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Abstract 

This paper uses an efficient iterative method to approximate the solution of a nonlinear delay integral 

equation in hyperbolic spaces. A numerical example is given to support our main results. Our result 

improves several existing iterative methods in the literature. 
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1. Introduction 

Fixed point theory is concerned with some properties which ensure that a self-map M  

defined on a set B  admits at least one fixed point. By fixed point of 
,M

we mean a point 

Bw  which solves an operator equation Mww  , known as fixed point equation. Now, let 

 MwwBwMF  :)(
 stand for the set of all fixed points of .M The theory of fixed 

point plays significant role in finding the solutions of problems which arise in different 
branches of mathematical analysis. For some years now, the advancement of fixed point theory 
in metric spaces has captured considerable interests from many authors as a result of its 
applications in many fields such variational inequality, approximation theory and optimization 
theory. 
Banach Contraction principle still remains one of the fundamental theorems in analysis. It 

states that if 
),( dB

 is a complete metric space and BBM :  fulfills 
 

   hfedMhMfd ,, 
               (1) 

 

For all Bhg , with 
 ,1,0e

 then there exists a unique fixed point of .M  Mappings 
satisfying (1.1) are known as contraction mappings. 

In this work, we will consider the following 
*A  iterative method introduced in [6]: 
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where }{ m and 
}{ m are sequences in ).1,0(  The authors showed that 

*A  iterative algorithm has 
a better rate of convergence than most leading iterative algorithms for almost contraction 
mappings and Suzuki generalized non-expansive mappings.  
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In recent years, several methods have been developed to solve nonlinear integral equations, see for example [3-6, 9, 7, 8]. 

Delay integral equations play significant role in mathematical science and engineering. A large classof initial and boundary valued 

problems can be transformed into Volterra integral equations. These equations are applied in mathematical physics models such as 

electric circuits, conformal mapping, scattering in quantum mechanics, diffraction problems, electromagnetic scattering problems, 

propagation of elastical and acoustical waves (see [10] and the references therein). 

 

Let the interval 
  dcdcI  ,

be fixed. We will consider the space 
)(IC

 of all continuous functions endowed with the 

metric 

 

)(

)()(
sup),(

z

zhzg
hgd

Iz 





 

 

Where
  ,0: I

is a non-decreasing continuous function and 
)(, IChg 

It is known that 
 dIC ),(

is a complete metric 

space and hence a hyperbolic space [1]. 

In this article, we consider the following delay nonlinear Volterra integral equation: 

 

,)))((),(,,()()( 




 

z

c
dwggzpzfzg 

                (3) 

 

Where )()(:,, ICICIz   is a bounded function, CIf : and CCCIIp : arecontinuous functions and 

IIw : is a continuous function with 
zzw )(

, for all .Iz a 

We assume that the following conditions hold: 

(C1) Let CIf : and IIw : be continuous functions such that ,)( zzw   for all .Iz  

(C2) If the functions   ,0:, II  are continuous and satisfy 
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c
zMdzz )()(, 1
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c
zMdzz )()(, 2

 
 

 .1,0, 21 MM
Then the continuous function 

CCCIIp :
satisfies 

 

))((),(,,())((,,(  whhzpwgzp 
 

 

,))(())((),()()(),(  whwgzhgz 
 

 

(C3) The function 
CIC )(:

 is bounded such that if there exists 
,0
 then we have 

 

  ).,()(),( 212 ppdppd  
(C4) 

).1( 21  MM
 

 

In [2], Castro and Guerra showed that under the assumptions (C1)–(C4), the problem (1.3) possess a unique solution in C(1). 

Our aim in this section is to approximate the unique solution of the delay nonlinear Volterra integralequation via our efficient 

iterative algorithm (1.2). Our main result in this section is given in the 

 

Following theorem 

 

Theorem 1.1. Suppose all the conditions (C1)–(C4) are satisfied. Then the problem (1.3) has a uniquesolution 
)(ICl

and the 

sequence 
 mg

 defined by (1.2) converges to .l  

 

Proof. Suppose 
 mg

 is a sequence defined by (1.2). Define an operator 
)()(: ICICK 

  by 
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Where
Iz ,

and 
).(ICg

 We now show that 
lgm 

as .m  

From (1.2), setting 
 lKggu mmmmm ,)1(  

and 
  ,1 mmmmm Kjjs  

we have 
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                (1.6) 

Since 
10  m and by assumption (C4) we have 

.1)( 21 MM
So, (1.6) yields  

 

).,(),( lgdlud mm 
                      (1.7) 
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Also,  
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Since 
10  m and by assumption (C4) we have 

.1)( 21 MM
so (1.8) yields  
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  ).,(, ljdlsd mm 
                       (9) 

From (1.2) and (1.7), we have  
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Using (1.2), (1.9) and (1.10), we have 
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Also, by following similar arguments to those given above, we have the following inequalities: 
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And 

 

),(),(),( 1 lgdlhdlgd mmm                      (14) 

 

If we put 
,),( mm lgd 

then (1.14) takes the form 
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is a monotone decreasing sequence of real numbers. Furthermore, it is a bounded sequence, so we have 
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Example 1.2. Consider the integral equation 
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 be defined by
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 clearly, the functions 
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 and 

IIw : are continuous with 
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. Furthermore, the function 
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 is continuous such 
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From (1.16), we can see that the functions 
  ,0:, II

 are defined by 
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 as follows: 
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It easy to 

check that the function 
]5,1[,)(  zzzg

 is the unique solution of the problem (1.15). Thus, all the assumptions in Theorem 

1.1 are satisfied. Hence, 
}{ mg

 converges to the unique solution of (1.15). 
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