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Abstract 
In this study, the presence of long memory in the volatility process of weekly jute prices in the Samsi and 
Gajol markets of the Malda district (West Bengal) for the period of January 2009 to December 2022 has 
been investigated. For this objective, the ARCH-LM test and Hurst rescaled range (R/S) analysis are used 
to determine the ARCH effect and long memory in the volatility process for the series, and the results 
indicate the presence of the ARCH effect and long memory in conditional variance. Accordingly, the 
GARCH and FIGARCH models have been applied for modelling and forecasting the volatility of the jute 
prices. The wavelet method has been used to estimate the fractional difference parameter in the 
FIGARCH model. The AR (1)-GARCH (1, 1) and AR (1)-FIGARCH (1,0.270,1) models for the Samsi 
market and the AR (1)-GARCH (1,1) and AR (1)-FIGARCH (2,0.284,1) models for the Gajol market are 
found suitable at the training stage based on their minimum AIC and BIC. The forecasting performance 
of these models was evaluated in the validation period with the help of Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) criteria, and the 
residuals were examined to ensure that the fitted models were adequate. Finally, the AR (1)-FIGARCH 
(1,0.270,1) and AR (1)-FIGARCH (2,0.284,1) are found to be the best optimal models for forecasting the 
jute prices in the Samsi and Gajol markets, respectively. 
 
Keywords: Jute prices, volatility, forecasting, GARCH model, FIGARCH model 

 
1. Introduction 
Jute (Corchorus capsularis L.) known as the "Golden Fiber" is one of the major commercial 
cash crops grown in India. It is the cheapest and strongest of the natural fibers and is 
considered the fiber of the future. After cotton, it is the most important fiber crop grown in 
India. India is the world's largest producer of raw jute, accounting for more than half of global 
jute production. Among the states, West Bengal ranks first in area and production of jute in the 
country with a total area of 0.52 million hectares (78.24%) and a total production of 7.61 
million bales (79.68%) with a 2643 kg/hectare productivity during the years 2020–21. 
(Directorate of Economics & Statistics, DA&FW). In recent years modelling and forecasting 
of volatility concerning the long memory is an emerging area of scientific research. Volatility 
refers to changes in economic variables across time. The focus of this study is on changes in 
agricultural prices throughout time. Large price movements that do not reflect market 
fundamentals are problematic as they can lead to wrong decisions. Implied volatility reflects 
the price movements expected by market participants and is measured as the percentage of 
futures price deviation from the underlying expected value of the selected commodity. In 
contrast, the GARCH (Bollerslev, 1986) [2] class of processes has a short memory feature and 
imposes substantially quicker exponential decay rates for the lagged squared residuals. (Baillie 
et al., 1996) [1]. The FIGARCH model, for instance, allows only a slow hyperbolic rate of 
decay for lagged squared or absolute innovations in the conditional variance function. (Tayefi 
and Ramanathan, 2012) [14]. In particular, the fractionally integrated GARCH model 
(FIGARCH) can be used for time series that display long memory in conditional variances. 
Several studies have been conducted in the country for modelling time series in the presence of 
volatility: Shireesha et al. (2016) [13] investigated the price volatility of turmeric in the 
country's major markets as well as future prices using ARCH-GARCH analysis, and they 
observed persistent volatility in market price series and futures prices. Khatkar et al. (2013) [7],  
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Paul et al. (2015) [10], and Devi Bhavani et al. (2015) [3] 

conducted similar studies on commodities markets. Paul et al. 

(2016) [11] investigated the presence of long-memory features 

in the (log and squared log) return series and volatility of the 

daily spot price of gram in the Delhi market using GARCH, 

FIGARCH and several extension of GARCH. The study 

revealed that the FIGARCH model has better predictive 

accuracy compared to all other models. Similar works have 

been done by Paul et al. (2015) [12] and Lama et al. (2020) [8]. 

 

2. Materials and Methods  

2.1 Data Description 

In order to carry out our analysis, historical weekly jute price 

data for Samsi and Gajol markets of Malda district has been 

taken from the Agricultural Marketing Information Network 

(https://agmarknet.gov.in) portal for the periods of January 

2009 to December 2022 (672 weeks) and January 2010 to 

December 2022 (624 weeks), respectively. In the present 

study, statistical analyses have been carried out using the 

powerful software “RStudio” (https://www.rstudio.com).  

 

2.2 Methodology 

2.2.1 ARCH-LM Test  

A methodology to test for the ARCH effect in univariate time 

series models using the Lagrange multiplier test was proposed 

by Engle (1982) [4]. Let 𝜀𝑡 be the residual series. Using LM 

test the squared series { 𝜀𝑡
2} is examined for the presence of 

conditional heteroscedasticity, vis-à-vis the ARCH effects. 

The test is equivalent to usual 𝐹-statistic for testing null 

hypothesis 𝐻0: 𝑎𝑖 =  0, 𝑖 = 1,2, … , 𝑞 i.e., absence of ARCH 

effect against alternative hypothesis 𝐻𝐴: at least one of the 

estimated 𝑎𝑖 coefficients must be significant i.e. presence of 

ARCH effect in the linear regression: 

 

𝜀𝑡
2 = 𝑎0 + 𝑎1𝜀𝑡−1

2 + 𝑎2𝜀𝑡−2
2 + ⋯ + 𝑎𝑞𝜀𝑡−𝑞

2 + 𝑒𝑡;  𝑡

= 𝑞 + 1, … … , 𝑇 

 

Where, 𝑒𝑡 denotes error term, 𝑞 is pre-specified positive 

integer and 𝑇 is sample size. ARCH-LM statistic has an 

asymptotic distribution similar to that of a chi-squared 

random variable with 𝑞 degrees of freedom.  

 

2.2.2 Long Memory process  

The concept of long memory, or long-range dependence, is an 

important one in time series analysis. A long memory feature 

occurs when the autocovariances for a stationary time series 

tend to zero like a power function but more slowly than an 

exponential decay. In this study, the Hurst exponent method 

(Hurst, 1951) [5] has been used to test the long memory. 

Hurst’s rescaled range (R/S) statistic is the range of partial 

sums of deviations of a time series from its mean, rescaled by 

its standard deviation. The least square method is applied to 

these values and a regression is run, obtaining an estimate of 

the slope of the regression line. This estimate is a measure of 

the Hurst exponent, which is an indicator of market 

persistence. The value of Hurst exponent (𝐻) varies from 0 to 

1. If 0.5 < 𝐻 < 1, it implies the presence of persistent long 

memory in the time series.  

For estimating the long memory parameter (𝑑) of FIGARCH 

model, the algorithm based on wavelet (Jensen, 1999) [6] is 

followed. 

 

2.2.3 GARCH Model 

The ARCH (𝑞) model for the real-valued discrete-time 

stochastic process {𝜀𝑡} is defined by specifying the 

conditional distribution of 𝜀𝑡 given the information 𝛹𝑡−1 

available up to time 𝑡 − 1, whenever 

 

𝜀𝑡|𝛹𝑡−1~𝑁(0, ℎ𝑡) and 𝜀𝑡 = 𝜉𝑡√ℎ𝑡 

 

ℎ𝑡 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2

𝑞

𝑖=1

 

 

Where is {𝜉𝑡} a white noise process i.e., 𝜉𝑡 ~ IID (0,1). Where 

𝜔 > 0, 𝛼𝑖 ≥ 0 for all 𝑖 𝑎𝑛𝑑 ∑ 𝛼𝑖 < 1
𝑞
𝑖=1  are required to be 

satisfied to ensure non-negativity and finite unconditional 

variance of stationary {𝜀𝑡} series. Thus, by definition, the 

{𝜀𝑡} process is serially uncorrelated with mean zero, but the 

conditional variance of the process, ℎ𝑡, is changing over time. 

Bollerslev (1986) [2] and Taylor (1986) [15] proposed the 

Generalized ARCH (GARCH) model independently of each 

other, in which conditional variance is also a linear function 

of its own lags and has the following form. 

 

ℎ𝑡 = 𝜔 + ∑ 𝛼𝑖𝜀𝑡−𝑖
2

𝑞

𝑖=1

+ ∑ 𝛽𝑗ℎ𝑡−𝑗

𝑝

𝑗=1

 

 

A sufficient condition for the conditional variance to be 

positive is 𝜔 > 0, 𝛼𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑞; 𝛽𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑝. 

The GARCH (𝑝, 𝑞) process is weakly stationary if and only if 

∑ 𝛼𝑖
𝑞
𝑖=1 + ∑ 𝛽𝑗

𝑝
𝑗=1 < 1. The sum of (𝛼𝑖 + 𝛽𝑖) gives the degree 

of persistence of volatility in the price series. Closer the sum 

to one, greater is the tendency of price volatility to persist for 

long time. If the sum exceeds one, it indicates an explosive 

time series with a tendency to meander away from mean value 

(Shireesha et al., 2016) [13]. 

 

2.2.4 FIGARCH Model 

Baillie et al. (1996) [1] proposed the FIGARCH (𝑝, 𝑑, 𝑞) model 

as one way of modelling long memory in volatility. They 

develop the FIGARCH (𝑝, 𝑑, 𝑞) model by allowing the 

differencing parameter in the IGARCH (p, q) model to take 

non-integer values as follows 

 

𝜙(𝐿)(1 −  𝐿)𝑑𝜀𝑡
2 = 𝜔 + [1 − 𝛽(𝐿)]𝜂𝑡 

 

Where 𝑑 is a fraction 0 <  𝑑 <  1, 𝜂𝑡 = 𝜀𝑡
2 − ℎ𝑡 and all the 

roots of 𝜙(𝐿) = [1 − 𝛼(𝐿) − 𝛽(𝐿)](1 −  𝐿)−1 of order 𝑚 − 1 

and [1 − 𝛽(𝐿)] lie outside the unit circle. 

An overall check of model adequacy is provided by the 

Ljung-Box 𝑄 statistic (1978) [9] which tells whether residuals 

follow a white noise process.  

 

2.2.5 Information criteria and accuracy measures 

In this paper, we used two widely applied criterion Akaike 

information criterion (AIC) and the Bayesian information 

criterion (BIC) to select the best model among a set of 

candidate models. 

 

Akaike’s Information criteria (AIC) = 𝑛 𝑙𝑛(𝑆𝑆𝐸) − 𝑛 𝑙𝑛(𝑛) +
2(𝑘 + 1) 

 

Bayesian Information criteria (BIC) = 𝑛 𝑙𝑛(𝑆𝑆𝐸) − 𝑛 𝑙𝑛(𝑛) +
(𝑘 + 1) 𝑙𝑛(𝑛) 

 

Where, 𝑛 is sample size and 𝑘 is number of predictor terms 

so (𝑘 + 1) is total number of parameters in the model being 
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evaluated. The model with the lowest AIC and BIC values are 

treated as the best model. Furthermore, the RMSE, MAE and 

MAPE are used as an accuracy measure to evaluate the 

performance of the models. 

 

Root Mean Square Error (RMSE) = √∑
(𝑦𝑖−𝑦�̂�)2

𝑛

𝑛
𝑖=1  

 

Mean Absolute Error (MAE) =
∑ 𝑦𝑖−𝑦�̂�

𝑛
𝑖=1

𝑛
 

 

Mean Absolute Percentage Error (MAPE) =
100

𝑛
∑ |

𝑦𝑖−𝑦�̂�

𝑦𝑖
|𝑛

𝑖=1  

 

Where, 𝑦𝑖 and 𝑦�̂� are the actual value and predicted value of 

response variable. 

3. Results and Discussions 

3.1 Primary statistical analysis 

The weekly series of jute prices for the Samsi and Gajol 

markets of West Bengal are shown in Figure 1(a-b), which 

depict a gradually up-and-down pattern. The descriptive 

statistics to summarize information from the weekly jute price 

data are listed in Table 1. As Table 1 shows, the series of jute 

prices in the Samsi market has a mean of 3657.36, a standard 

deviation of 1381.23, and a 37.77% coefficient of variation, 

while the Gajol market has a mean of 3873.07, a standard 

deviation of 1437.66, and a 37.12% coefficient of variation, 

suggesting presence of volatility. In addition, skewness and 

kurtosis statistics show that the price series is not normally 

distributed.

 

 
 

Fig 1: Weekly jute price series for the Samsi and Gajol markets, including all structural breaks and confidence intervals. 

 
Table 1: Descriptive statistics 

 

Markets No. of observations Min Max Mean Median SD CV (%) Skewness Kurtosis 

Samsi Market 672 1650 7836 3657.36 3200 1381.23 37.77 0.95 3.25 

Gajol Market 624 1760 8543.56 3873.07 3455.59 1437.66 37.12 0.97 3.26 

 

To begin with the implementation of GARCH and FIGARCH 

models, the data series are divided into two sets: the training 

set and the testing set. In the first step, the models are fitted to 

the training data set consisting of 538 observations taken from 

the Samsi market and 499 observations from the Gajol 

market. Thereafter, the said models are validated using the 

test data sets consisting of the last 134 and 125 observations 

for the Samsi and Gajol markets, respectively. 

 

3.2 Test for volatility 
The first step in implementing the GARCH and FIGARCH 

models is to determine whether or not the time series is 

volatile. In order to test for volatility, the AR(p) model is first 

fitted to the jute price series data of the two markets. AR(1) 

models are judged to be acceptable for the data under 

consideration based on the partial autocorrelation function 

and AIC, BIC, MAE, RMSE, and MAPE values. In the next 

step, the residuals of the fitted AR (1) models are obtained 

and graphically depicted in Figure 2(a-b), which explain the 

phenomenon of volatility clustering, In other words, a large 

fluctuation is likely to follow a previous large fluctuation, 

whereas a small fluctuation is likely to follow a previous 

small fluctuation. 
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Fig 2: Residuals of fitted AR (1) models a. in the Samsi market b. in the Gajol market 
 

Again, the presence of the ARCH effect was investigated for 

both the residuals and squared residuals series. The results of 

the ARCH-LM test are shown in Table 2, where p-values for 

all series are less than 5%, indicating that the null hypothesis 

of constant variance is rejected. Rejecting 𝐻0 implies that the 

ARCH effect exists in the residuals and squared residuals 

series. 

 
Table 2: ARCH-LM test for residuals and squared residuals 

 

Test used: ARCH-LM test, Data: residuals and squared 

residuals of AR (1) Null Hypothesis: There is no ARCH effect 

Data series Chi-squared Df p-value 

Samsi residuals 37.134 12 0.0002125 

Samsi squared residuals 476 12 0.00 

Gajol residuals 112.46 12 < 2.2e-16 

Gajol Squared residuals 46.447 12 5.81e-06 

 

3.3 Test for long memory and estimation  

The presence of long memory in both the residuals and 

squared residuals series is confirmed by investigating the 

autocorrelation function (ACF) plot. The results, shown in 

Figures 3-4 indicate that the autocorrelation functions of the 

residuals are small and the ACF plots have no particular form. 

Most of the autocorrelation values stay inside the 95% 

confidence intervals. This is suggestive of their short memory 

property. However, the autocorrelation functions of the 

squared residuals, on the other hand, are greater and remain 

significant over many lags. More crucially, they decay slowly, 

indicating that the time series are highly autocorrelated up to a 

considerable lag.  

 

 
 

Fig 3: ACF and PACF plots of squared residuals for weekly jute 

prices in the Samsi market 

 

 
 

Fig 4: ACF and PACF plots of squared residuals for weekly jute prices in the Gajol market 
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Accordingly, the presence of long memory in conditional 
variance is tested as discussed in Section 2.2.2, and it is found 
that the R/S Hurst values (𝐻) of squared residuals for Samsi 
and Gajol markets are 0.595 and 0.588, respectively (Table 3) 
(higher than 0.5), which firmly conclude the existence of the 
long memory characteristic in volatility. Models using the 
long memory property are very sensitive to the estimation of 
the long-memory parameter 𝑑 (i.e., the fractional differencing 
parameter). Hence, it has been estimated by using the 
wavelet-based ordinary least squares estimator and presented 
in Table 3. 
 

Table 3: Long memory tests for squared residuals series 
 

Data series 
R/S Hurst Method 

(H) 
Long memory 
parameter (d) 

Squared residuals (Samsi) 0.595 (𝐻 > 0.5) 0.270 

Squared residuals (Gajol) 0.588 (𝐻 > 0.5) 0.284 

 
3.4 Model Identification  

Once the presence of volatility and long memory in the 
volatility are confirmed in the data, we proceed with our 
analysis to further estimate the parameters of both of the 
conditional mean and conditional variance equations. For this 
purpose, we employed the GARCH and FIGARCH models. 
To establish GARCH (𝑝, 𝑞) and FIGARCH (𝑝, 𝑑, 𝑞) models, 

the values of 𝑝, 𝑞 and 𝑑 must be determined. In the above 

section, we have identified the value of 𝑑, and thereafter we 
proceed to specify the models. In the identification stage, we 
generate different AR (1)-GARCH (𝑝, 𝑞) and AR (1)-

FIGARCH (𝑝, 𝑑, 𝑞) specifications with different combinations 

of 𝑝 and 𝑞, where 𝑝 and 𝑞 are either 1 or 2, which are listed in 
Table 4. The different specification models were compared 
based on AIC and BIC criteria to select the best model. Thus, 
the models selected for the training period for the Samsi 
market are AR1(1)-GARCH (1,1), and AR(1)-FIGARCH 
(1,0.270,1), while for the Gajol market, they are AR1(1)-
GARCH (1, 1), and AR(1)-FIGARCH(2, 0.284, 1). 

 
Table 4: AIC and BIC values of the AR (1)-GARCH(𝑝, 𝑞) and AR(1)-FIGARCH(𝑝, 𝑑, 𝑞) models 

 

Samsi Market 

AR (1)-GARCH(𝒑, 𝒒) AR (1)-FIGARCH (𝒑, 𝟎. 𝟐𝟕𝟎, 𝒒) 

Model AIC BIC Model AIC BIC 

AR (1)-GARCH (1,1) 6628.692 6650.131 AR (1)-FIGARCH (1,0.270,1) 6662.832 6688.559 

AR (1)-GARCH (1,2) 6630.763 6656.49 AR (1)-FIGARCH (1,0.270,2) 6662.722 6692.737 

AR (1)-GARCH (2,1) 6630.600 6656.327 AR (1)-FIGARCH (2,0.270,1) 6667.289 6697.304 

AR (1)-GARCH (2,2) 6632.427 6662.442 AR (1)-FIGARCH (2,0.270,2) 6931.542 6965.845 

Gajol Market 

AR (1)-GARCH(𝑝, 𝑞) AR (1)-FIGARCH(𝑝, 0.284, 𝑞) 

Model AIC BIC Model AIC BIC 

AR (1)-GARCH (1,1) 6072.591 6093.654 AR (1)-FIGARCH (1,0.284,1) 6131.261 6156.536 

AR (1)-GARCH (1,2) 6075.554 6100.83 AR (1)-FIGARCH (1,0.284,2) 6343.36 6372.848 

AR (1)-GARCH (2,1) 6075.52 6100.795 AR (1)-FIGARCH (2,0.284,1) 6056.692 6086.18 

AR (1)-GARCH (2,2) 6077.514 6107.003 AR (1)-FIGARCH (2,0.284,2) 6405.154 6438.855 

 
3.5 Parameter estimation 
The estimated parameters of the selected models at the end of 
the training period are reported in Table 5. A perusal of Table 
5 indicates that all the parameters are statistically significant. 
For the volatility component, the long memory parameter 𝑑 
(i.e., d-Figarch) is also significant at the 5% significance 
level, indicating the presence of long-range memory 
phenomenon for volatilities. The price volatility was captured 
through ARCH-GARCH analysis, i.e., the sum of α and β 

coefficients (𝛼𝑖 + 𝛽𝑖) in GARCH models close to one 
indicates the persistence of volatility in the markets. These 
results confirmed that there is persistent volatility in jute 
prices in the Gajol market (0.99), whereas no persistence 
volatility was found in the Samsi market (0.510) (Table 5). 
The conditional variance of the best fitted GARCH and 
FIGARCH models, depicted in Figures 5-6, indicates that 
conditional variance is very much time dependent. 

 
Table 5: Parameter estimates 

 

 Samsi Market  Gajol Market 

Parameter Estimate Std. Error 𝒕-values 𝒑-values Estimate Std. Error 𝒕-values 𝒑-Values 

 AR1(1)-GARCH (1,1)  AR1(1)-GARCH (1,1) 

 Mean equation Mean equation 

Constant 1654.99 140.08 11.81 0.000 3045.42 77.72 39.19 0.00 

AR(1) 1.00 0.00 345.01 0.000 0.99 0.01 75.15 0.00 

 Variance equation Variance equation 

Constant 6927.70 1082.50 6.40 0.000 802.60 351.25 2.29 0.02 

Alpha1(𝛼1) 0.21 0.05 3.88 0.000 0.331 0.05 6.04 0.00 

Beta1(𝛽1) 0.30 0.09 3.24 0.001 0.668 0.06 11.89 0.00 

𝛼1 + 𝛽1 0.510    0.999    

 AR(1)-FIGARCH (1,0.270,1) AR(1)-FIGARCH (2,0.284,1) 

 Mean equation Mean equation 

Constant 1662.75 132.14 12.58 0.000 3524.600 35.11523 100.37 0.000 

AR(1) 1.00 0.00 334.48 0.000 0.996 0.003941 252.76 0.000 

 Variance equation Variance equation 

Constant 868.13 265.36 3.27 0.001 721.650 6.625684 108.92 0.000 

d-Figarch 0.27 0.09 3.11 0.002 0.284 0.00075 378.58 0.000 

Alpha1(𝛼1) 0.76 0.03 24.50 0.000 0.941 0.001761 534.16 0.000 

Alpha2(𝛼2) - - - - 0.090 0.000151 598.29 0.000 

Beta1(𝛽1) 0.80 0.05 17.47 0.000 0.860 0.003848 223.54 0.000 
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Fig 5: Squared residuals vs. conditional variance of fitted AR (1)-

GARCH (1, 1) and AR (1)-FIGARCH (1,0.270,1) models for the 

jute prices of Samsi market 

 

 
 

Fig 6: Squared residuals vs. conditional variance of fitted AR (1)-

GARCH (1, 1) and AR (1)-FIGARCH (2,0.284,1) models for the 

jute prices of Gajol market 

 

3.6 Validation and Diagnostic checking 

The model validation process is concerned with examining 

residuals obtained from fitted models to see if they contain 

any systematic pattern that could still be removed to improve 

the chosen models. This has been done through the Ljung-

Box diagnostic test, and it is found that the all 𝑝-values of the 

Ljung-Box test are more than 5% (Table 6), which means that 

the model residual meets the assumption of white noise 

residuals. The evaluation of forecasting performance has been 

done for the test set as an out of-sample period of the last 134 

and 125 observations for the Samsi and Gajol markets, 

respectively. Table 6 represents the results of the models 

based on the three different accuracy performance measures: 

MAE, RMSE, and MAPE.  

 
Table 6: Validation of estimated models 

 

Method MAE RMSE MAPE Ljung-Box test 

Samsi Market 

AR1(1)-GARCH (1, 1) 104.488 199.579 1.830 0.538 [0.463] 

AR (1)-FIGARCH (1, 

0.270, 1) 
104.011 199.711 1.824 

0.253 [0.615] 

 

Gajol Market 

AR1(1)-GARCH (1, 1) 152.220 250.633 2.428 2.575 [0.109] 

AR (1)-FIGARCH (2, 

0.284, 1) 
147.110 251.128 2.354 0.351 [0.553] 

𝑝-values of the Ljung & Box statistics are reported between square 

brackets. 

As shown in Table 6, comparing the validation results of all 

the models indicates that all are likely to perform well in the 

forecasting phase, and it is observed that the AR(1)-

FIGARCH (1, 0.270, 1) and AR (1)-FIGARCH (2, 0.284, 1) 

models produce the lowest MAE, RMSE, and MAPE for 

Samsi and Gajol markets, respectively. It can be concluded 

that the FIGARCH models are the most accurate compared to 

the GARCH model in the presence of long memory in 

volatility, where predictions indicate that there are narrow 

differences between the actual and predicted values of jute 

prices (Figures 7-8). Finally, two models i. e. AR (1)-

FIGARCH (1, 0.270, 1) and AR (1)-FIGARCH (2, 0.284, 1) 

are found to forecast accurately the weekly jute prices in the 

Samsi and Gajol markets of West Bengal, respectively. 

 

 
 

Fig 7: Plot of AR (1)-FIGARCH (1, 0.270, 1) model with training 

and validation period 

 

 
 

Fig 8: Plot of AR (1)-FIGARCH (2, 0.284, 1) model with training 

and validation period 

 

4. Conclusion and Future Scope 

The aim of this paper is to introduce an appropriate model for 

modelling and forecasting the volatility of weekly jute prices 

in the Samsi and Gajol markets of the Malda district (West 

Bengal). For this purpose, the ARCH-LM test and Hurst 

rescaled range (R/S) analysis are employed to identify the 

ARCH effect and long memory in the volatility of the series. 

The presence of the ARCH effect and long memory in 

conditional variance found for jute prices indicates that it 

would be better to develop and employ the GARCH and 

FIGARCH models. We considered wavelet methods for 

Years

P
ric

e 
V

ol
at

ili
ty

2010 2012 2014 2016 2018 2020

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5 Squared residuals

Conditional variance for AR(1)-GARCH(1,1)

Conditional variance for AR(1)-FIGARCH(1,0.270,1)

Years

P
ric

e 
V

ol
at

ili
ty

2010 2012 2014 2016 2018 2020

0
50

00
00

10
00

00
0

15
00

00
0

Squared residuals

Conditional v ariance f or AR(1)-GARCH(1,1)

Conditional v ariance f or AR(1)-FIGARCH(2,0.284,1)

0 100 200 300 400 500 600

20
00

30
00

40
00

50
00

60
00

70
00

80
00

AR(1)- FIGARCH(1,0.270,1) Model 
(Samsi Market)

Weeks

Ju
te

 P
ric

es
 (R

s/
Q

tls
) Training Period

Validation

Period

Actual series

Fitted series
Predicted series

0 100 200 300 400 500 600

20
00

30
00

40
00

50
00

60
00

70
00

80
00

AR(1)- FIGARCH(2,0.284,1) Model 
(Gajol Market)

Weeks

Ju
te

 P
ric

es
 (R

s/
Q

tls
)

Training Period

Validation

Period

Actual series

Fitted series
Predicted series

https://www.mathsjournal.com/


 

~124~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

estimating the fractional difference parameter. The AR-

GARCH and AR-FIGARCH models are fitted to the jute 

price series, and the tentative models selected at the training 

stage are the AR (1)-GARCH (1,1) and AR (1)-FIGARCH 

(1,0.270,1) models for the Samsi market and the AR (1)-

GARCH (1,1) and AR (1)-FIGARCH (2,0.284,1) models for 

the Gajol market, based on the minimum AIC and BIC values. 

Based on forecasting performances, a comparative study has 

been made between the tentatively selected models, and 

finally, the AR (1)-FIGARCH (1,0.270,1) and AR (1)-

FIGARCH (2,0.284,1) are found to be the best optimal 

models to forecast the jute prices for the Samsi and Gajol 

markets, respectively. The model demonstrated good 

performance in terms of explained variability and predicting 

power. The study has revealed that the FIGARCH model is 

efficient for capturing and forecasting volatility phenomena, 

especially for data with the long memory property in 

conditional variance. 
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