International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452

Maths 2023; 8(3): 191-198
© 2023 Stats \& Maths
https://www.mathsjournal.com
Received: 03-02-2023
Accepted: 05-03-2023
Phung Duy Quang
Foreign Trade University, Hanoi, Vietnam

Luu Thi Van Anh
University of Transport
Technology, Vietnam

Bui Duc Duong
Luong The Vinh High School, Ha Noi, Vietnam

Nguyen Duy Phuong
People's Security Academy, Ha noi, Vietnam

Nguyen Van Hoang
Foreign Trade University, Hanoi, Vietnam

[^0]
An exact formula for ruin probability in generalized risk model with homogeneous Markov chains

Phung Duy Quang, Luu Thi Van Anh, Bui Duc Duong, Nguyen Duy Phuong and Nguyen Van Hoang

DOI: https://doi.org/10.22271/maths.2023.v8.i3c. 1016

Abstract

This paper considers a general risk model with the impact of interest rates. The purpose is to build a formula to calculate the ruin probability of that model. The assumption we expand in this paper is that the series of insurance premiums, the series of insurance claims and the series of interest rates are homogeneous and independent Markov chains. The sequences of random variables studied in this paper all have positive integer values. Using the properties of probability theory, we can build a formula for calculating ruin probability of the research model. 2000 MSC: primary $62 \mathrm{P} 05,62 \mathrm{E} 10$, secondary 60 F 05 .

Keywords: Ruin probability, generalized risk model, Non -ruin probability, homogeneous Markov chain

1. Introduction

Insurance models have been studied by many authors in terms of formulating the ruin probability estimation formula for those models. The second approach is to build a formula for calculating the ruin probability, in Claude Lefèvre and Stéphane Loisel ${ }^{[1]}$, the authors have built a formula of ruin probability for compound biomial and compound Poisson risk models. The result is extended. the formula for calculating the ruin probability of Pircard and Lefèvre ${ }^{[9]}$. For the general risk model with the impact of interest rates determined by (1.1) below.
$Z_{t}=Z_{t-1}\left(1+I_{t}\right)+X_{t}-Y_{t} ; t=1,2, \ldots$
With
Z_{t} is the capital at period $\mathrm{t}, \mathrm{Z}_{\mathrm{o}}=\mathrm{z}$ is the capital of the first period of the insurance company; u ; t takes the value in the set $N^{*}=\{1 ; 2 ; 3 ; \ldots.\} ; X=\left\{X_{i}\right\}_{i \geq 1}$ are premiums; $Y=\left\{Y_{j}\right\}_{j \geq 1}$ are claims and $I=\left\{I_{k}\right\}_{k \geq 1}$ are interests.
The approaches of Claude Lefèvre và Stéphane Loisel do not build a formula for calculating the ruin probability. To build the formula for calculating the ruin probability for model (1.1), we assume that the random variable sequences are Markov chains with positive integer values, which is consistent with practice.
The article is structured as follows: in Section 2 we introduce model, asumptions; in Section 3, we study the model (1.1) to establish the formula for calculating the ruin probability and the non ruin probability; Finally, in section 4, we introduce the conclusion of this paper.

2. Model and Assumptions

To study the model posed for the problem of this paper, we make the following assumptions:
Assumption 1. $Z_{o}=z, t$ takes the value in the set $N^{*}=\{1 ; 2 ; 3 ; \ldots .$.$\} .$

Assumption 2. X_{n} is premium amounts from the $\mathrm{n}^{\text {th }}$ premium;
$X=\left\{X_{n}\right\}_{n \geq 1}$ is a Markov chain and is homogeneous,
X_{n} take values in $T_{X}=\left\{x_{1}, x_{2}, \ldots, x_{K}\right\}\left(0<x_{1}<x_{2}<\ldots<x_{K}\right)$.
Let $q_{i j}=P\left[X_{n+1}=x_{j} \mid X_{n}=x_{i}\right],(n \in N) ; x_{i}, x_{j} \in T_{X} \quad\left(0 \leq q_{i j} \leq 1, \sum_{j=1}^{K} q_{i j}=1\right)$ and $q_{i}=P\left(X_{1}=x_{i}\right)\left(x_{i} \in T_{X}\right)$.
We make the following convention
$P\left(0<X_{n} \leq x_{K}<+\infty\right)=1$,
$P\left(X_{n}=0\right)=0$ if and if $P\left(X_{n}>0\right)=1$.
Assumption 3. Y_{n} is claim amounts from the $\mathrm{n}^{\text {th }}$ claim,
$Y=\left\{Y_{n}\right\}_{n \geq 1}$ is a Markov chain and is homogeneous,
Y_{n} take values in $T_{Y}=\left\{y_{1}, y_{2}, \ldots, y_{P}\right\}\left(0<y_{1}<y_{2}<\ldots<y_{P}\right)$.
Let $p_{i j}=P\left[Y_{m+1}=y_{j} \mid Y_{m}=y_{i}\right],(m \in N) ; y_{i}, y_{j} \in T_{Y}\left(0 \leq q_{i j} \leq 1, \sum_{j=1}^{P} q_{i j}=1\right)$ and $p_{i}=P\left(Y_{1}=y_{i}\right)\left(y_{i} \in T_{Y}\right)$.

We make the following convention
$P\left(1 \leq Y_{m} \leq y_{P}<+\infty\right)=1$,
$P\left(Y_{m}=0\right)=0$ if and if $P\left(Y_{m}>0\right)=1$.
Assumption 4. I_{n} is interest amounts from the $\mathrm{n}^{\text {th }}$ interest, $I=\left\{I_{n}\right\}_{n \geq 1}$ is a Markov chain and is homogeneous,
I_{n} take values in $T_{I}=\left\{i_{1}, i_{2}, \ldots, i_{Q}\right\}\left(0 \leq i_{1}<i_{2}<\ldots<i_{Q}\right)$.
Let $r_{l h}=P\left[I_{n+1}=r_{l} \mid I_{n}=r_{h}\right],(n \in N) ; r_{l}, r_{h} \in T_{I}\left(0 \leq r_{l h} \leq 1, \sum_{h=1}^{Q} r_{l h}=1\right)$ and $r_{k}=P\left(I_{1}=r_{k}\right)\left(r_{k} \in T_{I}\right)$.
We make the following convention
$P\left(0 \leq I_{n} \leq i_{Q}<+\infty\right)=1$.
a. X, Y and I are sequences of independent random variables.

From (1.1), we have:
$Z_{t}=z \cdot \prod_{k=1}^{t}\left(1+I_{k}\right)+\sum_{k=1}^{t-1}\left(\left(X_{k}-Y_{k}\right) \prod_{j=k+1}^{t}\left(1+I_{j}\right)\right)+X_{t}-Y_{t}$.
The ruin time is defined by $T_{z}=\inf \left\{j: Z_{j}<0\right\}$, where $\inf \phi=\infty$.
With assumption 2.1 to assumption 2.5 :
The finite time ruin probabilities of model (1.1) is defined as:
$\psi_{t}(z)=P\left(T_{z} \leq t\right)=P\left(\bigcup_{j=1}^{t}\left(Z_{j}<0\right)\right)$

The finite time non ruin probabilities of model (1.1) is defined as:
$\varphi_{t}(z)=1-\psi_{t}(z)=P\left(T_{z} \geq t+1\right)=P\left(\bigcap_{j=1}^{t}\left(Z_{j} \geq 0\right)\right)$.

The problem posed in this paper is to build formulas for $\psi_{t}(z)$ and $\varphi_{t}(z)$. We first prove the following lemma.
Lemma 2.1. Assuming $z, x_{i}(i=\overline{1, t}), y_{i}(i=\overline{1, t})$ are positive integers và $i_{k}(k=\overline{1, t})$ is non - negative number.
If n is a possitive integer number that $1 \leq n \leq t-1$ satisfies:
$y_{n} \leq z \prod_{k=1}^{n}\left(1+i_{k}\right)+\sum_{k=1}^{n-1}\left(x_{k}-y_{k}\right) \prod_{j=k+1}^{n}\left(1+i_{j}\right)+x_{n}$

Then
$z \prod_{k=1}^{n+1}\left(1+i_{k}\right)+\sum_{k=1}^{n}\left(x_{k}-y_{k}\right) \prod_{j=k+1}^{n+1}\left(1+i_{j}\right)+x_{n+1} \geq 1$

Proof

Use (2.4), we infer
$y_{n} \leq z \prod_{k=1}^{n}\left(1+i_{k}\right)+\sum_{k=1}^{n-1}\left(x_{k}-y_{k}\right) \prod_{j=k+1}^{n}\left(1+i_{j}\right)+x_{n}$
$\Leftrightarrow x_{n}-y_{n} \geq-z \prod_{k=1}^{n}\left(1+i_{k}\right)-\sum_{k=1}^{n-1}\left(x_{k}-y_{k}\right) \prod_{j=k+1}^{n}\left(1+i_{j}\right)$
We have
$z \prod_{k=1}^{n+1}\left(1+i_{k}\right)+\sum_{k=1}^{n}\left(x_{k}-y_{k}\right) \prod_{j=k+1}^{n+1}\left(1+i_{j}\right)+x_{n+1}$
$=z \prod_{k=1}^{n+1}\left(1+i_{k}\right)+\sum_{k=1}^{n-1}\left(x_{k}-y_{k}\right) \prod_{j=k+1}^{n+1}\left(1+i_{j}\right)+\left(x_{n}-y_{n}\right)\left(1+i_{n+1}\right)+x_{n+1}$
$\geq z \prod_{k=1}^{n+1}\left(1+i_{k}\right)+\sum_{k=1}^{n-1}\left(x_{k}-y_{k}\right) \prod_{j=k+1}^{n+1}\left(1+i_{j}\right)+\left[-z \prod_{k=1}^{n}\left(1+i_{k}\right)-\sum_{k=1}^{n-1}\left(x_{k}-y_{k}\right) \prod_{j=k+1}^{n}\left(1+i_{j}\right)\right]\left(1+i_{n+1}\right)+x_{n+1}=x_{n+1} \geq 1$.
So (2.5) is correct.
Lemma 2.1 has been proved \square

3. The main result

The main result of the paper is that we will build a formula for the ruin probability (2.2) and a formula for the non-ruin probability (2.3).

Theorem 3.1. Consider model (1.1) with Assumption 2.1 to Assumption 2.5, then finite time non ruin probability of model (1.1) is defined by
$\varphi_{t}^{(1)}(z)=\sum_{c_{1}, c_{2}, \ldots, c_{t}=1}^{Q} \sum_{m_{1}, m_{2}, \ldots, m_{t}=1}^{K} r_{d_{1}} r_{d_{1} d_{2}} \ldots r_{d_{t-1} d_{t}} q_{m_{1}} q_{m_{1} m_{2}} \ldots q_{m_{t-1} m_{t}}\left(\sum_{1 \leq n_{1} \leq f_{1}} \sum_{1 \leq n_{2} \leq f_{2}} \ldots \sum_{1 \leq n_{t} \leq f_{t}} p_{n_{1}} p_{n_{1} n_{2}} \ldots p_{n_{t-1} n_{t}}\right)$,
Where
$f_{1}=\max \left\{n_{1}: y_{n_{1}} \leq \min \left\{\left[u \prod_{k=1}^{1}\left(1+i_{d_{k}}\right)+x_{m_{1}}\right], y_{P}\right\}\right\}$,
$f_{2}=\max \left\{n_{2}: y_{n_{2}} \leq \min \left\{\left[u \prod_{k=1}^{2}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{1}\left(x_{m_{k}}-y_{n_{k}}\right) \prod_{j=k+1}^{2}\left(1+i_{d_{j}}\right)+x_{m_{2}}\right], y_{P}\right]\right\}$,
$f_{t}=\max \left\{n_{t}: y_{n_{t}} \leq \min \left\{\left[u \prod_{k=1}^{t}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{t-1}\left(x_{m_{k}}-y_{m_{k}}\right) \prod_{j=k+1}^{t}\left(1+i_{d_{j}}\right)+x_{m_{t}}\right], y_{P}\right\}\right\}$,
and $[a]$ is integer part of a.

Proof.

Firtly, we let

$$
\begin{align*}
& A:=\bigcap_{j=1}^{t}\left(Z_{j} \geq 0\right)=\left(Y_{1} \leq z \prod_{k=1}^{1}\left(1+I_{k}\right)+X_{1}\right) \cap\left(Y_{2} \leq z \prod_{k=1}^{2}\left(1+I_{k}\right)+\sum_{k=1}^{1}\left(X_{k}-Y_{k}\right) \prod_{j=k+1}^{2}\left(1+I_{j}\right)+X_{2}\right) \cap \\
& \left(Y_{3} \leq z \prod_{k=1}^{3}\left(1+I_{k}\right)+\sum_{k=1}^{2}\left(X_{k}-Y_{k}\right) \prod_{j=k+1}^{3}\left(1+I_{j}\right)+X_{3}\right) \cap \ldots \ldots \cap\left(Y_{t} \leq z \prod_{k=1}^{t}\left(1+I_{k}\right)+\sum_{k=1}^{t-1}\left(X_{k}-Y_{k}\right) \prod_{j=k+1}^{t}\left(1+I_{j}\right)+X_{t}\right) \tag{8}
\end{align*}
$$

By Asumption 2.4, we have $I_{1}=i_{d_{1}}, I_{2}=i_{d_{2}}, \ldots, I_{t}=i_{d_{t}}$ with $i_{d_{1}}, i_{d_{2}}, \ldots, i_{d_{t}}$ are non-negative numbers statisfy:
$0 \leq i_{d_{1}}, i_{d_{2}}, \ldots, i_{d_{t}} \leq i_{Q}$.

Let $B_{d_{1} d_{2} \ldots d_{t}}=\left(I_{1}=i_{d_{1}}\right) \cap\left(I_{2}=i_{d_{2}}\right) \cap \ldots \cap\left(I_{t}=i_{d_{t}}\right)$.

Because $I=\left\{I_{n}\right\}_{n \geq 1}$ is a Markov chain and it is homogeneous then
$P\left(B_{d_{1} d_{2} \ldots d_{t}}\right)=P\left[\left(I_{1}=i_{d_{1}}\right) \cap\left(I_{2}=i_{d_{2}}\right) \cap \ldots \cap\left(I_{t}=i_{d_{t}}\right)\right]$
$=P\left(I_{1}=i_{d_{1}}\right) \cdot P\left(I_{2}=i_{d_{2}} \mid I_{1}=i_{d_{1}}\right) \ldots P\left(I_{t}=i_{d_{t}} \mid I_{t-1}=i_{d_{t-1}}\right)=r_{d_{1}} r_{d_{1} d_{2}} \ldots r_{d_{t-1} d_{t}}$

By Asumption 2.2, we have $X_{1}=x_{m_{1}}, X_{2}=x_{m_{2}}, \ldots, X_{t}=x_{m_{t}}$ with $x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{t}}$ are possitive numbers statisfy:
$0<x_{m_{1}}, x_{m_{2}}, \ldots, x_{m_{t}} \leq x_{M}$ Define $C_{m_{1} m_{2} \ldots m_{t}}=\left(X_{1}=x_{m_{1}}\right) \cap\left(X_{2}=x_{m_{2}}\right) \cap \ldots \cap\left(X_{t}=x_{m_{t}}\right)$.
Because $X=\left\{X_{n}\right\}_{n \geq 1}$ is a Markov chain and it is homogeneous then
$P\left(C_{m_{1} m_{2} \ldots m_{t}}\right)=P\left[\left(X_{1}=x_{m_{1}}\right) \cap\left(X_{2}=x_{m_{2}}\right) \cap \ldots \cap\left(X_{t}=x_{m_{t}}\right)\right]$
$=p_{m_{1}} p_{m_{1} m_{2}} \ldots p_{m_{t-1} m_{t}}$

Firsly, we have $I_{1}=i_{d_{1}}\left(d_{1}=\overline{1, Q}\right)$ then (3.2) is given
$A \stackrel{a s}{=} \bigcup_{d_{1}=1}^{Q}\left(I_{1}=i_{d_{1}}\right) \cap\left(\left(Y_{1} \leq z \prod_{k=1}^{1}\left(1+i_{d_{k}}\right)+X_{1}\right) \cap\left(Y_{2} \leq z\left(1+i_{d_{1}}\right) \prod_{k=2}^{2}\left(1+I_{k}\right)+\sum_{k=1}^{1}\left(X_{k}-Y_{k}\right) \prod_{j=k+1}^{2}\left(1+I_{j}\right)+X_{2}\right) \cap\right.$
$\left.\left(Y_{3} \leq z\left(1+i_{d_{1}}\right) \prod_{k=2}^{3}\left(1+I_{k}\right)+\sum_{k=1}^{2}\left(X_{k}-Y_{k}\right) \prod_{j=k+1}^{3}\left(1+I_{j}\right)+X_{3}\right) \cap \ldots \ldots \cap\left(Y_{t} \leq z\left(1+i_{d_{1}}\right) \prod_{k=2}^{t}\left(1+I_{k}\right)+\sum_{k=1}^{t-1}\left(X_{k}-Y_{k}\right) \prod_{j=k+1}^{t}\left(1+I_{j}\right)+X_{t}\right)\right)$
Where
$A \stackrel{a s}{=} B$ if $P(A \Delta B)=0$ and $A \Delta B=(A \backslash B) \cup(B \backslash A)$.
Similarly, we let $I_{2}=i_{d_{2}}, \ldots, I_{t}=i_{d_{t}}\left(d_{2}, \ldots, d_{t}=\overline{1, Q}\right),(3.2)$ is defined as
$A \stackrel{a s}{=} \bigcup_{c_{1}, c_{2}, \ldots, c_{1}=1}^{Q}\left\{\left(I_{1}=i_{d_{1}}\right) \cap\left(I_{2}=i_{d_{2}}\right) \cap \ldots \cap\left(I_{t}=i_{d_{t}}\right)\right\} \cap\left(\left(Y_{1} \leq z \prod_{k=1}^{1}\left(1+i_{d_{k}}\right)+X_{1}\right) \cap\right.$
$\left(Y_{2} \leq z \prod_{k=1}^{2}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{1}\left(X_{k}-Y_{k}\right) \prod_{j=k+1}^{2}\left(1+i_{d_{j}}\right)+X_{2}\right) \cap\left(Y_{3} \leq z \prod_{k=1}^{3}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{2}\left(X_{k}-Y_{k}\right) \prod_{j=k+1}^{3}\left(1+i_{d_{j}}\right)+X_{3}\right) \cap \ldots$
$\left.\ldots \cap\left(Y_{t} \leq z \prod_{k=1}^{t}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{t-1}\left(X_{k}-Y_{k}\right) \prod_{j=k+1}^{t}\left(1+i_{d_{j}}\right)+X_{t}\right)\right)$
Next, we let $X_{1}=x_{m_{1}}\left(m_{1}=\overline{1, K}\right)$, then
$A=\bigcup_{d_{1}, d_{2}, \ldots, d_{t}=1}^{Q s}\left(\left\{\left(I_{1}=i_{d_{1}}\right) \cap\left(I_{2}=i_{d_{2}}\right) \cap \ldots \cap\left(I_{t}=i_{d_{t}}\right)\right\} \cap\left(\bigcup_{x_{1}=1}^{K}\left(X_{1}=x_{m_{1}}\right) \cap\left(\left(Y_{1} \leq u \prod_{k=1}^{1}\left(1+i_{d_{k}}\right)+x_{m_{1}}\right) \cap\right.\right.\right.$
$\left(Y_{2} \leq z \prod_{k=1}^{2}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{1}\left(x_{m_{k}}-Y_{k}\right) \prod_{j=k+1}^{2}\left(1+i_{d_{j}}\right)+X_{2}\right) \cap$
$\left(Y_{3} \leq z \prod_{k=1}^{3}\left(1+i_{d_{k}}\right)+\left[\left(x_{m_{1}}-Y_{1}\right)+\sum_{k=2}^{2}\left(X_{k}-Y_{k}\right)\right] \prod_{j=k+1}^{3}\left(1+i_{d_{j}}\right)+X_{3}\right) \cap \ldots$
$\left.\left.\ldots \cap\left(Y_{t} \leq z \prod_{k=1}^{t}\left(1+i_{d_{k}}\right)+\left[\left(x_{m_{1}}-Y_{1}\right)+\sum_{k=2}^{t-1}\left(X_{k}-Y_{k}\right)\right] \prod_{j=k+1}^{t}\left(1+i_{d_{j}}\right)+X_{t}\right)\right)\right)$
Similarly, we let $X_{2}=x_{m_{2}}, \ldots, X_{t}=x_{m_{t}}\left(m_{2}, \ldots, m_{t}=\overline{1, K}\right),(3.2)$ is defined as
$A=\bigcup_{d_{1}, d_{2}, \ldots, d_{t}=1}^{a s}\left(\left\{\left(I_{1}=i_{d_{1}}\right) \cap\left(I_{2}=i_{d_{2}}\right) \cap \ldots \cap\left(I_{t}=i_{d_{t}}\right)\right\} \cap\left(\bigcup_{m_{1}, m_{2}, \ldots, m_{t}=1}^{K}\left\{\left(X_{1}=m_{1}\right) \cap\left(X_{2}=m_{2}\right) \cap \ldots \cap\left(X_{t}=m_{t}\right)\right\} \cap\right.\right.$
$\left(\left(Y_{1} \leq z \prod_{k=1}^{1}\left(1+i_{d_{k}}\right)+x_{m_{1}}\right) \cap\left(Y_{2} \leq z \prod_{k=1}^{2}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{1}\left(x_{m_{k}}-Y_{k}\right) \prod_{j=k+1}^{2}\left(1+i_{d_{j}}\right)+x_{m_{2}}\right) \cap\right.$
$\left(Y_{3} \leq z \prod_{k=1}^{3}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{2}\left(x_{m_{k}}-Y_{k}\right) \prod_{j=k+1}^{3}\left(1+i_{d_{j}}\right)+x_{m_{3}}\right) \cap \ldots \ldots \cap\left(Y_{t} \leq z \prod_{k=1}^{t}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{t-1}\left(x_{m_{k}}-Y_{k}\right) \prod_{j=k+1}^{t}\left(1+i_{d_{j}}\right)+x_{m_{i}}\right)$
$\stackrel{a s}{=} \bigcup_{d_{1}, d_{2} \ldots d_{t}=1}^{Q}\left(\left\{\left(I_{1}=i_{d_{1}}\right) \cap\left(I_{2}=i_{d_{2}}\right) \cap \ldots \cap\left(I_{t}=i_{d_{t}}\right)\right\} \cap \bigcup_{m_{1}, m_{2}, \ldots m_{t}=1}^{K}\left(\left\{\left(X_{1}=x_{m_{1}}\right) \cap\left(X_{2}=x_{m_{2}}\right) \cap \ldots \cap\left(X_{t}=x_{m_{2}}\right)\right\} \cap D_{m_{1}}^{d_{1} d_{2}, \ldots . d_{t}} \boldsymbol{m}_{t}\right)\right)$
$\stackrel{\text { as }}{=} \bigcup_{d_{1}, d_{2}, \ldots, d_{t}=1}^{Q}\left(\bigcup_{m_{1}, m_{2}, \ldots, m_{t}=1}^{K}\left\{A_{d_{1} d_{2} \ldots d_{t}} \cap B_{m_{1} m_{2} \ldots m_{t}} \cap D_{m_{1} m_{2} \ldots m_{t}}^{d_{1} d_{2} \ldots d_{t}}\right\}\right)$
Where
$D_{m_{1} m_{2} \ldots m_{t}}^{d_{1} d_{2} \ldots d_{t}} \stackrel{a s}{=}\left(Y_{1} \leq z \prod_{k=1}^{1}\left(1+i_{d_{k}}\right)+x_{m_{1}}\right) \cap\left(Y_{2} \leq z \prod_{k=1}^{2}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{1}\left(x_{m_{k}}-Y_{k}\right) \prod_{j=k+1}^{2}\left(1+i_{d_{j}}\right)+x_{m_{2}}\right) \cap$
$\left(Y_{3} \leq z \prod_{k=1}^{3}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{2}\left(x_{m_{k}}-Y_{k}\right) \prod_{j=k+1}^{3}\left(1+i_{d_{j}}\right)+x_{m_{3}}\right) \cap \ldots \ldots \cap\left(Y_{t} \leq z \prod_{k=1}^{t}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{t-1}\left(x_{m_{k}}-Y_{k}\right) \prod_{j=k+1}^{t}\left(1+i_{d_{j}}\right)+x_{m_{t}}\right)$
By Assumption 2.3, we have $Y_{1}=y_{n_{1}}, Y_{2}=y_{n_{2}}, \ldots, Y_{t-1}=y_{n_{t-1}} ; Y_{t}=y_{t}$ with $y_{1}, y_{2}, \ldots, y_{t-1} ; y_{t}$ are positive numbers satisfy: $0<y_{1}, y_{2}, \ldots, y_{t} \leq y_{P}$.

Thus, (3.6) is defined as

$\left.\ldots\left(\bigcup_{y_{1} \leq\left(z \prod_{k=1}^{t}\left(1+i_{i_{k}}\right)+\sum_{k=1}^{t-1}\left(x_{m_{k}}-y_{n_{k}}\right) \prod_{j=k+1}^{t}\left(1+i_{d_{j}}\right)+x_{m_{k}}\right)}\left\{\left(Y_{1}=y_{n_{1}}\right) \cap \ldots \cap\left(Y_{t}=y_{n_{t}}\right)\right\}\right) \ldots\right)$
Where, by Lemma 2.1, $z \prod_{k=1}^{1}\left(1+i_{d_{k}}\right)+x_{m_{1}}$,
$z \prod_{k=1}^{2}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{1}\left(x_{m_{k}}-y_{n_{k}}\right) \prod_{j=k+1}^{2}\left(1+i_{d_{j}}\right)+x_{m_{1}}, \ldots, z \prod_{k=1}^{t}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{t}\left(x_{m_{k}}-y_{n_{k}}\right) \prod_{j=k+1}^{t}\left(1+i_{d_{j}}\right)+x_{m_{2}}$ are integer
numbers and $0<y_{m_{1}}, y_{m_{2}}, \ldots, y_{n_{t}} \leq y_{P}$ then, we let
$f_{1}=\max \left\{n_{1}: y_{n_{1}} \leq \min \left\{\left[z \prod_{k=1}^{1}\left(1+i_{d_{k}}\right)+x_{m_{1}}\right], y_{P}\right\}\right\}$,
$f_{2}=\max \left\{n_{2}: y_{n_{2}} \leq \min \left\{\left[z \prod_{k=1}^{2}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{1}\left(x_{m_{k}}-y_{n_{k}}\right) \prod_{j=k+1}^{2}\left(1+i_{d_{j}}\right)+x_{m_{2}}\right], y_{P}\right\}\right\}$
$f_{t}=\max \left\{n_{t}: y_{t} \leq \min \left\{\left[z \prod_{k=1}^{t}\left(1+i_{d_{k}}\right)+\sum_{k=1}^{t-1}\left(x_{m_{k}}-y_{n_{k}}\right) \prod_{j=k+1}^{t}\left(1+i_{d_{j}}\right)+x_{m_{t}}\right], y_{P}\right\}\right\}$
and $[a]$ is integer part of a, Thus, (3.7) is defined as
$D_{m_{1} m_{2} \ldots m_{t}}^{d_{1} d_{2} \ldots d_{t}}{ }^{\text {as }}=\bigcup_{1 \leq n_{1} \leq f_{1}} \bigcup_{1 \leq n_{2} \leq f_{2}} \ldots \bigcup_{1 \leq n_{t} \leq f_{t}}\left\{\left(Y_{1}=y_{n_{1}}\right) \cap\left(Y_{2}=y_{n_{2}}\right) \cap \ldots \cap\left(Y_{t}=y_{n_{t}}\right)\right\}$
Because $Y=\left\{Y_{n}\right\}_{n \geq 1}$ is a Markov chain and it is homogeneous then
$P\left[\left(Y_{1}=y_{n_{1}}\right) \cap\left(Y_{2}=y_{n_{2}}\right) \cap \ldots \cap\left(Y_{t}=y_{n_{t}}\right)\right]=q_{n_{1}} q_{n_{1} n_{2}} \ldots q_{n_{t-1} n_{t}}$
In the other hand, because system of events $\left\{\left(Y_{1}=y_{n_{1}}\right) \cap\left(Y_{2}=y_{n_{2}}\right) \cap \ldots \cap\left(Y_{t}=y_{n_{t}}\right)\right\}$ in (3.8) be incompatible then

$$
\begin{equation*}
P\left(D_{m_{1} m_{2} \ldots m_{t}}^{d_{1} d_{2} \ldots d_{t}}\right)=\sum_{1 \leq n_{1} \leq f_{1}} \sum_{1 \leq n_{2} \leq f_{2}} \ldots \sum_{1 \leq n_{t} \leq f_{t}} q_{n_{1}} q_{n_{1} n_{2}} \ldots q_{n_{t-1} n_{t}} \tag{15}
\end{equation*}
$$

Under the assumption that X, Y and I are sequences of independent random variables then $B_{d_{1} d_{2} \ldots d_{t}}, C_{m_{1} m_{2} \ldots m_{t}}, D_{m_{1} m_{2} \ldots m_{t}}^{d_{1} d_{2} \ldots d_{t}}$ are independent events. Simultaneously, system of events $\left\{B_{d_{1} d_{2} \ldots d_{t}} \cap C_{m_{1} m_{2} \ldots m_{t}} \cap D_{m_{1} m_{2} \ldots m_{t}}^{d_{1} d_{2} \ldots d_{t}}\right\}$ in (2.10) be incompatible. Therefore, combining (3.3), (3.4) and (3.9), we have.

$$
\begin{align*}
& \varphi_{t}(z)=P(A)=\sum_{d_{1}, d_{2}, ., d_{t}=1}^{Q}\left(\sum_{m_{1}, m_{2}, \ldots, m_{t}=1}^{K} P\left\{B_{d_{1} d_{2} \ldots d_{t}} \cap C_{m_{1} m_{2} \ldots m_{t}} \cap D_{m_{1} m_{2} \ldots m_{t}}^{d_{1} d_{2} \ldots d_{t}}\right\}\right) \\
& =\sum_{d_{1}, d_{2}, \ldots, d_{t}=1}^{Q}\left(\sum_{m_{1}, m_{2}, \ldots, m_{t}=1}^{K} P\left(B_{d_{1} d_{2} \ldots d_{t}}\right) \cdot P\left(C_{m_{1} m_{2} \ldots m_{t}}\right) \cdot P\left(D_{m_{1} m_{2} \ldots m_{t}}^{d_{1} d_{2} \ldots d_{t}}\right)\right) \\
& =\sum_{d_{1}, d_{2}, \ldots, d_{t}=1}^{Q} \sum_{m_{1}, m_{2}, \ldots, m_{t}=1}^{K} r_{d_{1}} r_{d_{1} d_{2}} \ldots r_{d_{t-1} d_{t}} p_{m_{1}} p_{m_{1} m_{2}} \ldots p_{m_{t-1} m_{t}}\left(\sum_{1 \leq n_{1} \leq f_{1}} \sum_{1 \leq n_{2} \leq f_{2}} \ldots \sum_{1 \leq n_{t} \leq f_{t}} q_{n_{1}} q_{n_{1} n_{2}} \ldots q_{n_{t-1} n_{t}}\right) \tag{15}
\end{align*}
$$

Theorem 3.1. Has been proved.
Corollary 3.1. Consider model (1.1) with assumption 2.1 to assumption 2.5 , then finite time ruin probability of model (1.1) is defined as
$\psi_{t}(z)=1-\varphi_{t}(z)$
$=1-\sum_{d_{1}, d_{2}, \ldots, d_{t}=1}^{Q} \sum_{m_{1}, m_{2}, \ldots, m_{t}=1}^{K} r_{d_{1}} r_{d_{1} d_{2}} \ldots r_{d_{t-1} d_{t}} p_{m_{1}} p_{m_{1} m_{2}} \ldots p_{m_{t-1} m_{t}}\left(\sum_{1 \leq n_{1} \leq f_{1}} \sum_{1 \leq n_{2} \leq f_{2}} \ldots \sum_{1 \leq n_{t} \leq f_{t}} q_{n_{1}} q_{n_{1} n_{2}} \ldots q_{n_{t-1} n_{t}}\right)$
Remark 3.1. Formula (3.11) allows to calculate the ruin probability of the model (1.1) assuming that the series of insurance premium, the series of insurance claim, and the series of interest rates are sequences of random variables that depend on Markov and receive the value positive integers.
Formula (3.1) allows to calculate the non-ruin probability of the model (1.1) assuming that the series of insurance premium, the series of insurance claim, the series of interest rates are sequences of random variables that depend on Markov and receive the value positive integers.

4. Conclusion

Using the tools of probability theory, we have built a formula to calculate the ruin probability (The non-ruin probability) of a general insurance model with a series of Markov dependent random variables and receive the following values: positive integers. Our main result in this paper is Theorem 3.1.

5. References

1. Lefèvre C, Loisel S. On finite - time ruin probabilities for classical models, Scandinavian Actuarial Journal. 2008;2008(1):56-68.
2. De Vylder FE. La formule de Picard dt Lefèvre pour la probabilité de ruine en temps fini, Bulletin Francais d'Actuariat. 1997;1(2):31-40.
3. De Vylder FE. Numerical finite - time ruin probabilities by the Picard - Lefèvre formula. Scandinavian Actual Journal. 1999;1999(2):97-105.
4. De Vylder FE, Goovaerts MJ. Recursive calculation of finite-time ruin probabilities, Insurance: Mathematics and Economics. 1998;7(1):1-7.
5. De Vylder FE, Goovaerts MJ. Explicit finite - time and infinite - time ruin probabilities in the continuous case. Insurance: Mathematics and Economics. 1999;24(3):155172.
6. Gerber HU. An Introduction to Mathematical Risk Theory. Insurance: Mathematics and Economics. 1979;24:155-172.
7. Ignatov ZG, Kaishev VK, Krachunov RS. An improved finite - time ruin probability formula and its Mathematical implemention. Insurance: Mathematics and Economics. 2001;29(3):375-386.
8. Ignatov ZG, Kaishev VK. A finite - time ruin probability formula for continuous claim severities. Journal of Applied Probability. 2004;41(2):570-578.
9. Picard PH, Lefèvre CL. The probability of ruin in finite time with discrete claim size distribution. Scandinavian Actuarial. 1997;1997(1):58-69.
10. Quang PD. Upper Bounds for Ruin Probability in Generalized Risk Processes under rates of interest with homogenous Markov chain claims and homogenous Markov chain premiums, Applied Mathematical Sciences. 2014;8(29):1445-1454.
11. Quang PD. Ruin Probability in a Generalised Risk Process under Rates of Interest with Homogenous Markov Chains, East Asian Journal on Applied Mathematics. 2014;4(3):283-300.
12. Quang PD, Chien DQ, Thinh NH. Simulation for Ruin Probabilities in Insurance with Sequence Markov Dependence Random Variables, Universal Journal of Accounting and Finance. 2021;9(5):927-934.
13. Rullière D, Loisel ST. Another look at the Picard Lefèvre formula for finite - time ruin probabilities. Insurance: Mathematics and Economics. 2004;35(2):187203.

[^0]: Corresponding Author: Phung Duy Quang
 Foreign Trade University, Hanoi, Vietnam

