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Abstract 
The Ghana stock market is considered attractive to both local and international investors, as it is a 
developing market with potential for growth. The volatility of stock returns is one of the crucial features 
of Ghana's stock market that should be carefully taken into account by any investor or policymaker. As a 
result, the GARCH, TGARCH, and EGARCH models were used in this study to analyze the volatility of 
the Ghanaian stock market. The models were assessed using Akaike Information Criterion (AIC), RMSE 
and MAPE. The TGARCH (1,1) with generalized error distribution was the model that suited the data the 
best based on the AIC, RMSE, and MAPE values. 
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1. Introduction 
Wealth creation is the aim of every investor as the value of financial assets changes over time. 
The stock market is a desirable place to invest. A stock market may be defined as the 
regulatory environment that permits the trading of shares of several businesses or 
organizations (Gregoriou, 2009) [1]. Long regarded as significant economic development 
stimulators are stock exchanges. They give people and organizations that want to invest their 
savings or extra money by buying securities access to a regulated market for trading securities. 
Since the Ghana Stock Exchange is a developing market, both local and foreign investors are 
thought to be interested in taking advantage of the chance to make money on stock market. 
The volatility of stock returns is one of the crucial factors that must be carefully taken into 
account by any investor or policymaker (Dufitinema, 2021 Henriksen, 2011) [2, 3]. Volatility 
refers to a statistical calculation that measures the level of dispersion or variability in the 
returns of a particular security or market index (Brooks, 2008) [4]. In the last three decades, 
scholars and finance industry experts have placed considerable importance on modeling and 
forecasting asset return volatility. This heightened focus is attributed to the significance of 
volatility in various economic and financial contexts, including portfolio optimization, risk 
management, and as an indicator of the potential risk associated with future changes in asset 
returns. 
According to Tsay (2010) [5] one unique characteristic of volatility is that it is difficult to 
directly see the conditional variance of returns on the underlying assets. Since this conditional 
variance may be estimated accurately, financial analysts are particularly eager to do so in order 
to optimize portfolio allocation. In order to evaluate the conditional volatility of financial 
assets, a variety of models have been created since the 1980s. One such example is the Auto 
Regressive Conditional Heteroskedastic (ARCH) model, which was developed by Engle 
(1982) [6]. Bollerslev (1986) [7] introduced the Generalized ARCH (GARCH) model which has 
been useful in modeling volatility of modern financial time series. There have been other 
extensions to the GARCH model which includes the exponential GARCH (EGARCH) by 
Nelson (1991) [8] and GJR-GARCH by Glosten et al. (1993) [9], which is similar to the 
Threshold GARCH (TGARCH) by Zakoin (1994) [10].  
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Since then, many empirical applications of modeling the volatility of financial time series have been made using various 
specifications of these models and their numerous expansions. These include the work of Zakoin (1994) [10], Theodossiou and Lee, 
(1995) [11], Karmakar (2007) [12] Angabini and Wasiuzzaman (2011) [13], Lim and Sek (2013) [14], Ugurlu et al. (2014) [15], Lu et al. 
(2016) [16] and Ndei et al. (2019) [17]. 
While many studies have investigated stock market volatility in other countries, relatively little is known about the dynamics of 
volatility in the Ghanaian market. This research seeks to fill this gap by analyzing the historical data of the Ghana stock market to 
uncover the patterns of volatility in the market. The proposed research aims to address the current gap in the literature by 
exploring the volatility of the Ghana stock market using the GARCH family of models. By using these models, this research can 
provide insights into the dynamics of volatility in the Ghana stock market and inform the development of risk management 
strategies for investors and policymakers. 
 
2. Materials and Methods  
2.1 Standard Garch Model 
The GARCH model by Bollerslev (1986) [7] was developed to overcome the weakness in the ARCH model (Dralle, 2011) [18] and 
has the following form 
 
𝑥𝑥𝑡𝑡 = 𝜀𝜀𝑡𝑡𝜎𝜎𝑡𝑡  
 
𝜎𝜎𝑡𝑡2 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑖𝑖𝑥𝑥𝑡𝑡−𝑖𝑖2 +𝑝𝑝

𝑖𝑖=1 ∑ 𝛽𝛽𝑖𝑖𝜎𝜎𝑡𝑡−𝑗𝑗2𝑞𝑞
𝑗𝑗=1   (1) 

 
here 𝜀𝜀𝑡𝑡is iid with mean 0 and variance 1 and 𝑥𝑥𝑡𝑡represent a discrete-time stochastic process. One condition that is enough to 
warrant the positivity of the conditional variance is: 𝛼𝛼0 > 0, 𝛼𝛼𝑖𝑖 ≥ 0for 𝑖𝑖 = 1,2, . . . , 𝑝𝑝, 𝛽𝛽𝑗𝑗 ≥ 0, 𝑗𝑗 = 1,2, . . . , 𝑞𝑞. If and only if 
∑ 𝛼𝛼𝑖𝑖 +𝑝𝑝
𝑖𝑖=1 ∑ 𝛽𝛽𝑖𝑖

𝑞𝑞
𝑗𝑗=1 < 1 then GARCH (p, q) is weakly stationary (Lamma et al., 2015) [19]. 

 
2.2 Exponential GARCH Model 
The EGARCH model is another model which is asymmetric model and takes into account the impact of price changes' leverage 
effects on the conditional variance. (Mohammed et al., 2020) [20]. It was first introduced by (Nelson, 1991) [8]. 
The EGARCH (p, q) model is given in equation (2). 
 
𝑥𝑥𝑡𝑡 = 𝜀𝜀𝑡𝑡𝜎𝜎𝑡𝑡  
 

𝑙𝑙𝑙𝑙(𝜎𝜎𝑡𝑡2) = 𝛼𝛼0 + ∑ 𝛾𝛾𝑖𝑖 �
|𝑥𝑥𝑡𝑡−𝑖𝑖|
𝜎𝜎𝑡𝑡−𝑖𝑖

+ 𝐸𝐸 �|𝑥𝑥𝑡𝑡−𝑖𝑖|
𝜎𝜎𝑡𝑡−𝑖𝑖

��𝑝𝑝
𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖 𝑙𝑙𝑙𝑙(𝜎𝜎𝑡𝑡−𝑗𝑗2𝑞𝑞

𝑗𝑗=1 )  (2) 

 
see (Brooks, 2008 and Dash and Dash, 2016) [4, 21]. 
 
2.3 Threshold GARCH (TGARCH) Model 
Another commonly used model for addressing leverage effects in volatility analysis is the TGARCH model (Zakoian, 1994) [10]. A 
TGARCH (p, q) is expressed in equation    
 
𝜎𝜎𝑡𝑡2 = ∑ 𝛽𝛽𝑗𝑗𝜎𝜎𝑡𝑡−𝑗𝑗2𝑝𝑝

𝑗𝑗=1 + ∑ (𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑁𝑁𝑡𝑡−𝑖𝑖)𝑥𝑥𝑡𝑡−𝑖𝑖2𝑞𝑞
𝑖𝑖=1 + 𝛼𝛼0  (3)

 
𝑁𝑁𝑡𝑡−𝑖𝑖 is an index for negative 𝑥𝑥𝑡𝑡−𝑖𝑖, that is  
 

𝑁𝑁𝑡𝑡−𝑖𝑖 = �1 for 𝑥𝑥𝑡𝑡−𝑖𝑖 < 0,
0 for 𝑥𝑥𝑡𝑡−𝑖𝑖 ≥ 0   

 
And 𝛼𝛼0, 𝛼𝛼𝑖𝑖, 𝛾𝛾𝑖𝑖 and 𝛽𝛽𝑗𝑗 are nonnegative parameters that satisfies the conditions similar to those of the GARCH model. In this 
model, the threshold is set at zero in order to distinguish between the effects of past shocks. It is possible to model the conditional 
volatility if an ARCH effect is present in a given data series, hence it is always critical to check the data for ARCH effect before 
conditional volatility can be considered.  
 
2.4 Testing for ARCH Effect 
There are two commonly employed tests for examining the presence of an ARCH effect. We first consider the Ljung-Box 
statistics 𝐵𝐵(𝑚𝑚) which are applied to 𝑥𝑥𝑡𝑡2. The null hypothesis for this test is that the initial 𝑚𝑚 lags of the autocorrelation function of 
the 𝑥𝑥𝑡𝑡2 are 0 (Tsay, 2010) [5]. Equation (4) expresses the Ljung-Box. 
 
𝐵𝐵(𝑚𝑚) = 𝑁𝑁(𝑁𝑁 + 2)∑ 𝜌𝜌�𝑘𝑘

𝑇𝑇−𝑘𝑘
𝑚𝑚
𝑘𝑘=1   (4) 

 
here 𝑁𝑁is the size of the sample, the number of lags is m and 𝜌𝜌�𝑘𝑘 is the estimation of 𝑘𝑘𝑡𝑡ℎ autocorrelation of the squared residuals. 
Equation (5) gives the expression for 𝜌𝜌�𝑘𝑘. 
 

https://www.mathsjournal.com/


 

~127~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

𝜌𝜌�𝑘𝑘 = ∑ (𝑥𝑥𝑡𝑡
2−𝜇𝜇�)(𝑥𝑥𝑡𝑡−𝑘𝑘

2 −𝜇𝜇�)𝑁𝑁
𝑡𝑡=𝑘𝑘+1

∑ (𝑥𝑥𝑡𝑡−𝑘𝑘
2 −𝜇𝜇�)2𝑁𝑁

𝑡𝑡=1
 (5) 

 
�̂�𝜇 is the mean of the sample. 
Assuming the null hypothesis is true, B(m) follows an asymptotic chi-squared distribution with m degrees of freedom (Box et al., 
2016) [22]. The null hypothesis is rejected if 𝐵𝐵(𝑚𝑚) > 𝜒𝜒𝑚𝑚2 (𝛼𝛼) (Tsay, 2010) [5]. 
The other test is the Lagrange multiplier test. It is equivalent to the F statistics for testing 𝛼𝛼𝑖𝑖 = 0 for 𝑖𝑖 = 1,2, . . . ,𝑚𝑚 in the 
regression. 
 
𝑥𝑥𝑡𝑡2 = 𝛼𝛼0 + 𝛼𝛼1𝑥𝑥𝑡𝑡−12 + ⋯+ 𝛼𝛼𝑚𝑚𝑥𝑥𝑡𝑡−𝑚𝑚2 + 𝑒𝑒𝑡𝑡 (6) 
 
𝑡𝑡 = 𝑚𝑚 + 1,⋯ ,𝑁𝑁. 𝑒𝑒𝑡𝑡 is the error term, 𝑚𝑚 is a specified integer, and N is the size of the sample (Lee, 1991) [23]. The null hypothesis 
is then. 
 
𝐻𝐻0:𝛼𝛼1 = ⋯ = 𝛼𝛼𝑚𝑚 = 0  
 
The statistic for this test written as equation (7). 
 
𝐹𝐹 = (𝑆𝑆𝑆𝑆𝑅𝑅0−𝑆𝑆𝑆𝑆𝑅𝑅1)/𝑚𝑚

𝑆𝑆𝑆𝑆𝑅𝑅1/(𝑇𝑇−2𝑚𝑚−1)
  (7) 

 
The null hypothesis is rejected if 𝐹𝐹 > 𝜒𝜒𝑚𝑚2 (𝛼𝛼) (Tsay, 2010) [5]. Here,  
 
𝑆𝑆𝑆𝑆𝑅𝑅0 = ∑ (𝑥𝑥𝑡𝑡2 − �̄�𝑢)𝑇𝑇

𝑡𝑡=𝑚𝑚+1
2  (8) 

 
And 
 
𝑆𝑆𝑆𝑆𝑅𝑅1 = ∑ (𝑒𝑒𝑡𝑡)𝑇𝑇

𝑡𝑡=𝑚𝑚+1
2 (9) 

 
Where �̄�𝑢 is the mean of 𝑥𝑥𝑡𝑡2 and �̂�𝑒𝑡𝑡is the least squares residual from the regression equation in (6). 
 
2.5 Model Evaluation 
2.5.1 The Root Mean Square Error (RMSE) 
RMSE is used for evaluating the predicting performance of the models. It is the most favoured measure among practitioners and 
academics (Lim and Sek 2013) [14]. It is given by equation.  
 

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 = �1
𝑛𝑛
∑ (𝜎𝜎𝑡𝑡 − 𝜎𝜎�𝑡𝑡)2𝑛𝑛
𝑡𝑡=1   (10) 

 
where 𝜎𝜎𝑡𝑡 is the realized volatility while 𝜎𝜎�𝑡𝑡is the estimated conditional volatility. The true volatility is hidden and thus unobserved. 
Due to this, the realized volatility is used (Audrino and Bühlmann, 2009 and Lunde and Hansen, 2005) [24, 25]. 
 
2.5.2 Mean Absolute Percentage Error (MAPE) 
MAPE is a statistical measure used to evaluate the accuracy of a forecasting method. It quantifies the accuracy as a ratio, which is 
typically calculated using equation. 
 
𝑅𝑅𝑀𝑀𝑀𝑀𝐸𝐸 = 1

𝑛𝑛
∑ �𝜎𝜎𝑡𝑡−𝜎𝜎�𝑡𝑡

𝜎𝜎𝑡𝑡
�𝑛𝑛

𝑡𝑡=1 × 100 (11) 
 
2.6 Data Exploration 
This study utilized data from the database of the Ghana Stock Exchange, specifically the Ghana Stock Exchange Composite Index 
(GSE-CI). The dataset comprises 2403 observations covering the period from 3rd January, 2012 to 10th October 2021. The Ghana 
Stock Exchange Composite Index is based on the volume weighted average of the closing price of all the listed stocks. It includes 
all ordinary shares that are listed on its platform in the GSE-CI, except companies listed on other markets. The GSE-CI is a 
market capitalization weighted index, meaning that the weight assigned to each constituent is determined by its market 
capitalization. The index's base date is December 31, 2010, and the base index value is set at 1000. Figure 1 displays a chart of the 
GSE-CI daily stock index, which illustrates that there are phases of significant and minor price fluctuations (volatility clustering) 
in the series. The log return series is made up of 2402 observations, as one observation is omitted during the calculation of the log 
return. Figure 2 shows the plot of the daily log returns for the series. The plot of the log returns of the series depicts evidence of 
volatility clustering. Figure 3 and Figure 4 show the ACF and PACF plot of the daily log return series. 
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Fig 1: Plot of GSE-CI 
 

 
 

Fig 2: Plot of the daily log returns of GSE-CI 
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Fig 3: Plot of ACF of the daily log returns of GSE-CI 
 

 
 

Fig 4: Plot of PACF of the daily log returns of GSE-CI 
 
The summary statistics for the daily log return series are given in Table 1. The summary statistics for the log return series indicate 
a high kurtosis, which implies that the series is not distributed normally. This is supported by the normality tests presented in 
Table 2, as well as a visual examination of the return's histogram and density plot depicted in Figure 3. The p-value for the Jarque-
Bera, Kolmogorov-Smirnov and the Anderson-Darling tests are all less than 0.05 significant level which depict nonnormality of 
the data. Positive skewness also depicts evidence of asymmetry. Thus, the skewness coefficient depict that the distribution of the 
series has fat right tails which means that small positive movements of the index are not likely to be followed by equally small 
negative movements. 
 

Table 1: Summary Statistics of daily log returns of GSE-CI 
 

Statistic GSE-CI 
Mean 0.000450 

Maximum 0.161049 
Minimum -0.162585 

Standard Deviation 0.008015 
Skewness 0.177693 
Kurtosis 141.387 
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Table 2: Normality Test for GSE-CI 
 

Test Statistic P-Value 
Jarque-Bera 2003281 < 0.001 

Kolmogorov-Smirnov 0.48636 < 0.001 
Anderson-Darling 147.15 < 0.001 

 
2.6.1 ARCH Effect Test 
The ARCH-LM test and the Ljung- Box test was performed at the 5% significant level to determine the presence of ARCH effect 
in the series and the results presented in Table 3. The null hypothesis states that there is no ARCH effect in the rate of returns, 
whereas the alternative hypothesis posits the presence of such an effect (Forsberg and Bollerslev, 2002) [26]. Both tests show that 
the daily log returns are not homoscedastic but rather heteroscedastic since all p-values is approximately zero which is far less 
than the 5% significant level. This implies that there is an ARCH effect in the series and hence conditional variance can be 
computed Atoi 2014 [27]. 
 

Table 3: ARCH Effect Test for GSE-CI 
 

Test Chi-Squared P-Value 
ARCH-LM 955.43 < 0.001 
Ljung- Box 581.12 < 0.001 

 
3. Results and Discussion 
3.1 Model Selection 
The estimate of GARCH-family models received support from the ARCH effect's existence. In order to choose the optimum 
estimating model, the estimate is implemented in three different error distributions. The data was separated into two subgroups for 
the purpose of cross-validation. The GARCH models for the log return series were constructed using the in-sample data, which 
comprises the first 70% of the subset. The performance of volatility forecasting was verified using the rest often known as the out-
of-sample data set. The summaries of the Akaike Information Criteria (AIC) for the models taken into account for three distinct 
error distributions-Normal (Norm), Student t-distribution (STD), and Generalized Error Distribution (GED) are shown in Table 4. 
GARCHGED (2,2), EGARCHGED (1,1), and TGARCHGED (1,1) had the least AIC values among the GARCH, EGARCH and 
TGARCH models considered respectively which indicate that they were the best fitting models in their category. However, the 
TGARCHGED (1,1) was observed to be the best fitting model in all the considered models because it had the smallest AIC value. 
This result is contrary to the findings of Lunde and Hansen (2005) [25] that nothing consistently beat the GARCH (1,1) model. 
TGARCH was developed to deal with asymmetry. Thus, it implies that the GSE-CI is characterized by big negative shocks than 
positive shocks. Shamiri and Isa (2009) [28] argues that, the best-fitted models selected based on AIC criterion may not necessarily 
provide the most accurate forecast of volatility in terms of RMSE and MAPE. Consequently, the accuracy of the volatility forecast 
was evaluated using MAPE and RMSE measures for both in-sample and out-of-sample data to verify the credibility of the 
discoveries of Shamiri and Isa (2009) [28] and determine the appropriate GARCH-type model for modelling and forecasting the 
volatility of the Ghana stock market. Table 5 shows the MAPE and RMSE evaluation of the best fitted models. Again, among the 
best fitted models according to the AIC, the TGARCHGED (1,1) had the least MAPE and RMSE values for both in-sample and out-
of-sample evaluation. This is contrary to the findings of Shamiri and Isa (2009) [28] that the best fitted model does not necessarily 
provide the best forecast.  
 

Table 4: Summary of AIC of GARCH-Type Models 
 

Model GARCH EGARCH TGARCH 
 Norm STD GED Norm STD GED Norm STD GED 

(1, 0) -7.679 -7.933 -6.679 NA NA NA -7.768 -7.939 0.007 
(0,1) NA -7.885 0.282 -7.586 -7.891 -7.957 70.479 NA 31.391 
(1,1) -7.770 -7.987 -7.941 -7.770 -7.988 -8.038 -7.713 -7.989 -8.039 
(2,0) NA NA -6.611 NA NA NA -7.713 -7.960 0.010 
(2,1) -7.768 -7.986 -8.034 -7.771 -7.987 -8.036 -7.771 -7.987 -8.037 
(0,2) -7.585 -7.885 -6.212 -7.585 -7.889 -7.954 NA -7.886 31.281 
(1,2) -7.768 -7.986 -8.037 -7.769 -7.987 -8.037 -7.7671 -7.988 -8.037 
(2,2) -7.767 -7.986 -8.038 -7.778 -7.986 -8.037 -7.769 -9.986 -8.035 

 
Table 5: MAPE and RMSE for Best Fitted Models 

 

Error Measure Model MAPE Rank RMSE Rank 

In-Sample 
GARCHGED (2,2) 0.0559 3 0.2356 3 

EGARCHGED (1,1) 0.0556 2 0.2344 2 
TGARCHGED (1,1) 0.0555 1 0.2336 1 

Out-of-Sample 
GARCHGED (2,2) 0.1277 3 0.2182 3 

EGARCHGED (1,1) 0.1274 2 0.2036 2 
TGARCHGED (1,1) 0.1269 1 0.2023 1 

 
The parameter estimates of the best fitted model TGARCHGED (1,1) are shown in Table 6. The p-values shows that all parameters 
given in the TGARCHGED (1,1) are statistically significant at 5% level except µ and 𝛾𝛾1. 
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Table 6: Estimated Parameters of TGARCHGED (1, 1) 
 

Parameter Estimate Standard Error T-Value P-Value 
µ 0 0.0000 -0.0008 0.99939 
ω 0.0007 0.0002 3.3003 0.00096 
𝛼𝛼1 0.2368 0.0401 5.9005 <0.0001 
𝛽𝛽1 0.7212 0.0565 12.7722 <0.0001 
𝛾𝛾1 -0.0774 0.0809 -0.9561 0.3390 
ν 0.7489 0.0446 16.7972 <0.0001 

 
Table 7 shows the diagnostics on the best fitted model (TGARCHGED (1,1). The weighted Ljung-Box test for the null hypothesis 
of squared standardized residuals was not rejected at a 5% significance level. This implies that the squared standardized residuals 
are indicative of white noise. Additionally, the weighted ARCH-LM test implies the absence of an ARCH effect in the model. 
Taken together, these tests indicate that the TGARCHGED (1,1) model is appropriate for modelling the conditional variance. 
 

Table 7: Model Diagnostics 
 

Test Weighted Ljung-Box Test on Standardised Squared Residual Weighted ARCH LM 
Hypothesis H0: Squared Residuals are independent H1: Squared Residuals are dependent H0: No ARCH effect H1: ARCH effect 

lag 1 3 
Statistic 0.6754 0.3823 
P-Value 0.4112 0.5364 

 
4. Conclusion 
In conclusion, this study found that the threshold GARCH 
(TGARCH) model with a generalized error distribution 
outperformed the EGARCH and standard GARCH models in 
forecasting the volatility of the Ghana Stock Exchange 
Composite Index (GSE-CI). The performance was evaluated 
using RMSE, MAPE, and Akaike Information Criterion 
(AIC). These findings provide valuable insights for investors, 
traders, and policymakers in Ghana's financial market. 
 In terms of future directions, further research could 
investigate the effectiveness of other models such as 
Stochastic Volatility (SV) and Markov-Switching GARCH 
(MS-GARCH) in forecasting the volatility of the GSE-CI. 
Finally, researchers could explore the possibility of using 
machine learning techniques to develop more advanced 
models for predicting stock market volatility in Ghana. 
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