

And 

 

ψk(ϕk) = xk−1 sinϕk − yk−1 cosϕk. (36) 

 

Similarly, for simplicity of notation, let us define 

 

µ = ζ sinθ. (37) 

 

Notice that ζ is a dimensionless parameter that measures the magnitude of the force when contour length and temperature are 

fixed. 

Now, the integrand is an exponential that includes trigonometric functions, which is impossible to integrate analytically. However, 

since the multiplier sinθ in the exponent is small, on the order O(N−1/2), and we will eventually take the limit as N → ∞ of the 

discrete model to obtain the continuous model, we can expand the integrand in an asymptotic series, which will allow us to 

integrate the exponential. Recall that the discrete process BN(s) is a sum of [Ns/L] infinitesimal rotations, with a factor of N−1/2. 

Therefore, any terms in the asymptotic expansion for E[bk(ϕk)|Fk−1] that are smaller than O(N−1/2) can be ignored, as they will 

vanish in the limit. This yields the limiting formula: 

 

 (38) 

 

In this formula, the quantities (xk,yk,zk) are the coordinates of the rotated unit force vector, Z ˆf. Similar formulas hold for the 

conditional expectations of the other trigonometric functions of the torsional angles, and these can be used to calculate the Doob-

Meyer decomposition of the discrete driving process BN(s). For example, 

 

 (39) 

 

From these two conditional expectations, it is now possible to derive the formula for the conditional expectation of each 

infinitesimal rotation bk(ϕk) with respect to the previous σ-field, as such: 

 

 (40) 

 

To first order. This matrix¯bk can also be expressed as a difference of tensor products of unit vectors; in each case, the vectors are 

the initial direction e3 and the rotated force vector ˆf. Therefore, an equivalent formulation of the conditional 

expectation of the infinitesimal rotation is 

 

) (41) 

 

or, treating the vectors as matrices, 

 

 (42) 

 

For a more compact notation, let us denote the outer product commutator of two vectors by the same symbol as the commutator of 

matrices; that is, 

 

[v,w] = v ⊗ w − w ⊗ v. (43) 

 

Thus, we can say that 

 

 (44) 

 

From this conditional expectation, we can calculate the adapted process AN
k that appears in the Doob-Meyer decomposition of BN

k 

and which has the same mean as BN
k. By summing all the conditional expectations of the infinitesimal √ rotations, and dividing by 

N, we obtain the following formula for the adapted part of the driving process: 
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A  (1) (45) 

j=1 

 

Thus, returning to our definition of BN(s) in terms of a continuous parameter (by letting k = [Ns/L]), we obtain the desired formula 

for the Doob-Meyer decomposition. 

Once we know the structure of BN(s), we can use it to define the process of orthonormal frames, ZN(s), according to a stochastic 

differential equation: 

 

) (46) 

 

(Recall here that r(N) is the increment of the cubic and higher order variations of B, which vanish in the limit). This can also be 

written 

 

∂ZN(s) = κZN(s)∂BN(s) + r(N) (47) 

 

or in integral form, 

 

Z ) (48) 

 

by the rule relating the Itˆo and Stratonovich derivatives of stochastic processes, since our initial condition is Z(0) = I. 

 

Convergence to the Forced Kratky-Porod Model 

We can now define the limiting process B(s) by simply taking the pointwise limit of BN(s) for each fixed s as N → ∞. We will 

show, in fact, that it is a Brownian motion with a non-linear drift. However, the analogous limiting rotation process, Z(s), can only 

be defined as the solution to the limiting differential equation, which is the limit of the above discrete equation, if we wish for this 

relationship between the B and Z processes to continue as the number of the segments of the polymer goes to infinity. The 

limiting stochastic differential equation is 

 

dZ(s) = κZ(s)∂B(s) (49) 

 

and it is often written in integral form: 

 

Z  (50) 

 

We wish to show that the processes Z converge weakly to Z. This is done, as in [11], by means of Theorem 8.1 of Kurtz and Protter 
[16], which yields the convergence in distribution of processes that are solutions of stochastic differential equations under certain 

conditions. With the next few lemmas, we will prove that the conditions of the theorem are satisfied. The first step is to prove that 

the martingale parts MN converge weakly to a Gaussian limit M, by means of a martingale version of the Central Limit Theorem. 

 

Lemma 3.3: The martingale part MN(s) of BN(s) converges in distribution to a Gaussian matrix-valued process. 

 

Proof. Our goal is to show that the martingale part, MN, when the limit as N → ∞ is taken, is identical to the Gaussian process that 

governed the motion of the tangent vector along the polymer in the unforced model. To do this, it is necessary to show that the 

discrete processes satisfies conditions for a version of the Central Limit Theorem, so that as N → ∞, the discrete processes can 

converge weakly to a continuous Gaussian process. Since the infinitesimal rotation matrices, properly scaled and with the mean 

subtracted away, are the increments of the martingale part MN, we must examine the conditional mean and variance of each of 

these matrices with respect to the previous σ-field. The mean of the matrices has been calculated in equation (44). Now, let us find 

the second moment: 

 

 (51) 

 

Therefore, we must compute the conditional expectations of the functions sin2 ϕk, cos2 ϕk, and sinϕk cosϕk. As before, we will 

expand the integrand in an asymptotic series and discard all terms that are smaller than O(N−1/2). This yields 
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 (52) 

 

As before, let us call the matrix on the right-hand side of the above equation 

D, since it is a diagonal matrix. Thus, the conditional variance has the form D+ϵ1(N), where ϵ1 is a matrix whose norm is of order 

O(N−1), which will aid in proving that the conditions for the Central Limit Theorem are satisfied. 

There are several forms of the Central Limit Theorem for triangular arrays, and even some that apply to conditional expectations. 

We will use one from [2] p. 333, which employs the Lindeberg-Feller condition. The hypotheses of the theorem are satisfied 

because the higher-order terms in the expansion of the second moment vanish when summed. Therefore, the theorem applies to 

the processes, and the limit M(s) is a matrix-valued Gaussian process with mean 0 and variance D(s/L). 

Now that we have weak convergence of the martingale part of the driving process B, we must show the same for the entire 

process, so that we can use the Kurtz-Protter theorem. The next step is to prove relative compactness of both the BN and the ZN. 

 

Lemma 3.4: The sequence of pairs of processes (BN(s),ZN(s))N∈N is relatively compact in the Skorohod topology. 

 

Proof. First, consider for each N the Doob-Meyer decomposition of BN into the sum of a martingale MN and an adapted process 

AN. Recall that 

 

[Ns/L] 

A ] (53) 

j=1 

 

 [Ns/L] 

M  (54) 

 

Let us first prove relative compactness for the sequence of processes (BN): this consists of proving both a uniform stochastic 

boundedness condition and a stochastic equicontinuity condition, according to a theorem of Ethier and Kurtz [8]. First, notice that 

by Lemma 3.3, the sequence of martingale parts (MN) is already relatively compact, since it has a weak limit M. In order to place 

a stochastic bound on BN and its increments, we can use the bound that we already have for MN and find one for AN as well. We 

know that 

 

A  (55) 

p j=1 

 

The expression in the sum is the matrix ( , which has norm at most 2, since the vectors whose outer product 

makes the matrix are unit vectors. Therefore, by the triangle inequality, 

 

, (56) 

 

and since s ∈ [0,L], the adapted part has a uniform bound of κ∥f∥L/τ. In a similar fashion, we can bound the increment in AN 

between two points s and s′ on the curve (here, as before, we take s < s′): 

 

 (57) 

 

 (58) 

 

and thus the aggregate size of the jumps in the adapted process is bounded above by a constant multiple of the increment in the arc 

length. Therefore, both conditions of relative compactness are satisfied for the adapted part of BN, and in turn, for all of BN itself. 

Next, we must show that the discrete processes of rotations ZN(s) are also relatively compact. In terms of the Doob-Meyer 

decomposition, we can express ZN by this stochastic differential equation: 

 

 (59) 
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Recall that since the adapted part AN has finite variation, the quadratic variation of BN is precisely that of MN. The stochastic 

uniform boundedness of the ZN is trivial, since all rotations have norm 1. Thus, we must show equicontinuity of each of the three 

terms on the right side of equation (59). The key to this is another theorem of Ethier and Kurtz [8] which states that a family (ZN) is 

stochastically equicontinuous if and only if ∀η > 0, L > 0, ∃δ > 0 such that 

 

supP(w′(ZN,δ,L) ≥ η) ≤ η. (60) 

N 

 

The quantity w′ is a modulus of continuity, and Ethier and Kurtz define it thus: 

 

 (61) 

 

That is, w′ is the infimum over all partitions {0 = s0,s1,...,sN = L}, of the maximum over intervals in the partition, of the supremum 

over pairs of points {s,s′} within the interval, of the distance between the values of the process at the points s and s′. 

We accomplish this by first finding a bound for the modulus of continuity for the two terms involving MN, then showing that the 

increment ZN depending on the adapted part is also stochastically bounded, namely: 

 

  
 

Z  (62) 

  

is bounded above by a constant multiple of |s − s′|. But this is true, because we can use the triangle inequality on the increments in 

the sum: ∥ZN
j ∥ = 1 always, and ∥[(ZN

j )−1ˆf,e3]∥ ≤ 2, since it is the difference of tensor products of unit vectors. Therefore, 

 

 (63) 

 

and the relative compactness of ZN(s) for the forced model follows.  

Next, we must show that BN converges to B weakly, which is the second condition for the Kurtz-Protter theorem. Since we have 

shown the weak convergence of the martingale part MN(s) to a Gaussian limit (call it M(s)), we must show the same for the 

adapted part AN(s). In doing so, we will first show convergence of the AN and ZN together along subsequences. Since the processes 

AN, MN, and ZN satisfy a stochastic differential equation, and the MN converge weakly to a limit M, we will show that weak 

convergence of AN and ZN will follow, using the next three lemmas. First, notice that existence of a subsequence along which the 

ANk converge follows from relative compactness of the AN (as part of BN) from Lemma 3.4. 

 

Lemma 3.5: Let (Nk) be the indices of a subsequence along which (BNk,ZNk) converges weakly to a limit (B,Z). Then along the 

same subsequence, the processes ANk(s) converge weakly to a limit A, satisfying the equation 

 

A  (64) 

 

Proof. First, let (BNk) be a subsequence which converges to a limit B in distribution. Then, since for all k, BNk = MNk + ANk, and 

MNk ⇒ M by Lemma 3.3 above, it follows that the subsequence (ANk) converges weakly to a limiting process; call it A. 

Recall that if ∆s = L/N, then ANk and ZNk satisfy 

 

Ns/L 

A  (65) 

j=1 

 

Since the processes ANk and ZNk are c`adl`ag, the discrete sum can be ex-pressed as the integral of a piecewise constant function. 

Also, we have replaced Z−1 with ZT, since Z is an orthogonal matrix. This will simplify the next step of the proof. 

We now claim that for all k, ANk is a continuous bounded transformation of ZNk. The boundedness criterion is immediate from 

equation (55), so ∥AN∥ ≤ , and continuity is straightforward as well: 

 

 (66) 
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Since the outer product commutator is bounded above by 2. Therefore, the continuity theorem of weak convergence (Theorem 2.3 

of Chapter 2 of [7]) holds, and so equation (64) is true for the subsequential limits A and Z. 

Thus, we see that the martingale part MN of BN converges weakly to a limit M and the bounded variation part AN retains its 

relationship with ZN along subsequences. There now remains one condition to be proven to use the Kurtz-Protter theorem for 

subsequences: that the sequence of processes BN is good, in the language of [16]. In the same paper, Kurtz and Protter show that a 

sequence of stochastic processes is good if and only if it is of uniformly controlled variation. This is the condition that we will 

prove. 

 

Lemma 3.6: The sequence of processes (BN) N∈N is of uniformly controlled variation (UCV), that is, for all N ∈ N, 

 

 (67) 

 

Proof. Note that each of these expressions above, that is, both the quadratic variation of the martingale part and the total variation 

of the adapted part, can be evaluated. First, 

 

 (68) 

 

 (69) 

 

Next, 

 

 (70) 

 

 (71) 

 

Since these bounds hold for all-natural numbers N, the sequence (BN) is UCV, as desired. 

Therefore, the Kurtz-Protter theorem holds for subsequences. With these lemmas in place, we are now ready to show that 

convergence of the BN and ZN holds along the entire sequence, namely, that all subsequential limits are the same, and that the 

limiting processes B and Z satisfy the limiting differential equation. 

 

Lemma 3.7: The sequence of processes of orthonormal frames along the polymer in the forced Kramers chain model, (ZN)N∈N, 

converges weakly to the process of orthonormal frames along the polymer in the forced Kratky-Porod model, Z. 

 

Proof. Let us first describe the Stratonovich differential equation for BN and ZN in terms of the Doob-Meyer decomposition: 

 

∂ZN(s) = κZN(s)∂MN(s) + κZN(s)∂AN(s). (72) 

 

Let (A1,Z1) and (A2,Z2) be two subsequential limits of the sequence (AN,ZN). Then, by Lemmas 3.3 and 3.5, and by the theorem in 
[16], these two subsequential limits satisfy the same coupled system of stochastic differential equations, driven by the same process 

M. But the solutions to stochastic differential equations are unique. Therefore, (A1,Z1) = (A2,Z2), and it follows that he limiting 

processes B and Z satisfy the SDE as desired. 

 

∂Z(s) = κZ(s)∂B(s) (73) 

 

Characterization of the tangent vector process 

This last lemma (3.7) gives us the convergence of the processes of orthonormal frames (and by projection, of tangent vectors 

along the molecule) which will greatly aid us in proving the convergence of the discrete forced model to the continuous forced 

model. As before, the tangent vector to the polymer satisfies a stochastic differential equation. However, since the driving process 

B(s) is no longer a martingale, but a semi-martingale and its adapted part leads to a drift, the equation governing the tangent 

vector will include a drift term. 

To derive this equation, we must first show that the martingale part M(s) of B(s) defines a Brownian motion. We have already 

established, in Lemma 3.3, that it is a Gaussian matrix-valued process. Now, we will prove a statement about the entries of the 

matrix. 

 

Lemma 3.8: The martingale part M(s) of the driving process B(s) has nonzero entries that are scaled independent one-

dimensional Brownian motions. 
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Proof. The key to this proof is to show that the process M is continuous in s, and that its entries have the same mean and variance 

as a Brownian motion. Then, Levy’s theorem tells us that the resulting process in each entry of the matrix M is a Brownian 

motion. 

Let us begin by considering the distance between two points of the discrete process MN(s), and then take the limit as N → ∞. Let 

N ∈ N, and ∆s = L/N as before. Then, the difference between MN(s+∆s) and MN(s) is bounded as follows: 

 

 (74) 

 

If ∆s is fixed and N → ∞, we have the desired continuity property, which can be seen as follows: let ϵ > 0. Then if we let δ = 

(κℓp/ζ)ϵ, if |s − s′| < δ, then ∥M(s) − M(s′)∥ < ϵ. Now, we can find the covariance of the process M(s) and show that it matches that 

of a Brownian motion. Recall that B(s), as well as both of its components in the Doob-Meyer decomposition, is an anti-symmetric 

matrix whose non-zero entries are in the third row or third column, but not both. Thus M(s) can be expressed as follows: 

 

M  (75) 

 

Where the processes βi(s) for i = 1,2 are continuous Gaussian scalar-valued processes, as shown before [11]. We wish to show now 

that the βi(s) are independent Brownian motions; that is, for some positive constant C, 

 

E[βi(s)βj(s′)] = Cδij(s ∧ s′). (76) 

 

To prove this claim, we will consider each case of the values of i and j individually, and without loss of generality, let s < s′. If i = 

j = 1, then we will calculate the auto-correlation of β1, which has the following form: 

 

 (77) 

 

Recall that µ = O(N−1/2), and since there is a factor of N−1 outside the sum, only the terms inside which are O(1) will have any 

effect on the total as N → ∞. Such terms only occur when the indices match, as the cross terms have mean zero. Therefore, 

 

 (78) 

 

By a similar argument, the above result holds for E[β2(s)β2(s′)] as well; we can apply the same reasoning to the proof above, while 

replacing β1 with β2, sinϕk with −cosϕk, and xk−1 with yk−1. Thus it remains only to show that E[β1(s)β2(s′)] = 0. This is true by a 

similar calculation to the one above, because the terms of matching order are now small enough (O(N−1)) to vanish in the limit. 

Therefore, by combining all these cases, we attain the desired result in equation (76), with the constant . 

Therefore, by L´evy’s theorem for martingales, the entries of M(s) are multiples of independent Brownian motion processes in the 

arc length parameter s. 

We therefore have a formula for the martingale part in terms of one-dimensional Brownian motion processes. We now wish to use 

this fact to derive a differential equation for the tangent vector process, T(s) = Z(s)T(0) with initial condition T(0) = e3. Since the 

original, unforced polymer has a tangent vector process equal to a scaled Brownian motion on the sphere, we aim to derive an 

equation in which one term, the diffusion term, is a scaled spherical Brownian motion. The first step is to isolate the Brownian 

motion in the driving process, B(s). 

 

Lemma 3.9: The driving process B(s) for the forced Kratky-Porod model can be expressed in terms of standard one-dimensional 

Brownian motions. 

 

Proof. We begin by expressing B(s) as its Doob-Meyer decomposition, 

 

B  (79) 

 

Where M(s) is the scaled Gaussian matrix, with entries that are multiples of Brownian motion, as shown in Lemma 3.8. Let us 

write 

 

M ) (80) 

 

And 
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W  (81) 

 

with w1 and w2 satisfying 

 

E[wi(s)wj(s′)] = δij(s ∧ s′), (82) 

 

Namely, that the wi are independent one-dimensional Brownian motions. Since the matrix W(s) is standardized, that is, its non-

zero entries are normally distributed random processes in s (namely N(0,s)), we will refer to it in future calculations. 

Therefore, we have shown in this section that the discrete processes which govern the orientation of the polymer, namely, the 

driving process BN and the process of rotation matrices ZN, converge in distribution to limiting processes B and Z, and the process 

B satisfies the equation 

 

B  (83) 

 

Now that we have expressed B(s) in terms of the independent standard Brownian motions w1(s) and w2(s), let us do the same for 

the tangent vector process T(s), which will lead to the desired differential equation. 

 

Lemma 3.10: The tangent vector process T(s) for the forced Kratky-Porod model satisfies the following differential equation in 

terms of the matrices Z(s) and W(s): 

 

 (84) 

 

Proof. Previously, in [11], we defined the Bishop frame to be the unit vector T tangent to the curve representing the polymer, and 

{M1,M2} to be its normal development, that is, a pair of orthonormal vectors which span the plane normal to T at any given point 

on the polymer. The three vectors are mutually orthogonal and have unit length, and together they comprise the matrix-vaued 

process Z(s), in the order Z = (M1|M2|T). Together, these vectors satisfy the stochastic differential equation 

 

 (85) 

 

With initial conditions 

T(0) = e3 (86) 

M1(0) = e1 (87) 

M2(0) = e2 (88) 

 

This shows how the orthonormal frame of vectors moves along the length of the polymer through parallel transport. This 

differential equation for Z(s) transforms into one for T(s) by simply multiplying each matrix that appears in the equation by the 

initial direction vector T(0): 

 

 (89) 

 

Thus, the Doob-Meyer decomposition expresses the differential of the driving process as the sum of a drift term and a diffusion 

term (involving the Brownian motion W(s)). The matrix expression involving the outer product commutator in the drift term can 

be simplified: 

 

Z(s)[Z(s)−1ˆf,e3]e3 = (I − T(s) ⊗ T(s))ˆf. (90) 

 

Therefore, the drift term is proportional to the projection of the unit vector in the direction of the force, ˆf, onto the plane 

perpendicular to the current tangent vector. This plane is equal to the normal development, and this yields the following simplified 

differential equation for T(s): 

 

Z(s)∂W(s)e3 (91) 

 

But recall that the persistence length is related to the curvature parameter κ: ℓp = 2L/κ2. Thus, the coefficient on the Brownian 

motion term is ℓ−
p 

1/2, and the equation (91) becomes (84), as desired.  

This equation, however, is not self-contained, since Z(s) appears on the right side, and it contains the normal development vectors 

M1 and M2 in addition to T. Also, we wish to express the tangent vector in terms of the spherical Brownian motion Q(s). However, 
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by an argument of differential geometry, we can show that the part of equation (84) containing the diffusion term is generated by 

the Laplace-Beltrami operator on the sphere, thereby equaling a spherical Brownian motion in distribution, according to the 

version of L´evy’s theorem for Riemannian manifolds. 

 

Lemma 3.11: The diffusion term in equation (18) is equal in distribution to a scaled spherical Brownian motion. 

Proof. We use the Itˆo formula to show that the differential equation for T(s) yields the Laplace-Beltrami operator, which 

generates the spherical Brownian motion, with drift as the remainder. Let Φ: S2 → R be a C2 function on the unit sphere that 

extends to a function F : R3 → R which is invariant in the distance from the origin; that is, in spherical coordinates, F(r,θ,ϕ) 

depends only on θ and ϕ. Then if we compose Φ with the vector-valued process T(s) and apply the Itˆo formula, we obtain 

 

 (92) 

 

The first term on the right side of (92) is known, since we have a formula (84) for the differential of the tangent vector T(s). The 

second term can be re-written as the sum of each second-order derivative of Φ, multiplied by each component of the quadratic 

variation matrix of the vector T: 

 

 (93) 

 

This simplifies the second term on the right side of (92), because not every component of the quadratic variation of T is non-zero. 

First, recall that in equation (84), the differential of T(s) has two terms, one multiplied by the scalar ds, and the other by the matrix 

dW(s). Since the arc length s is of bounded variation, the only non-zero quadratic variation arises from the square of the dW(s) 

term. Thus, the differential of the quadratic variation of T(s) is given by 

 

 (94) 

 

This has an equivalent formulation in terms of the tangent vector: 

 

 (95) 

 

This matrix must be multiplied component-wise by the Hessian matrix of secondorder partial derivatives of the function Φ(T(s)). 

These partial derivatives must be directional derivatives with respect to an orthonormal basis; we choose the Bishop frame, which 

gives a simple result when multiplied entry-wise by the quadratic variation increment, and the entries are summed: 

 

 (96) 

 

This gives us a form for the differential of Φ in which every occurrence of the differential dT(s) has been evaluated: 

 

 
 

The first term, which contains the first-order derivatives of Φ(T(s)), represents the drift, while the second derivative term 

represents the diffusion. In order for the tangent vector process to be a Brownian motion with a drift on the sphere, then, the 

diffusion must be the Laplace-Beltrami operator on the sphere: 

 

 (98) 

 

This is identical to the Laplacian of F(T) in spherical coordinates, in a neighborhood of the sphere S2, because F|S2 = Φ and F is 

constant on rays emanating from the origin (so the radius is always 1, and the radial derivative is 0). Moreover, the Laplace-

Beltrami operator on Φ is equivalent to the usual three-dimensional Laplacian of F, whether it is expressed in spherical or 

Cartesian coordinates. Therefore, ∆S2Φ = ΦM1M1 + ΦM2M2, and the diffusion term is equal to the generator of a Brownian motion 

on S2. Notice that since the coefficient in front of the spherical Laplacian in (97) is 1/ℓp, it follows that the -1/2 speed of the 

Brownian motion is ℓp, which is also a multiple of κ as in the original model. 
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With these facts in place, we are now ready to state and prove the first major result of this paper, namely, the convergence of the 

discrete force-driven polymer model to the continuous model, and its corresponding stochastic differential equation that describes 

the tangent vector to the polymer. 

 

Theorem 3.12: (1.1) Let RN
f (s) be the forced chain polymer model with parameters (N,a,θ,f), where f = ∥f∥ˆf, whose torsional 

angles follow the Boltzmann Gibbs distribution (17). Let Rf(s) be the forced Kratky-Porod model with parameters (L,ℓp,ζ,ˆf) and 

suppose the parameters satisfy 

 

 (99) 

 

 (100) 

 

 (101) 

 

Let τ = kBT, and let the dipole moment of each segment remain constant for all N. Set 

 

 (102) 

 

If RN(s) is the forced chain interpolated linearly, then, as converges in distribution to Rf, where 

 

R  (103) 

 

and the unit tangent vector T(s) to the polymer is the solution of the stochastic differential equation 

 

 (104) 

 

with initial condition 

 

T(0) = e3 (a.s.). (105) 

 

Proof. To show the convergence of R ) weakly to RN(s), it is best to consider each vector-valued process in terms of its 

corresponding matrix-valued process, ZN(s) and Z(s), respectively, since we have shown in Lemma 3.7 that ZN converges to Z in 

distribution. Recall that the position vectors depend on the matrix-valued processes as follows: 

 

 [Ns/L] 

RNf (s) = X ZNk e3 ∆s (106) 

 k=1 

 

R  (107) 

 

Since the process ZN is discrete and piecewise continuous, we can express the sum as an integral: 

 

R  (108) 

 

Now, fix s ∈ [0, L], and let ϵ > 0. We wish to show that RN
f ⇒ Rf. We know, from Lemma 3.7, that ZN ⇒ Z. By the topological 

definition of weak convergence, for any continuous bounded linear functional F, it follows that F(ZN) → F(Z). This is a 

consequence of the aforementioned continuity theorem (2.3 in Chapter 2 of [7]). Now, the integral  is such 

a functional, since 

 

 (109) 

 

So it is bounded, and it is continuous because it is an integral of a bounded function. 
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Thus, it follows that F(ZN) ⇒ F(Z); that is, RN
f ⇒ Rf. 

 

The equation (104) for the tangent vector process T(s) follows directly from 

Lemmas 3.10 and 3.11. By L´evy’s theorem, the tangent vector process T(s) is a scaled Brownian motion Q(s) on the sphere, plus 

a drift as given in equation (104). This drift is proportional to the projection of the force vector f onto the normal development of 

T(s) for any given s, as was to be proven. 

Therefore, when the external force is added to the system, the discrete forced Kramers chain converges in distribution to the 

continuous Kratky-Porod model. The spatial differential equation (104) for the tangent vector can be used to describe the position 

and orientation of the molecule in this situation, but it cannot be solved explicitly in all cases. The next section concerns several 

extreme cases, determined by the values of the parameters ζ and ℓp, in which an exact solution can be found. 

 

4. Extreme cases of the forced polymer 

The stochastic differential equation (18), which we derived for the forced Kratky Porod model, cannot be solved explicitly for T, 

due to the quadratic drift term. Thus, we cannot formulate an exact expression for the position vector R(s) of the polymer in this 

model, except in some limiting cases. In our analysis of the unforced model in [11], we discussed the behavior of the Kratky-Porod 

model for extreme values of the persistence length, and we found that as ℓp → ∞, the molecule becomes a rigid rod pointing in the 

initial direction, while as ℓp → 0, the polymer shrinks to a point. 

Now that the force is included in the system, we must also examine the extreme cases for the dimensionless force parameter, ζ, as 

well as ℓp. Investigation of these cases will enable us to divide the space of all possible parameter values ζ and ℓp into regimes, in 

which we expect to observe the polymer in certain states. Some of these are the rigid rod, the compact coil, and a deterministic 

bent polymer which we call the K-curve [1]. This curve is planar, and so the polymer is reduced to a two-dimensional vector-valued 

function of the parameters C = ζ/ℓp and z0, the cosine of the angle between the initial direction T(0) and the unit force vector ˆf. 

Several chemical physicists have examined the relationship between force and extension of the wormlike chain in two dimensions 
[19, 21], often for the case in which the molecule is adsorbed to or embedded in a surface [18]. However, none have considered the 

case in which both force and persistence length simultaneously go to infinity. Yet, some of the sources give results for small and 

large forces for fixed ℓp: the extension goes to zero proportionally to the force as ζ → 0, and to the entire polymer length as ζ → 

∞, forming a rigid rod [19]. This type of transition between the coil and rod also appears in polymers of fixed ℓp when the nature of 

the solvent changes [4]. 

Our goal of this chapter is to characterize the polymer completely, by solving for T(s) and its integral, R(s), in each of these four 

extreme cases. 

 

Characterization of the K-Curve 

Let us begin, then, by considering the case in which the forced worm-like polymer is not affected by any thermal forces (for 

example, if the temperature is absolute zero). Then, the equation (18) becomes 

 

 (110) 

 

Let us assume that the ratio between the force parameter and persistence length is constant: ζ/ℓp = C. Also, let us denote the 

tangent vector in this case by x, rather than T, since it is the solution to a deterministic ordinary vector differential equation. 

 

Lemma 4.1: Let x(s) represent the unit tangent vector to the forced polymer in the lowest energy state, so that it satisfies equation 

(110). Let x(0) be the initial direction of the polymer, ˆf the unit vector in the direction of the force field, and z0 = x(0) ·ˆf. Then 

x(s) has the following deterministic formula: 

 

x(s) = g(s)ˆf + γ(s)ˆf⊥ (111) 

 

Where the component functions g and γ are given by 

 

 (112) 

 

And 

 

γ(s) = p1 − g(s)2 (113) 

 

And the unit vector ˆf⊥ is given by the Gram-Schmidt process: 

 

x(0) − z0
ˆf 

ˆf⊥  (114) 

 

Proof. Recall, as shown in Lemma 2.1, that in the lowest energy state, the polymer is oriented so that it is completely contained in 

the plane spanned by the initial direction vector x(0) and the force vector f. In other words, for all s ∈ [0,L], 

                                                            
1  The author’s doctoral advisor suggested naming it the “Kilanowski curve” after the author himself, but the author prefers the shorter nomenclature. 
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x(s) ∈ S2 ∩ Span{X(0),ˆf} (115) 

 

Thus, the tangent vector can be written in terms of scalar components, g(s) and γ(s), each of which is the projection of x(s) onto 

one of the unit vectors ˆf or ˆf⊥. Additionally, the locus of possible points for x(s) is a great circle along the sphere, which can be 

parametrized by a single scalar, so that the behavior for x(s) can be described by a differential equation in one variable only. The 

fact that x(s) lies on the unit sphere imposes the following restriction on g(s) and γ(s): 

 

g(s)2 + γ(s)2 = 1 (116) 

 

since x(s) · x(s) = 1. We can solve the above equation for γ in terms of g to obtain equation (113). Therefore, the behavior of x can 

be determined from solving a differential equation for g(s). 

Since x(s) obeys equation (110), and since g(s) = x(s) ·ˆf, we can take the inner product of the differential version of equation 

(110) with the vector ˆf to obtain a one-dimensional ordinary differential equation: 

 

dg(s) = C(I − x(s) ⊗ x(s))ˆf ·ˆf ds. (117) 

 

This simplifies (by converting every instance of x to g) to 

 

dg(s) = C(1 − g(s)2)ds. (118) 

 

This ODE is not linear, but it is separable, so it can be solved explicitly. We find that 

 

g(s) = tanh(Cs + K) (119) 

 

An equivalent formulation can also be found using the method of partial fractions. Using the initial condition that g(0) = T(0) ·ˆf = 

z0, we find that 

 

K = tanh−1 z0 (120) 

 

And so equation (112) is satisfied, completing the proof. 

Notice that since for all y, tanh2 y+sech2 y = 1, we have an explicit formula for γ(s): 

 

 (121) 

 

This formula for the tangent vector x(s), in terms of its orthogonal components, can be integrated with respect to arc length to 

obtain the formula for the position vector of the force-driven polymer, in the deterministic stiff limit (the K-curve). This curve will 

have varying shapes, depending on the constant C and the parameter z0, which measures the cosine of the angle that the force 

vector f makes with the initial direction vector x(0), but it can be described by a single formula. 

 

Lemma 4.2: In the low-energy limit, the force-driven Kratky-Porod model depicts a bent chain polymer, whose position Rf(s) 

satisfies a system of equations similar to those governing x(s). 

 

Proof. We know from Lemma 4.1 that the tangent vector lies in a plane, and its two orthogonal components are described by 

equations (112) and (121). Thus, we can integrate each component with respect to s, and the result is the components of Rf(s). 

Again, since the position vector in this case is deterministic, let us denote it by X(s) (so that dX = xds). Write the components as 

 

X(s) = h(s)ˆf + η(s)ˆf⊥ (122) 

 

Recall that the initial condition of X is that X(0) = 0. Then, h has the following formula: 

 

 (123) 

 

Similarly, η is the integral of γ with η(0) = 0: 

 

 (124) 

 

Therefore, equations (122), (123), and (124) give the definition of the position vector X(s) for each s ∈ [0,L]. 

Notice that equation (123) gives a formula for the component of X(s) in the direction of the force equal to 0 when s = 0. 

This gives a picture of how the polymer, in the deterministic limit, behaves and changes with the direction of the force, expressed 

as x(0) · ˆf, and with the ratio of parameters C = ζ/ℓp. However, this only occurs if there is no Brownian motion in the system, that 

is, if there are no thermal forces acting on the molecule, or if all thermal forces are negligible. In terms of the parameters of the 
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polymer, this case occurs when both ζ and ℓp grow towards infinity. In other words, ζ → ∞ means that the system is acted on by an 

irresistible force, and ℓp → ∞ means that the polymer is infinitely stiff; that is, it is an immovable object. 

Since it is impossible to cool the molecule to absolute zero, or make it infinitely stiff, there will always be some thermal force 

term, albeit a small one, in equation (18). Thus, if ϵ is a small parameter, we can re-write the equation in this form, where Tϵ(s) is 

the solution: 

 

√ dTϵ(s) = ϵdQ(s) + C(I − Tϵ(s) ⊗ Tϵ(s))ˆf ds  (125) 

 

and let T0(s) be the solution X(s) to the equation without Brownian motion, namely, the process for which we solved in Lemma 

4.1: 

dT0(s) = C(I − T0(s) ⊗ T0(s))ˆf ds. (126) 

 

This approach is used in [3] and [10] to examine solutions to perturbed stochastic differential equations. Notice that, in order to keep 

the perturbed equation (125) consistent with equation (18), we must let . It follows that as ϵ → 0, ℓp → ∞ and ζ → ∞ as 

well. This corresponds to the extreme case which we are currently examining. Our intention is to show that as ϵ → 0, the solutions 

Tϵ converge in probability to the deterministic solution T0. This we will show using methods from the theory of large deviations. 

 

Lemma 4.3: For each ϵ > 0, let Tϵ(s) be the solution to equation (125) above, and let T0(s) be the solution to the unperturbed 

equation (126). Then, as ϵ → 0, in probability. 

 

Tϵ → T0 (127) 

 

Proof. We prove the assertion by imitating some steps of Theorem 1.1 in Chapter 4 of [10] and filling in the details. Let Tϵ and T0 

be as above. Define the term mϵ(s), for each s ∈ (0,L], to be the following measure of the square of the distance between the two 

processes: 

 

 (128) 

 

We find a bound for mϵ(L) in terms of ϵ, in order to obtain convergence in probability, and we do this by Doob’s L2 maximal 

inequality. This inequality only applies to submartingales, and the quantity Tϵ(s)-T0(s) is a semimartingale, so we take the Doob-

Meyer decompositions for Tϵ and T0, and apply the Doob L2 maximal inequality and parallelogram inequality to the martingale 

part: 

 

mϵ(s) ≤ 8E[∥Tϵ(s) − T0(s)∥2] + 8E[∥Aϵ(s) − A0(s)∥2] (129) 

 

By the same parallelogram inequality, 

 

E[∥Aϵ(s) − A0(s)∥2] ≤ 2E[∥Tϵ(s) − T0(s)∥2] + 2E[∥Mϵ(s)∥2] (130) 

 

And since the driving process is Gaussian, the variance of the martingale part is simple: 

 

E[∥Mϵ(s)∥2] = ϵs (131) 

√  

 

Since the speed of the Brownian motion is ϵ. Therefore, we have the following bound for the squared difference mϵ: 

 

mϵ(s) ≤ 24E[∥Tϵ(s) − T0(s)∥2] + 16ϵs. (132) 

 

To evaluate this expression, let us consider the processes Tϵ and T0 in integral form; then, we obtain this bound for mϵ(s): 

 

 (133) 

 

Where V(T) is defined as the right-hand side of the differential equation (110). Using the parallelogram inequality again, we can 

simplify the above to find 

 

 (134) 

 

Let us now consider each term on the right-hand side of the above inequality. The first term is the variance of a spherical 

Brownian motion, with norm ϵs. For the second term, notice that the integrand is bounded: since V(T(s)) is a unit vector, the 

integrand has norm at most 2. Recall that for any bounded function F on a compact interval [a,b], 
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 (135) 

 

with equality occurring precisely when ∥F∥ is constant on [a,b]. The boundedness of the integrand also allows us to use Fubini’s 

theorem, so that we can interchange the expected value and the integral. Next, notice that the function 

V is Lipschitz continuous: for any x,y ∈ S2, 

 

∥V(x) − V(y)∥ = ∥(I − x ⊗ x)ˆf − (I − y ⊗ y)ˆf∥ (136) 

 

≤ 2∥x − y∥. (137) 

 

Therefore, 

 

 (138) 

 

By combining the differences in the drift and diffusion terms, we obtain 

 

 (139) 

 

and so the bound depends on the integral of mϵ itself. This is a common expression in the theory of differential equations. If we 

divide the above inequality through by s (if s > 0), then we find that 

 

 (140) 

 

which is exactly the condition for Gr¨onwall’s lemma with constant coefficients. Applying the lemma yields 

 

 (141) 

 

Which, when multiplied back through by s, yields the desired bound for mϵ(s) that depends on ϵ only: 

 

mϵ(s) ≤ 64se96C2s2ϵ. (142) 

 

To use this bound to show convergence in probability, let δ > 0 be fixed, and consider mϵ(L), so that the whole interval [0,L] is 

covered. Then, by Chebyshev’s inequality, for any s ∈ [0,L], 

 

 (143) 

 

Which yields the conclusion that Tϵ → T0 in probability (moreover, in L2), as desired.  

 

Results for the Extreme Cases 

Thus, the theory of large deviations allows us to prove that the tangent vector diverges from the tangent to the K-curve by only a 

small amount when ϵ is small, and so when the effect of the thermal forces goes to zero, the stochastic process governing the 

tangent vector converges to a deterministic limit. This provides us with the theoretical machinery necessary to prove the 

convergence of the position vector of the polymer in this extreme case. The other extreme cases can be proven by more 

elementary means. Therefore, we can summarize these results in the following theorem, which is the second main result of this 

dissertation. 

 

Theorem 4.4: (1.2) The forced Kratky-Porod model has the following behavior: 

1. Fix ℓp and let ζ → 0. Then the polymer Rf(s) converges to the Kratky Porod model R(s). 

2. Fix ℓp and let ζ → ∞. Then the polymer converges in probability to a rigid rod in the direction of the force: Rf(s) → sˆf. 

3. Let C = ζ/ℓp be constant, and let ζ → ∞. Then, Rf(s) converges in probability to the curve 

 

X  (144) 

 

Where x is the solution of the ordinary differential equation 
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x˙ = V(x) (145) x(0) = e3  (146) 

 

where 

V(x) = C(I − x ⊗ x)ˆf. (147) 

 

This equation can be solved explicitly, leading to a exact formula for X(s). 

4. Let C = ζ/ℓp be constant as above and let ζ → 0. Then, in probability, Rf(s) shrinks to a point. 

 

Proof. We will examine each extreme case, one at a time. First, let ℓp 
∈ R+ be fixed and let ζ ∈ R+ be a variable parameter, for case 

(1). Denote by T(s;ζ) the solution to equation (18) for the chosen value of ζ; that is, 

 

 (148) 

 

Let T(s;0) represent the solution to the unforced equation: 

 

 (149) 

 

We therefore wish to show that as ζ → 0, ||T(s,ζ) − T(s,0)|| → 0 a.s. From the two above equations, we conclude that 

 

 (150) 

 

The integrand is bounded above by 1, since it is a projection of a unit vector. This yields a deterministic bound for the difference 

of solutions: 

 

 (151) 

 

This shows uniform convergence of T(s;ζ) to T(s;0). To prove convergence of the position vectors, recall that R

and R . 

Thus, the difference between the position vectors satisfies 

 

 (152) 

 

and therefore, Rf → R uniformly, a.s. 

For case (2), let ℓp still be fixed, but now let ζ → ∞. Then, the spherical Brownian motion term will become negligible, as it is 

dwarfed by the drift term. We wish to show that, as ζ → ∞, T(s;ζ) → ˆf in probability. Then it will follow, from the Bounded 

Convergence Theorem, that Rf(s) → sˆf. 

We show this by means of a change in the variable s. Let 

 

T˜(s) = T  (153) 

 

Q˜(s) = Q   (154) 

 

So, it then follows, by the chain rule, that 

 

 (155) 

 

As ζ → ∞, the Brownian motion term vanishes, and T˜(s) converges in probability to the deterministic tangent vector, x(s) as in 

Lemma 4.1, with , by a perturbation argument similar to that of Lemma 4.3. Recall the asymptotic behavior of x(s) as s → 

∞, by examining the component functions, g(s) in the direction of ˆf, and γ(s) in the perpendicular direction, as given by equations 

(112) and (113): 

 

lim g(s) = 1 

s→∞ (156) 

 

lim γ(s) = 0 (157) 
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s→∞ 

 

Regardless of the initial direction parameter z0, since C > 0. Thus it follows that 

 

lim T˜(s) = ˆf, (158) 

s→∞ 

 

In probability. We complete the proof of this part by returning to the original tangent process, T(s). Let s ∈ [0,L] be fixed and 

recall that 

 

T(s) = T˜(sζ) (159) 

 

Thus as ζ → ∞, T˜(sζ) → ˆf, and therefore, T(s) →ˆf in probability. It follows, by the Bounded Convergence Theorem, that 

 

Rf(s) → sˆf (160) 

 

in probability as well. 

For case (3), we have shown, in Lemma 4.3, that in the case in which ζ/ℓp = C and both parameters go to infinity, the tangent 

vector process Tϵ(s) → T0(s) in probability. This process T0(s) is equal in distribution to the solution x(s) of equation (145). 

Therefore, by the Bounded Convergence Theorem, we can interchange limit and integral again, and as ϵ → 0, that is, as ζ,ℓp → ∞, 

Rf(s) converges in probability to the deterministic K-curve, described by X(s), the solution to (144). This limit has the formula 

given by equations (122) and following, as proven in Lemma 4.2. 

Finally, case (4) is similar to the result from [11] about the coiled polymer in the limit that ℓp → 0. In this case, however, we also let 

ζ → 0 at the same time, so that ζ/ℓp = C, a constant. Then, T(s) has the following form: 

 

 (161) 

 

By another change-of-variable argument, similar to the one in case (2), the second term is negligible, and the tangent vector 

process converges in probability to an infinitely fast Brownian motion on the sphere, with a uniform stationary distribution, as ℓp 

→ 0. As the speed of the Brownian motion increases, any two tangent vectors along the polymer become uncorrelated, since for 

all s < t ∈ [0,L], 

 

lim E[T(s) · T(t)] = lim e−|t−s|/ℓp = 0. (162) ℓp→0 ℓp→0 

 

The mean-square end-to-end length R¯2, which is always non-negative, is the double integral of the tangent-tangent correlation 

function: 

 

 (163) 

 

and since the integrand converges to zero in probability, the double integral does the same, by the Bounded Convergence 

Theorem. Thus since the average length of the molecule vanishes, for all s ∈ [0,L], R(s) → 0 a.s., and the polymer shrinks to a 

point. 

This completes our summary of the extreme cases of the forced Kratky-Porod model, for which we can find an approximate 

solution to the differential equation for the tangent vector process T(s) and the position vector Rf(s). While the equation (18) 

cannot be solved explicitly and analytically for all values of the parameters ζ and ℓp, we can construct the forced wormlike chain 

by numerical methods, and then compare the results that we obtain for physical characteristics of the polymer, such as mean-

square end-to-end distance R¯2 and radius of gyration Rg, to the results for the unforced model, calculated in Section 2. The 

numerical scheme (calculated in 2010 using MATLAB) appears in the original dissertation and shows the desired results, namely, 

that the ratio  approaches 12 in the hard rod limit (ζ ≫ ℓp), 6 in the random coil limit (ζ ≪ ℓp), and an intermediate value 

depending on the ratio ζ/ℓp for the K-curve, as the number of segments in the polymer N increases. 

 

5. Conclusion 

The freely rotating chain, combined with its continuous 

analogue, the Kratky Porod model, is a model for polymer 

molecules in dilute solution that has been in use for decades, 

but it was only recently that results about the model, which 

had been known empirically, were proven using the tools and 

methods of stochastic calculus and probability theory. These 

results, such as the fact that the tangent vector along the 

polymer traces out a Brownian motion along the sphere, are 

now mathematical truths, and they can be extended to the case 

in which a uniform force field, in addition to the thermal 

noise, acts on the polymer. In this case, the stochastic 

processes that govern the position of the polymer are 

modified to include the force, and the spherical Brownian 

motion gains a drift term that reflects the fact that the polymer 

is being pulled to line up in the direction of the force. The 

results regarding the physical length scales, such as root-

mean-square length and radius of gyration, which were 

derived for the original Kratky-Porod model, have also been 

altered to allow for the force. Depending on the strength of 

the force and the intrinsic stiffness of the polymer, the 

molecule can be found in the regime of a random coil, a stiff, 
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bent curve, or a rigid rod extending in the direction either of 

the force or of the initial segment. As we deepen our 

understanding of these theoretical models, we can apply them 

to the natural world and gain a greater knowledge of the 

behavior of long polymer molecules, from proteins to DNA, 

which form the foundations for all living matter. 
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