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Abstract 

In this paper, we analyzed blood flow in hepatic venules. The viscosity of blood increases in venules due 

to more formation of rouleaux along the axis of red blood cells as at the same venules are remote from 

the heart and proximate to liver so, we applied the Herschel-Bulkley non-Newtonian model in Bio-fluid 

mechanical setup. Employing Navier-Stoke equation and equation of continuity in cylindrical co-ordinate 

system and all required mathematical formations are in tensorial form. Using by numerical method we 

calculated the value of parameter for a clinical data. Finally, we obtained a linear relationship between 

blood pressure drop and hematocrit for particular value of parameter and discussed in the graph.  

 

Keywords: Hepatic circulation, malaria, hematocrit, viscosity, venule, Rouleaux 

 

1. Introduction 

1.1 Structure and Function of Liver 

The liver has the most complicated circulation of any one of the organ. According to the 

anatomical peculiarity of the double afferent blood supply of the liver, 75%-80% of the blood 

entering the liver is partially deoxygenated venous blood provided by the portal vein, which 

collects all the blood that leaves the spleen, stomach, small and large intestine, gallbladder and 

pancreas (Vollmar, B. et al. 2009, Rappaport, AM et al. 1980) [24]. 

The liver has a wide range of functions including detoxification of various metabolites and 

toxic matter regulation of glycogen storage, decomposition of red blood cells, hormone 

production and the production of biochemicals necessary for digestion and other metabolic 

activities. The liver is the only human internal organ capable of natural regeneration of lost 

tissues as little as 25% of a liver can regenerate into a whole liver [10]. 

The portal venous system is responsible for directing blood from parts of the gastrointestinal 

tract of the liver. Blood flow to the liver is unique in that it receives both oxygenated and 

deoxygenated blood. Blood passes from branches of the portal vein through cavities between 

“plates” of hepatocytes called sinusoids blood also flows from branches of the hepatic artery 

and mixes in the sinusoids to supply the hepatocyte with oxygen. This mixture percolates 

through the sinusoids and collects in a central vein which drains into the hepatic vein. The 

hepatic vein subsequently drains into the inferior vena cava. The hepatic artery provides 30 to 

40% of the oxygen to the liver, while only accounting for 25% of the total liver blood flow. 

The rest comes from the partially deoxygenated blood from the portal vein [3, 4]. 

 

1.2 Structure and Function of Venule 

The hepatic microcirculation generally refers to the circulatory system beginning with portal 

venule, extending to the terminal portal venule, and then reaching the sinusoid network, 

followed by the postcapillary terminal hepatic venule and ending with the muscular venule. [27] 

The basic structural unit of the hepatic microcirculation is the hepatic lobule, in which a 

terminal hepatic venule is located at the center and several portal venules at the periphery, with 

the hepatic sinusoids running from the terminal portal venule, forming a hexagonal vascular 

structure [28]. 
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1.3 Composition of Blood 

Blood is bio fluid or fluid connective tissue. Blood consists of a suspension of cells in an aqueous solution called plasma which 

composed of about 90% water and 7% protein. There are about 95% are red cells or erythrocytes whose main function is to 

transport oxygen from lungs to all the cells of the body and removal of carbon dioxide formed by metabolic process in the body to 

lungs. About 45% of the blood volume in an average human is occupied by red cells. This fraction is known as the hematocrit of 

the remaining white cells or leucocytes constitute about one sixth or 1% of total and these play an impartment role in the 

resistance of the body to infection and platelets form 5% of the total blood and they perform a function related to blood clotting [2, 

18]. 

 

1.4 Description of Disease and RBC deformability in Malaria 

Malaria is caused by single celled microorganisms of the Plasmodium group. It is spread exclusively through bites of infected 

Anopheles mosquitoes. The mosquito bite introduces the parasites from the mosquito’s saliva into a person’s blood. The parasites 

travel to the liver where they mature and reproduce [31]. The Plasmodium life cycle is very complex and takes place in two phases; 

sexual and asexual, the vector mosquitoes and the vertebrate hosts. In the vectors, mosquitoes, the sexual phase of parasite’s life 

cycle occurs. The asexual phase of life cycle occurs in humans, the intermediate host for malaria [29, 30]. 

 

Red blood cells host plasmodium parasites that cause malaria, of which plasmodium falciparum is the most pathogenic. The 

deformability of RBC is markedly modified by invasion and development of P. falciparum. The deformability of RBC depends on 

three parameters: (i) the membrane elasticity (ii) the cytoplasmic viscosity that depends on intracellular ion and haemoglobin 

concentration and (iii) the surface to volume ratio. The balance among these three parameters can be altered during malaria 

(Lavazec, 2017).  

 

2. Real Model 

2.1 Frame of reference 

In this model, we employ Navier-Stoke’s equation and equation of continuity and have chosen orthogonal curvilinear generalized 

three-dimensional coordinate system denoted by E3 called three dimensional Euclidean space of the moving blood. All quantities 

related to blood flow are written in tensorial form which is comparatively more realistic. Let P be any point in space with co-

ordinate xi with respect to axes O𝑋𝑖, O as origin where i = 1, 2, 3. At time t, 𝑣𝑘 = 𝑣𝑘 (𝑥𝑖, t) be velocity of blood, p = p (𝑥𝑖, t) 

thermodynamical pressure and ρ = ρ (𝑥𝑖, t) density. Since blood vessels are cylindrical the governing equations have to transform 

into cylindrical co-ordinates system  

 

3. Formulation 

According to Sherman I.W. and Sherman V.G. blood is mixed fluid. There are two phases in the blood, one is plasma and other is 

blood cells. The blood cells are enclosed with a semi–permeable membrane whose density is greater than that of plasma. These 

blood cells are uniformly distributed in plasma. 

 

3.1 Equation of continuity for two phase blood flow 

According to Upadhyay V. the flow of blood is affected by the presence of blood cells. This effect is directly proportional to the 

volume occupied by blood cells. Let the volume portion covered by blood cells in unit volume be X, where X=
𝐻

100
 and H is 

hematocrit the volume percentage of blood cells. Then the volume portion covered by plasma will be 1-X. If the mass ratio of 

blood cells to plasma is r then  

 

r=
𝑋𝜌𝑐

(1−𝑋)𝜌𝑝
  (3.1) 

 

Where 𝜌𝑐 and 𝜌𝑝 are densities of blood cells and plasma respectively. The both phase the blood cells and plasma move with 

common velocity. Campbell and Pitcher have presented a model for this condition. Equation of continuity for two phase 

according to principle of conservation of mass defined by J.N. and Gupta R. C. as follows 

 
𝜕(𝑋𝜌𝑐)

𝜕𝑡
 +(𝑋𝜌𝑐𝑣

𝑖),𝑖= 0  (3.2) 

 

And  

 
𝜕(1−𝑋)𝜌𝑝

𝜕𝑡
+ ((1 − 𝑋)𝜌𝑝𝑣

𝑖)
,𝑖
= 0  (3.3) 

 

Where 𝑣 velocity of mixture of two is phase blood cells and plasma, (𝑋𝜌𝑐𝑣
𝑖),𝑖 is covariant derivative of (𝑋𝜌𝑐𝑣

𝑖) with respect to 

𝑥𝑖 and ((1 − 𝑋)𝜌𝑝𝑣
𝑖)

,𝑖
 is covariant derivative of ((1 − 𝑋)𝜌𝑝𝑣

𝑖) with respect to 𝑥𝑖. 

 

If 𝜌𝑚 be uniform density of blood then  

 
1+𝑟

𝜌𝑚
= 

𝑟

𝜌𝑐
+

1

𝜌𝑝
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Where 

 

𝜌𝑚= X𝜌𝑐+ (1-X)𝜌𝑝  (3.4) 

 

Combined equation (3.2) and (3.3) and using (3.4) we get  

 
𝜕𝜌𝑚

𝜕𝑡
+(𝜌𝑚𝑣𝑖),𝑖= 0  (3.5) 

 

3.2 Equation of motion for two phase blood flow- 

According to Ruch T.C. and H.D. the hydro dynamical pressure p between two phases of can be supposed to be uniform because 

the both phases are always in equilibrium state in blood (1973). According to principle of conservation of momentum the equation 

of motion of two phase blood cells and plasma 

 

X𝜌𝑐
𝜕𝑣𝑖

𝜕𝑡
 + (𝑋𝜌𝑐𝑣

 𝑗 )𝑣,𝑗
𝑖  = -X𝑝,𝑗𝑔

𝑖𝑗 + 𝑋𝜂𝑐 (𝑔
𝑗𝑘𝑣,𝑘

𝑖 )
,𝑗

  (3.6)  

 

And (1-X)𝜌𝑝
𝜕𝑣𝑖

𝜕𝑡
+ {(1 − 𝑋 )𝜌𝑝𝑣

𝑗   }𝑣,𝑗
𝑖 = −(1 − 𝑋) 𝑝,𝑗𝑔

𝑖𝑗 + (1 − 𝑋)𝜂𝑝(𝑔
𝑗𝑘𝑣,𝑘

𝑖 )
,𝑗

  (3.7)  

 

Now adding (3.6) and (3.7) and using (3.4) then equation of motion for blood flow will be  

 

 𝜌𝑚
𝜕𝑣𝑖

𝜕𝑡
+ (𝜌𝑚𝑣𝑗)𝑣,𝑗

𝑖 = −𝑝,𝑗𝑔
𝑖𝑗 + 𝜂𝑚(𝑔𝑗𝑘𝑣,𝑘

𝑖 )
,𝑗

 (3.8) 

 

Where 𝜂𝑚 = 𝑋𝜂𝑐 + (1 − 𝑋)𝜂𝑝 is the viscosity coefficient of blood as a mixture of two phases. As velocity of blood flow 

decreases, the viscosity of blood increases. Since the venules are remote from heart therefore velocity of blood decreases. The 

Herschel Bulkley law hold good on two phase blood flow through the venules and whose constitutive equation as follows. 

 

𝑇′ = 𝜂𝑚𝑒𝑛 + 𝑇𝑝 (𝑇′ > 𝑇𝑝) and 𝑒 = 0 (𝑇′ < 𝑇𝑝) where 𝑇𝑝 is yield stress. 

 

When strain rate e=0 (𝑇′ < 𝑇𝑝) a core region is formed which flow just like a plug. Let radius of plug is 𝑟𝑝 and the stress acting on 

the surface of plug will be 𝑇𝑝. 

 

Equation of force acting on the plug,  

 

P л𝑟𝑝
2 = 𝑇𝑝2л𝑟𝑝 or, 𝑟𝑝 = 2

𝑟𝑝

𝑃
 

 

The constitutive equation for rest part of blood vessel is 

 

𝑇′ = 𝜂𝑚𝑒𝑛 +𝑇𝑝 or, 𝑇′ − 𝑇𝑝 = 𝜂𝑚𝑒𝑛 = 𝑇𝑒 where 𝑇𝑒 is effective stress whose generalized form will be 𝑇𝑖𝑗 = −𝑝𝑔𝑖𝑗 + 𝑇𝑒
𝑖𝑗

 where 

𝑇𝑒
𝑖𝑗

= 𝜂𝑚 (𝑒𝑖𝑗)𝑛, 𝑒𝑖𝑗 = 𝑔𝑗𝑘𝑣𝑘
𝑖  

 

Equation of continuity - 
1

√𝑔
(√𝑔𝑣𝑖),𝑖 = 0  (3.9)  

 

Equation of motion - 𝜌𝑚
𝜕𝑣𝑖

𝜕𝑡
+ 𝜌𝑚𝑣𝑗𝑣,𝑗

𝑖 = −𝑇𝑒,𝑗
𝑖𝑗

  (3.10) 

 

Where all the symbols have their usual meaning  
 

Newton Raphson Method: The General Newton Raphson Method Formula is 

 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
  (3.11) 

 

The above formula is repeated until a sufficiently precise value is obtained. 

 

4. Solution 

Let 𝑥1 = r, x2 = Ɵ and x3 = z be cylindrical co-ordinates and square length of small element ds2 = dr2 + r2 dƟ2 +dz2 

Christoffel’s symbols of first and second kind are given below. 

 

[i j, k] = 
1

2
 [

𝜕𝑔𝑗𝑘

𝜕𝑥𝑖  +  
𝜕𝑔𝑖𝑘

𝜕𝑥𝑗  −  
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘] and {
𝑘
𝑖𝑗
} = 𝑔𝑘𝛼[𝑖𝑗, 𝛼] 

 

[𝑔𝑖𝑗] be matrix of metric tensor and [𝑔𝑖𝑗] be matrix of conjugate matrix tensor where 
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[𝑔𝑖𝑗] = [
1 0 0
0 𝑟2 0
0 0 1

] [𝑔𝑖𝑗] = [

1 0 0

0
1

𝑟2
0

0 0 1

] 

 

Metric elements 𝑔𝑟𝑟 = 1, 𝑔𝜃𝜃 =𝑟2, 𝑔𝑧𝑧 = 1 

 

Or 𝑔11 = 1, 𝑔22 =𝑟2, 𝑔33 = 1 

 

Christoffel’s symbols of second kind for cylindrical co-ordinates 

Except of these all are zero.  

 

 {
1
22

} = −𝑟 , {
2
21

}  =  {
2
12

}  =  {
1
𝑟
} 

 

Physical components 

Since  √𝑔11 𝑣
1 = 𝑣𝑟 or, 𝑣𝑟 = 𝑣1 

 

√𝑔22 𝑣
2 = 𝑣𝜃 or, 𝑣𝜃 = r𝑣2 

 

and √𝑔33𝑣
3 = 𝑣𝑧 𝑜𝑟, 𝑣𝑧  = 𝑣3  

 

Matrix of physical components of shearing stress tensor  

 

𝑇′𝑖𝑗  = 𝜂𝑚 (eij)n = 𝜂𝑚 (𝑔𝑗𝑘𝑣,𝑘
𝑖 + 𝑔𝑖𝑘𝑣,𝑘

𝑗
 )n  (4.1) 

 

 𝑇′𝑖𝑗 =

[
 
 
 0 0 ŋ𝑚 (

𝑑𝑣

𝑑𝑟
)

𝑛

0 0 0

ŋ𝑚 (
𝑑𝑣

𝑑𝑟
)

𝑛

0 0 ]
 
 
 

 

 

The covariant derivative of 𝑇′𝑖𝑗 

  

𝑇′,𝑗
𝑖𝑗

 = 
1

√𝑔

𝜕

𝜕
(√𝑔𝑇𝑖𝑗 + {

𝑖
𝑗 𝑘

}  (4.2)  

 

According the above facts, the governing tensorial equation can be transformed into cylindrical form which is as follow  

 

The equation of continuity 
𝜕𝑣

𝜕𝑧
 = 0  (4.3) 

 

The equation of motion 

 

r – Component - 
𝜕𝑝

𝜕𝑟
 = 0  (4.4) 

 

Ɵ - Component  0 = 0  (4.5) 

 

z- Component  

 

- 
𝜕𝑝

𝜕𝑧
 + 

𝜂𝑚

𝑟
 

𝜕

𝜕𝑟
 [𝑟 (

𝜕𝑣𝑧

𝜕𝑧
)

𝑛

]  (4.6) 

 

Here this fact has been taken in view that the blood flow is axially symmetric in venules concerned i.e. 𝑣𝜃 = 0 and 𝑣𝑟, 𝑣𝑧 and p do 

not depend upon Ɵ and also blood flow radialy 

 
𝜕𝑝

𝜕𝑡
 = 

𝜕𝑣𝑟

𝜕𝑡
 = 

𝜕𝑣Ɵ

𝜕𝑡
 = 

𝜕𝑣𝑧

𝜕𝑡
 = 0 

 

From (4.3) 𝑣𝑧 = 𝑣(𝑟)  (4.7)  

 

since 𝑣𝑧 does not depend upon θ  

 

From equation (4.4) p = p (z)  

 (4.8) 

Because p does not depend upon, Ɵ using equation (4.7) & (4.8) in (4.6) then 
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- 
𝑑𝑝

𝑑𝑧
 + 

𝜂𝑚

𝑟
 
𝑑

𝑑𝑟
 [r ( 

𝑑𝑣

𝑑𝑟
)𝑛] =0  (4.9) 

 

The pressure gradient - 
𝑑𝑝

𝑑𝑧
 = P of blood flow in venules remote from heart can be supposed to be constant, therefore equation (4.9) 

takes the following form 

 

 

 
𝑑

𝑑𝑟
 [r (

𝑑𝑣

𝑑𝑟
)n = - 

𝑃𝑟 

𝜂𝑚
  (4.10) 

 

On integrating (4.10), we get 

 

r (
𝑑𝑣

𝑑𝑟
)𝑛 = - 

𝑝𝑟2

2𝜂𝑚
 + C (4.11) 

 

Since the velocity of blood flow on the axis of the cylindrical venules is maximum and constant so we apply the boundary 

condition at r=0, 𝑣 = 𝑣0 (constant) on equation (4.11) we get C=0 then equation (4.11) takes the following form 

 

r (
𝑑𝑣

𝑑𝑟
)𝑛 = - 

𝑝 𝑟2

2𝜂𝑚
 or, - 

𝑑𝑣

𝑑𝑟
 = (

𝑝𝑟

2𝜂𝑚
)1/𝑛  (4.12)  

  

Replace r from r - 𝑟𝑝 for non plug region 

 
𝑑𝑣

𝑑𝑟
 = - (

𝑃

2𝜂𝑚
)

1

𝑛 ( 𝑟 − 𝑟𝑝)
1

𝑛  (4.13) 

 

Integrating equation (4.13), we get 

 

𝑣 = - (
𝑝

2𝜂𝑚
)
1/𝑛

 
(𝑟−𝑟𝑝)

1
𝑛+1

1

𝑛
+1

 + B  (4.14)  

 

Apply no slip boundary condition 𝑣 = 0 at r = R in equation (4.14), we get  

 

B = (
𝑝

2𝜂𝑚
)
1/𝑛

 
(𝑅−𝑟𝑝)

1
𝑛+1

1

𝑛
+1

  (4.15) 

  

Using (4.15) in equation 4.14) then 

 

𝑣 =  (
𝑝

2𝜂𝑚
) 

1

𝑛
𝑛

𝑛+1
 [(𝑅 − 𝑟𝑝)

1

𝑛
+1

 - (𝑟 − 𝑟𝑝)
1

𝑛
+1]  (4.16) 

 

This is velocity of blood flow in venules 

 

Putting r = 𝑟𝑝 we get the velocity of plug flow as follows 

 

𝑣𝑝 = 
𝑛

𝑛+1
 (

𝑃

2𝜂𝑚
)1/𝑛 (𝑅 − 𝑟𝑝)

1

𝑛
+1

  (4.17) 

 

Where value of 𝑟𝑝 taken from equation of motion 

 

5. Result 

The flow flux of two phased blood flow in venule  

 

Q = ∫ 2πrvp dr 
𝑟𝑝
0

+ ∫ 2πrvdr
𝑅

𝑟𝑝
  

 

= ∫ 2πr 
n

n+1
 (

𝑃

3𝜂𝑚
)

1

𝑛
 

𝑟𝑝
0

 (𝑅 − 𝑟𝑝)
 
1

𝑛
+1

 dr + ∫ 2πr 
n

n+1
 (

P

2ηm
)

1

n 
𝑅

𝑟𝑝
 [(𝑅 − 𝑟𝑝)

1

𝑛
+1 − (𝑟 − 𝑟𝑝)

1

𝑛
+1] dr  

 

 (Using (4.16) & (4.17) 

 

Q= 
2πn

n+1
 (

𝑃

3𝜂𝑚
)

1

𝑛
 (𝑅 − 𝑟𝑝)

1

𝑛
+1

 [
𝑟2

2
]
0

𝑟𝑝
 + 

2𝜋𝑛

𝑛+1
 (

𝑃

2𝜂𝑚
)
1

𝑛⁄  [
𝑟2

2
 (𝑅 − 𝑟𝑝)

1

𝑛
+1

− 
𝑟(𝑟−𝑟𝑝)

1
𝑛⁄

1

𝑛
+2

 +  
(𝑟−𝑟𝑝

 )
1
𝑛+1

(
1

𝑛
+2)) (

1

𝑛
+3)

]
𝑟𝑝

𝑅
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Q = 
πn

n+1
 (

𝑃

3𝜂𝑚
)

1

𝑛
 (𝑅)

1

𝑛
+3 [

 𝑟𝑝
2

𝑅2  (1 −
𝑟𝑝

𝑅
)

1

𝑛
+1

+ (1 + 
𝑟𝑝

 

𝑅
) (1 − 

𝑟𝑝

𝑅
)

1

𝑛
+2

+ 
2(1−

𝑟𝑝
𝑅

)

1
𝑛+3

(
1

𝑛
+2))(

1

𝑛
+3)

 −  
2(1−

𝑟𝑝
𝑅

)
1
𝑛+2

(
1

𝑛
+2)

 ] 

 

Observations: Hemoglobin and blood pressure is taken from Anurag Nursing Home Banda by Dr. Anurag Srivstava 

Patient Name – Gyanchandra, Age – 43 years / male Annual No.- 0645/2022 

Diagnosis – Falsiparum Malaria 

 
Table 1: Hematocrit and Cli. Blood Pressure Drop 

 

Sl. No. Date HB (Hemoglobin) gm/dl BP (Blood Pressure) mmhg Hematocrit (3×HB) BP (In Pascal) Blood Pressure Drop 

1 22.10.2022 11.7 135/92 35.1 17998.2/12265.44 -3044.14 

2 24.10.2022 11.4 142/94 34.2 18931.44/12532.08 -3140.43 

3 26.10.2022 10.7 140/90 32.1 18664.8/11998.8 -3036.73 

4 28.10.2022 10.1 148/96 30.3 19731.36/12798.72 -3229.31 

5 30.10.2022 10.4 138/90 31.2 18398.16/11998.8 -3021.92 

 

Blood Pressure Drop in =
2

3
 [ 

𝑆+𝐷

2
+𝐷

3
 ] – [ 

𝑆+𝐷

2
+𝐷

3
 ] 

 

Q = 1000 ml/min = 0.01666 litre/sec = 0.0000167 m3/sec 

 

R = 1, 𝑟𝑝 = 1/3 

 

According to Gustafason Daniel R, (1980) [11] 

 

𝜂𝑝 = 0.0015 (Pascal-Sec) 

 

According to Glenn Elert (2010) 

 

𝜂𝑚 = 0.035 (Pascal –Sec) 

 

Average length of terminal hepatic venule = 0.15cm = 15×10−4 meter  

 

Average systolic pressure S= 18744.792 and average diastolic pressure D= 12318.768 

 

H= 32.58, Blood pressure drop = 3094.50533 (Pascal Sec.) 

 

Since 𝜂𝑚 = 𝜂𝑐 X + 𝜂𝑝 (1-X) where X = 
𝐻

100
 

 

Substituting the values of 𝜂𝑚, 𝜂𝑝, and H in above relation we get 𝜂𝑐 = 0.104323818 again from above relation 

 

𝜂𝑚 = 0.001028238187H + 0.0015 

 

Substituting the value of 𝑟𝑝 and R in equation (28) we get 

 

Q = 
2𝜋

27
 (

𝑃

3𝜂𝑚
)

1

𝑛
 [

26𝑛3+33 𝑛2+9𝑛

6𝑛3+11 𝑛2+6𝑛+1
] 

 

Or, 
27𝑄

2𝜋
 = (

𝑃

3𝜂𝑚
)

1

𝑛
 [

26𝑛3+33 𝑛2+9𝑛

6𝑛3+11 𝑛2+6𝑛+1
] 

 

Or, (
𝑃

3𝜂𝑚
)  = (

27𝑄

2𝜋𝐴
) 𝑛 where A = 

26𝑛3+33 𝑛2+9𝑛

6𝑛3+11 𝑛2+6𝑛+1
 

 

Or, P = (
27𝑄

2𝜋𝐴
 ) 𝑛 3𝜂𝑚 

 

Since P = - 
𝑑𝑝

𝑑𝑧
 𝑜𝑟, dp = -Pdz 

 

𝑝𝑓 – 𝑝𝑖 = (
27𝑄

2𝜋𝐴
)𝑛 3𝜂𝑚 (𝑧𝑓 – 𝑧𝑖)  (5.2) 

 

Where 𝑝𝑓 – 𝑝𝑖 pressure drop and 𝑧𝑓 – 𝑧𝑖 = length of hepatic venule 

Substituting the values of Q, 𝑝𝑓 – 𝑝𝑖, 𝑎𝑛𝑑 𝜂𝑚 in above equation and solve by numerical method we get n = -1.4445, and again 
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𝑝𝑓 – 𝑝𝑖 = 3𝜂𝑚 (𝑧 – 𝑧𝑖) (
27𝑄

2𝜋𝐴
)𝑛 

 

Substituting the value of 3𝜂𝑚 , Q and n we get  

 

𝑝𝑓 – 𝑝𝑖 = 90.975056 H + 132.714954  (5.3) 

 

This is relation between hematocrit and blood pressure drop 

 
Table 2: Hematocrit and Modulated Blood Pressure Drop 

 

Date 22.10.2022 24.10.2022 26.10.2022 28.10.2022 30.10.2022 

Hematocrit 35.1 34.2 32.1 30.3 31.2 

Blood pressure drop 3325.94 3244.06 3053.01 2889.26 2971.17 

 

 
 

Graph 1: Hematocrit Vs Modulated Blood Pressure Drop 

 

 
 

Graph 2: Hematocrit Vs (Modulated and Cli.) Blood Pressure drop 

 

 

6. Observation of graph 

The graph-1 shows that fluctuations of blood pressure drop 

with respect to hematocrit of five different dates. We 

observed minimum blood pressure drop 2889.26 on dated 

28/10/2022 and maximum value obtains 3325.94 on dated 

22/10/2022. At the hematocrit value from 35.1 to 30.3 via 

34.2 and 32.1 the blood pressure drop straightly decreases on 

dated from 22/10/2022 to 28/10/2022 via 24/10/2022 and 

26/10/2022 and hematocrit value from 30.3 to 31.2 the blood 

pressure drop straightly increases on dated from 28/10/2022 

to 30/10/2022. The graph-2 shows that the comparative study 

of two graph (i) Graph between hematocrit Vs clinical blood 

pressure drop (ii) Graph between hematocrit Vs 

mathematically modulated blood pressure drop.  

 

7. Conclusion 
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In graph-1 the slope of straight line is the absolute value and 

when hematocrit increases the blood pressure drop also 

increases and when hematocrit decreases the blood pressure 

drop also decreases. When the trend of straight line 

decreasing sense then medicine dose slowly increases, when 

steepness of curve low then we can give high dose of 

medicine and when trend of straight line increases sense then 

we suggest normal dose of medicine. A comparative study of 

both graphs shows that nearly have the same character. 

  

8. Acknowledgement  

I give my sincere thanks to Dr. P N Yadav physician of CHC 

Baberu Banda (U.P.). 

 

9. References 

1. Guyton C. Medical Physiology. WBS; c1981. p. 207. 

2. Alberts, Bruce. Table 22-1 Blood cells, Molecular 

Biology of the cell. NCBI Bookshelf; c2012. 

3. Bergel DH, Schultz DL. Arterial elasticity and fluid 

dynamics; Progress in Biophysics and Molecular 

Biology. 1971;22:1-36. 

4. Bhunchet E, Wake K. The portal lobule in rat liver 

fibrosis: A re‐evaluation of the liver unit. Hepatology. 

1998;27(2):481-487. 

5. Dondorp AM, Kager PA, Vreeken J, White NJ. 

Abnormal blood flow and red blood cell deformability in 

severe malaria. Parasitol Today. 2000;16(6):228-232. 

6. Fawcett Malarkey. New insights into functional aspects 

of liver morphology. Toxicologic pathology. 

2005;33(1):27-34. 

7. Fedosov DA, Peltomaki M, Gompper G. Deformation 

and dynamics of red blood cells in flow through 

cylindrical microchannels. Soft matter. 

2014;10(24):4258-4267. 

8. Fung Y. Biomechanics: Circulation. Springer Science & 

Business Media; c1997. 

9. Elert G. Viscosity-The physics hypertextbook. The 

Physics Hypertextbook; c2010. 

10. Goldstein S. Editor. Modern development in fluid 

dynamics, Oxford; c1938. 

11. Gustafson Deniel R. Physics: Health and Human body, 

Wadsworth; c1980. 

12. Haustring D. editor. Liver regeneration. Walter de 

Gruyter; c2011. 

13. Kapur JN, Gupta RC. Power law fluid flow in the inlet 

length of a circular pipe; The Mathematics, Seminar. 

1963;3:55-67. 

14. Mackinnon MJW, Mwangi RW, Snow K, Marsh, 

Williams TN. Heritability of Malaria in Africa Plos 

Medicine. 2005;2(12):e340. 

15. Mishra RS. Tensors and Riemannian geometry, 

Pothishala Pvt. Ltd. Allahabad; c1990. 

16. Prakash O, Upadhyay V, Agrawal AK, Pandey PN. A 

mathematical model on two phase hepatic systolic blood 

flow in hepatic arterioles with special reference to 

Hepatitis B. International Journal of Applied Research. 

2015;1(8):318-323. 

17. Ruch TC, Patton HD. (Eds); Physiology and Biophysics 

Vols (II) and (III); W.B.S; c1973. 

18. Sherman IW, Sherman VG. Biology: A Human Approach 

Oxford University press, New York, Oxford; c1989. 

19. Michael S. Density of Blood The physics fact book; 

c2004. 

20. Bhupendra S, Upadhyay V, Agrawal AK, Shrivastav 

MK, Pandey PN. A non-Newtonion model of two phase 

hepatic blood flow with special reference to liver abscess. 

The International Journal of Engineering and Science. 

2013;2(10):87-93. 

21. Singh JP, Agrawal AK, Upadhyaya V, Kumar A. 

Mathematical model and analysis of two phase Hepatic 

blood flow through arterioles with special reference to 

Hepatitis A. American Journal of Modeling and 

Optimization. 2015;3(1):22-25. 

22. Singh P, Upadhyay KS. A new approach for the shock 

propagation in the two phase system; NAT. National 

Academy Science. 1986;8(2):112-118. 

23. Upadhyay V. Some phenomena in two phase blood flow. 

Ph.D. Thesis, Central University, Allahabad; c2000. p. 

123. 

24. Vollmar B, Menger MD. The hepatic microcirculation, 

mechanistic contributions and therapeutic target in liver 

injury and repair. Physiological Reviews. 

2009;89(4):1269-1339. 

25. Lavazec C. Molecular mechanisms of deformability of 

Plasmodium-infected erythrocytes. Current Opinion in 

Microbiology. 2017;40:138-144.  

26. Fedosov DA, Lei H, Caswell B, Suresh S, Karniadakis 

GE. Multiscale modeling of red blood cell mechanics and 

blood flow in malaria. PloS Computational Biology. 

2011;7(12):1-13. DOI: 10.1371/journal.pcbi.1002270  

27. Oda M, Yokomori H, Han JY. Regulatory mechanisms of 

hepatic microcirculation. Clinical Hemorheology and 

Microcirculation. 2003;29(3-4):167-182. 

28. Young B, Lowe JS, Stevens A, Heath j W. Wheater’s 

Functional Histology: A Text and Color Atlas. 4th ed. 

Oxford, UK: Churchill Livingstone; c2006. p. 288-301. 

29. Vuk I, Rajic Z, Zorc B. Malaria and antimalarial drugs. 

Farm Glas. 2008;64:51-60. 

30. Soulard V, Bosson-Vanga H, Lorthiois A, Roucher C, 

Franetich JF, Zanghi G, et al. Plasmodium falciparum 

full life cycle and plasmodium ovale liver stages in 

humanized mice. Nature Communications. 

2015;6(1):7690. 

31. Josling GA, Llinas M. Sexual development in 

Plasmodium parasites; knowing when it’s time to 

commit. Nat. Rev. Genet. 2015;13(9):573-587.  

https://www.mathsjournal.com/

