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Abstract 

In this paper, a stochastic vector differential equation model that could consider environmental effects in 

decision making of investors in stock exchange market has been developed, stability and controllability 

theorems on stock market forces were developed and analyzed. New novel results were obtained by 

utilizing properties of the transition (or fundamental) matrix solution (a function of the drift) and by 

placing some boundedness condition on the stochastic part of the model (a function of the volatility). 

Furthermore, asymptotic null controllability results were obtained by the non-singularity of the 

controllability matrix (a function of the drift) by defining some control measure on the stochastic vector 

equation. Examples are given using data from Nigeria stock exchange to illustrate the effectiveness of the 

model and simulation output results presented using MATLAB. 
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1. Introduction 

It is known in [1, 2] that differential equation since its inception from the work on dynamics by 

Isaac Newton in the mid-17th century have been known as a major branch of mathematics 

(pure and applied) which can be used as an instrument for harmonizing different constituents 

into a single system which might otherwise remain independent of each other in other to 

analyze the relationships that co-exists between them. Differential equations are vital field of 

every ongoing investigation with an interesting capability of reformulating basic real world 

problems and proffering solutions in the various fields. It is one of the most frequent tool used 

for models in science, economics, engineering and other fields. 

Mathematical problems for dynamics of changing processes in real world can be modelled into 

partial or ordinary differential equations depending on the kind of problem under investigation. 

If some level of unpredictability or randomness is allowed into the system model such as 

environmental epidemic effects that cannot be effectively estimated, then an all-encompassing 

mathematical model of the situation or problem according to [3] is a stochastic differential 

model. It has been assumed that investors decisions are primarily affected by their expected 

returns, these decisions can be made realistic if a differential equation model that could 

consider the environmental effects in their decisions is developed as a stochastic parameter in 

the equation. Stochastic ordinary differential equations are known powerful mathematical tool 

used for stock price predictions. However, accuracy of stochastic differential equation 

prediction of stock market prices may be obtained when the drift and the volatility parameters 

are structured as continuous random variables in the stochastic process instead of constant 

parameters in the model [4]. Gibbs. J. W, introduced the concept of stochastic processes in 

1902 for conversation system with random initial state in statistical mechanics using 

Hamilton-Jacobi differential equation see [5]. Stochastic processes can be used as a model for 

systems and phenomena in forecasting any random dynamical behaviors. For example, it is 

known in [6] that, problems in social, physical and biological sciences where processes of 

system dynamics are difficult to be described can base their analysis from stochastic point of 

view rather than a deterministic one.  
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Also, the modelling of price progression for assets with price volatility resulting from some probability and random processes 

with geometric random motion [7] can base their analysis from stochastic point of view. 

In recent years, challenges in stock market has led fund managers to work-out convenient ways of raising various investment 

styles due to the unstable nature and other market factors to enable them predict the fluctuation in stock prices, catch the attention 

of corporative owners and investors in the stock market to consider liquidity on stock return in their cooperation and not risk and 

efficiency alone [8]. 

Stock price fluctuations in the stock market are known to be a reflection of the random movements of their values overtime; these 

movements and other market anomalies has attracted lots of independent researchers in the industries as well as academia (see for 

example) [9, 10] which helped in the development of Black Scholes equation [11] in the early nineteen-seventies.  

The development of the Black-Scholes equation by Fischer Black and Myron Scholes in their publication of option pricing model 

in the early 1970s which later became the foundation of financial market analysis and corner stone of all pricing models whose 

derivatives can be determined with stocks as an underlying asset [12-15] is one of the major innovation in stock market history 

which later became the Black-Scholes model. Several other models including the jump diffusion, Markov switching, Heston 

processes etc., have been developed because of the short coming in the Black Scholes model (see) [3] to capture volatility as a 

stochastic process with other special features of stock market data especially the financial market. Predicting the volatility of the 

variables in the stock exchange market would require some stability analysis if there are poor correlation between the market 

forces. Stock market stability literally means a state where stock transactions synchronizes with or are in proportion with the 

market in general and are not significantly disrupted; also stock prices do not experience large fluctuations. 

The stability of a system simply means that a disturbance in the system input does not result in considerable changes in the system 

output. Several methods of analysis according to [15] are available including; the fixed point, spectral radius and Lyapunov 

methods see [2, 16, 17], and other references for details). Researchers have shown a renewed interest in analyzing the unstable stock 

market variables in recent years (see) [3, 4, 18] to enable owners of cooperation and investors decide on what level of investment to 

engage on in the stock exchange market.  

Even though advocates of Efficient Market Hypothesis (EMF) have claimed that technical analysis has little or no correlation with 

theoretical one, there are lots of literatures according to [19] showing significant correlation between these analysis. The control 

community is one research group that is addressing the correlation between theoretical and statistical analysis through popular 

models from feedback control methods. However, financial market analysts are not just interested on stock market stability but 

desires to find a control measure that would robustly stabilize the market forces and ensure adequate securities with lower cost of 

purchase. Stability of systems is very much linked to control systems; any device that can manages commands, directs them or 

can regulate behavior of other systems or devices can be seen as a control system.  

Controllability, roughly speaking means the possibility of switching a dynamical system from any feasible initial state trajectory 

to any feasible future state trajectory in the behavior of the system after some finite time using a set of admissible controls; this 

implies, some systems can be completely controllable. But, if they are not completely controllable then different kinds of 

controllability concepts such as; null, relative, approximate, constrained controllability [20] etc., can be considered. The novel 

interest in this research is null controllability; finding a possibility of steering any suitable past state trajectory in the behavior of 

the system to the origin using an appropriate set of admissible control input as with time. Many researchers [1, 20-23] have 

investigated the null controllability of systems and independent results obtained. For example, in [20], Sathiyaraj et al., presented 

null controllability criteria for stochastic equations with delay through a rank correlation and perturbed controllability matrix in 

their investigation of controllability for stochastic equations with delay in finite dimensional spaces. Davies and Oliver [21] 

investigated the null controllability for neutral type equation having infinite delays where they developed criteria that are 

sufficient for the control input values to lie in an 𝑛-dimensional unit cube. These criteria guaranteed the null controllable of the 

system with constraints by the uniform asymptotic stability for the uncontrolled system and full rank condition of the system with 

control. 

Motivated by the stochastic analysis works of [3, 4] where the unstable nature and some considerable market factors like stock 

volatility, liquidity of stock return, the drift and spot price in the stock exchange market were analyzed, this paper seeks to 

improve and extend the works in [3] by investigating the stability and controllability analysis of stochastic model for stock market 

price.  

The remaining parts of this research paper is arranged in the following order: The preliminaries, mathematical notations, model 

formulation and definitions are given in Section 2. The main result on stability is given in Section 3; in the form of theorems and 

proves while Section 4 presents null asymptotic controllability results for the system. Finally, numerical examples for the 

theoretical results are presented in Section 5 before Section 6 which contains the discussion and conclusion. 

 

2. Model Formulation, Preliminaries and Definitions 

This section presents some preliminaries and definitions upon which the research hinges and to aid the formulation of the required 

model. 

 

2.1 Preliminaries and Model Formulation  

Consider the stochastic volatility model (see) [3] having a just in time (JIT) stock control system with a re-order lead time where 

the volatility of returns is of the form; 

 

𝑑𝑆𝑡 = (𝜇𝑡𝑆𝑡 + 𝜅𝑡𝑈𝑡)𝑑𝑡 + 𝜎𝑡𝑆𝑡𝑑𝑤𝑡; 𝑆(0) = 𝑆0  (1) 

 

where 𝑆𝑡 is the stock price process, 𝜇𝑡 is the drift coefficient of stock price process, 𝑈𝑡 is the introduced stock control process with 

coefficient 𝜅𝑡, 𝜎𝑡 is a volatility process considered to be positive and 𝑤𝑡 is the Weiner process.  

A vector valued controlled stochastic differential equation model is developed following the assumptions in [3] and is given by;  
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𝑑𝑥(𝑡) = (𝐴(𝑡)𝑥(𝑡) + 𝐶(𝑡)𝑢(𝑡))𝑑𝑡 + ∑ 𝐵𝑖
𝑛
𝑖=1 (𝑡, 𝑥(𝑡))𝑑𝑤𝑖(𝑡), 𝑥(0) = 𝑥0,  (2) 

 

with 𝑥 = (𝑆1, ⋯ , 𝑆𝑛)
𝑇, and 𝑢 = (𝑈1, ⋯ , 𝑈𝑛)

𝑇 , where 𝑇 denotes the matrix transpose and 𝜎𝑗𝑖 = 𝜎(𝑗−(𝑗−1))(𝑖+1) ≠ 0;  𝑖 =

1,⋯ , 𝑛, 𝑗 = 2,⋯ , 𝑛. 

 

𝐴(𝑡) =  

(

 
 

𝜏𝜇1 𝜇2 … 𝜇𝑛

⋮ ⋮ … ⋮

𝜇1 𝜇2 … 𝜏𝜇𝑛)

 
 
,𝐵𝑖(∙) =

(

 
 
 
 

𝜎1𝑖 0 ⋯ 0

0 𝜎2𝑖 ⋯ 0

⋮ ⋯ ⋯ ⋮

0 0 ⋯ 𝜎𝑛𝑖)

 
 
 
 

,𝐶(∙) = (
𝑘11 ⋯ 𝑘1𝑛
⋮ ⋯ ⋮
𝑘𝑛1 ⋯ 𝑘𝑛𝑚

)  

 

Let 𝑅 be the real line where 𝐴(𝑡) ∈ 𝑅𝑛×𝑛, 𝐵𝑖(∙) ∈ 𝑅
𝑛×𝑛 are 𝑛 × 𝑛 matrices with 𝐵𝑖(𝑡,∙) = 0, 𝐶(𝑡) ∈ 𝑅𝑛×𝑚, 𝑢 ∈ 𝑅𝑚, 𝑥 ∈ 𝑅𝑛 is the 

price volatility process, 𝑤𝑖(𝑡) ∈ 𝑅
𝑛 is the Weiner processes and 𝑑𝑤𝑖(𝑡) its differential form with 𝑑𝑤𝑖(𝑡) = 𝜉𝑡𝑑𝑡, where 𝜉𝑡 is a 

white noise or the correlation coefficient. 

The vector valued stochastic differential equation model without the control is given by 

 

𝑑𝑥(𝑡) = 𝐴(𝑡)𝑥(𝑡)𝑑𝑡 + ∑ 𝐵𝑖
𝑛
𝑖=1 (𝑡, 𝑥(𝑡))𝑑𝑤𝑖(𝑡), 𝑥(0) = 𝑥0, (3) 

 

the future stock price can now be computed from initial data from time 𝑡 using (3) by introducing the transition matrix 𝑋(𝑡) ∈
𝑅n×𝑛 (see) [21]. The transition matrix is a continuously differentiable function which is related to the expected rate for correlation 

of stock prices and returns for trading periods and could reduce risks associated with market volatility; it is defined as 

 

𝑋(𝑡) =  {
0, 𝑡 < 0

𝐼, 𝑡 = 0 (𝐼 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦)
 

 

The stock price 𝑥(𝑡) of equation (3) can be expressed in the form of integral equation at time 𝑡 by using variation of constant 

formula (see) [21, 24] to get 

 

𝑥(𝑡) = 𝑋(𝑡)𝑥0 + ∫ 𝑋(𝑠)𝑋
−1(𝑠)∑ 𝐵𝑖(𝑠, 𝑥(𝑠))𝑑𝑤𝑖(𝑠)

𝑛
𝑖=1

𝑡

0
= 𝑋(𝑡)𝑥0 + ∫ 𝑋(𝑡)𝑋

−1(𝑠)∑ 𝐵𝑖(𝑠, 𝑥(𝑠))𝜉𝑡𝑑𝑠
𝑛
𝑖=1

𝑡

0
 (4) 

 

If 𝐵𝑖 is assumed to change only at discrete time points 𝑡𝑖(𝑖 = 1,⋯ ,𝑁 − 1); 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁−1 < 𝑡𝑁 < ∞, 𝑡 ∈ 𝐽 = [0,∞), 
then, the Ito’s integral can be used to obtain similar solution as that of (4) see [4]. This research will however not consider the 

Ito’s integral for stochastic processes in the evaluations and analysis. The idea in this paper is to exploit the properties of the 

transition matrix introduced and assume the Weiner process 𝑤𝑖 have a correlation only with 𝜉𝑡 as the correlation coefficient. 

 

2.2 Definitions 

Some definitions upon which the research hinges will now be given, 

Definition 1: The opening stock strike price 𝑥0(𝑡) of equation (3) is said to stable if for every  > 0 there exists 𝛿(휀) > 0 such 

that every future stock strike price 𝑥(𝑡) of equation (3) with ‖𝑥(0) − 𝑥0(0)‖ < 𝛿(휀) exist and satisfies ‖𝑥(𝑡) − 𝑥0(𝑡)‖ < 휀 on 𝑅. 

The initial stock strike price 𝑥0(𝑡) of equation (3) is said to be asymptotically stable, if it is stable and there exist constant 𝜂 > 0 

such that 𝑥(𝑡) − 𝑥0(𝑡) → 0 as 𝑡 → ∞ whenever ‖𝑥(𝑡) − 𝑥0(𝑡)‖ ≤ 𝜂 see [3]. 

Definition 2: The system (3) is asymptotically null controllable if for every initial stock strike price 𝑥0 ∈ 𝑅
𝑛 there exist a control 

𝑢 define on 𝐽 such that 𝑥(0) = 𝑥0 and 
lim 𝑥(𝑡) = 0
𝑡 → ∞

  

 

3. Main Results on Stability 

Here, some theorems with their proofs are given following [3] as main result on stability in this section. 

 

Theorem 1: Let 𝑋(𝑡) be the transition matrix for equation (3) and 𝑀 > 0, 𝐾 > 0 be constants such that 

 

∫ ∥ 𝑋(𝑡)𝑋(𝑠)−1
𝑡

0
∥ 𝑑𝑠 ≤ 𝐾, 𝑡 ≥ 0  (5) 

 

with ∥ 𝑋(𝑡) ∥≤ 𝑀𝑒−𝐾
−1𝑡, 𝑡 ≥ 0. Furthermore, if 

 

∥ ∑ 𝐵𝑖
𝑛
𝑖=1 (𝑡, 𝑥(𝑡))𝜉𝑡 ∥≤ 𝜌 ∥ 𝑥 ∥, ∀ 𝑡 ≥ 0,  (6) 

 

is satisfied with 𝜌 satisfying 0 ≤ 𝜌 < 𝐾−1. Then, the opening stock strike price of system (3) is asymptotically stable. 

 

Proof: The proof is given in [3] and will only be sketched. Let 𝑋(𝑡) be the fundamental matrix of (3) with 𝑋(0) = 𝑥0. Then, there 

exists 𝑀 > 0 a constant such that ∥ 𝑋(𝑡) ∥≤ 𝑀𝑒−𝑡𝑘
−1

, where 𝑘 > 0 and 𝑡 ≥ 0. Thus 𝑥(𝑡) → 0 as 𝑡 → ∞. If 𝑥(𝑡) is a local 
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solution of equation (3) defined to the right of 𝑡 = 0, then, by the variation of parameter formula (4) of the system we get 

max
0≤𝑠≤𝑡

‖𝑥(𝑠)‖ ≤ (1 − 𝜌𝐾)−1𝐿 ∥ 𝑥0 ∥. It follows that ‖𝑥(𝑠)‖ ≤ (1 − 𝜌𝐾)−1𝐿 ∥ 𝑥0 ∥ as long as 𝑥(𝑡) is defined. That is 𝑥(𝑡) is 

extendable to +∞ (see) [25] and the initial stock strike price is stable. To show that 𝑥(𝑡) → 0 as 𝑡 → ∞. Let 𝑐 = limsup
𝑡→∞

‖𝑥(𝑡)‖ and 

pick 𝑑 such that 𝜌𝐾 < 𝑑 < 1. If 𝑐 > 0, then, since 𝑑−1𝑐 > 𝑐, there exists 𝑡0 ≥ 0 such that ‖𝑥(𝑡)‖ ≥ 𝑑−1𝑐 for every 𝑡 ≥ 𝑡0. Thus, 

equation (4) implies ‖𝑋(𝑡)‖‖𝑥0‖ + ‖𝑋(𝑡)‖ ∫ ‖𝑋−1(𝑠)∑ 𝐵𝑖(𝑠, 𝑥(𝑠))𝜉𝑡
𝑛
𝑖=1 ‖

𝑡0
0

𝑑𝑠 + 𝜌𝐾𝑑−1𝑐. Taking the lim sup as 𝑡 → ∞, we 

obtain 𝑐 ≤ 𝜌𝐾𝑑−1𝑐, this is a contradiction. Thus, 𝑐 = 0 and this completes the proof. 

 

Proposition 1: Let 𝑋(𝑡) be the fundamental matrix of (3) with 𝐵𝑖(∙) = 0. Then system (3) is stable if and only if there exists 𝐾 >
0 a constant with ‖𝑋(𝑡)‖ ≤ 𝐾, 𝑡 ∈ 𝑅 

 

The system (3) is uniformly stable if and only if there exists 𝐾 > 0 a constant with 

 

 ‖𝑋(𝑡)‖ ≤ 𝐾, 0 ≤ 𝑠 ≤ 𝑡 < +∞.  

 

The system (3) is uniformly asymptotically stable if and only if there exists 𝐾 > 0, 𝛼 > 0 constants with 

 

 ‖𝑋(𝑡)𝑋−1(𝑡)‖ ≤ 𝐾𝑒−𝛼(𝑡−𝑠), 0 ≤ 𝑠 ≤ 𝑡 < +∞. 

 

Proof: The proof follows similarly like that of [25; P.61] 

Theorem 2: Let 𝑋(𝑡) be the fundamental matrix of equation (3) with 𝐵𝑖(∙) = 0, such that ‖𝑋(𝑡)𝑋−1(𝑡)‖ ≤ 𝐾𝑒−𝛼(𝑡−𝑠), 𝑡 ≥ 𝑠 ≥ 0, 

where 𝐾, 𝛼 are positive constants and let 

 

∥ ∑𝐵𝑖

𝑛

𝑖=1

(𝑡, 𝑥(𝑡))𝜉𝑡 ∥≤ 𝜌 ∥ 𝑥 ∥,  

 

where 𝜌 is sufficiently small positive constant satisfying 𝜆 < 𝐾−1𝜌, now if 𝑐 = 𝜌 − 𝜆𝐾, then every solution 𝑥(𝑡) of (3) defined to 

in a right neighborhood of 𝑡0 with 𝑡 ≥ 𝑡0 satisfying ‖𝑥(𝑡)‖ ≤ 𝐾𝑒−𝑐(𝑡−𝑠)‖𝑥(𝑠)‖, for every 𝑡 ≥ 𝑠 ≥ 𝑡0 is said to be uniformly 

asymptotically stable 

 

Proof: By (4), the variation of constants formula  

 

𝑥(𝑡) = 𝑋(𝑡)𝑥0 +∫𝑋(𝑡)𝑋
−1(𝑠)∑𝐵𝑖(𝑠, 𝑥(𝑠))𝜉𝑡𝑑𝑠

𝑛

𝑖=1

𝑡

0

 

 

and a right neighborhood of the point 𝑡0 ≥ 0 we obtain 

 

‖𝑥(𝑡)‖ ≤ 𝐾𝑒−𝜌(𝑡−𝑠)‖𝑥(𝑡0)‖ + 𝜆𝐾 ∫𝑒
−𝜌(𝑡−𝑠)

𝑡

𝑡0

‖𝑥(𝑠)‖𝑑𝑠, 𝑡 ≥ 𝑡0. 

 

Thus if 𝑧(𝑡) = 𝐾𝑒−𝜌(𝑡−𝑡0)‖𝑥(𝑡)‖ we have  

 

𝑧(𝑡) = 𝐾𝑧(𝑡0) + 𝜆𝐾 ∫𝑧(𝑠) 𝑑𝑠

𝑡

𝑡0

, 𝑡 ≥ 𝑡0 

 

By applying the Grownwall’s inequality we get 𝑧(𝑡) = 𝐾𝑧(𝑡0)𝑒
−𝜆𝐾(𝑡−𝑡0) for 𝑡 ≥ 𝑡0, and ‖𝑥(𝑡)‖ = 𝐾‖𝑥(𝑡0)‖𝑒

−𝑐(𝑡−𝑡0). This 

implies 𝑥(𝑡) is continuable to +∞. 

 

4. Controllability Results 

In this section, we study controllability of the system when some control measures are introduced into the vector valued stochastic 

volatility model. The control equation of (3) is given by (2) by 

 

𝑑𝑥(𝑡) = (𝐴(𝑡)𝑥(𝑡) + 𝐶(𝑡)𝑢(𝑡))𝑑𝑡 +∑𝐵𝑖

𝑛

𝑖=1

(𝑡, 𝑥(𝑡))𝑑𝑤𝑖(𝑡), 𝑥(0) = 𝑥0 

 

Here the matrices 𝐴, C and 𝐵𝑖 are as defined in Subsection 2.1. The solution of (2) can be obtained following the methods in [26] by 

Defining 𝑋(𝑡) = 𝑋(𝑡, 𝑡0), then 𝑋(𝑡, 𝑡0) = 𝑋(𝑡)𝑋
−1(𝑡0) to get  

 

𝑥(𝑡) =  𝑋(𝑡, 𝑡0)𝑥0 + ∫ 𝑋(𝑡, 𝑠)
𝑡

0
∑𝐵𝑖(𝑠) 𝑑𝑤𝑖(𝑠) + ∫ 𝑋(𝑡, 𝑠)

𝑡

0
𝐶(𝑠)𝑢(𝑠)𝑑𝑠.  (7) 
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Define 𝑌(𝑠) = 𝑋(𝑡, 𝑠)𝐶(𝑠) and the controllability matrix  

 

𝑊(𝑡) =  ∫ 𝑌(𝑠)
𝑡

0

𝑌𝑇(𝑠)𝑑𝑠, 

 

where T denotes the transpose of the matrix. We assume that the following limits exists; 

 

 lim
𝑡→∞

𝑊(𝑡) = 𝑊, lim
t→∞

𝑋(𝑡) 𝑋−1 (𝑡0) = �̅�, lim
𝑡→∞

𝑋(𝑡) = 𝑋 ≠ 0, 

 

4.1 Main Result on Asymptotic Null Controllability 

Here, the main result on asymptotic null controllability of the system is stated with proof. 

 

Theorem 3: System (2) is asymptotically null controllable if and only if 𝑊 is nonsingular. 

Proof: Assume first that 𝑊 is nonsingular, so that each 𝑢(𝑡) defined on [0, 𝑡1] is given by; 

𝑢(𝑡) =  −𝑌𝑇(𝑡)𝑊−1(𝑋𝑥0 + ∫ �̅�
∞

0
𝐵𝑖(𝑠)𝜉𝑡(𝑠)𝑑𝑠). Clearly 𝑥(0) = 𝑥0 with lim

𝑡→∞
𝑥(𝑡) = 0 and system (2) is asymptotically null 

controllable; where 𝑥 is the solution of equation (2) which corresponds to the input control 𝑢.  

Assume for a converse that 𝑊; the controllability matrix is singular. Then, there is a vector 𝑣 ≠ 0, such that 𝑣𝑊𝑣𝑇 = 0. So that 

∫ 𝑣𝑌(𝑠)(𝑣𝑌(𝑠))
𝑇∞

0
𝑑𝑠 = 0. Therefore, 𝑣𝑌(𝑠) = 0 almost everywhere for 𝑠 ∈ 𝑅. The asymptotically null controllable of the 

solution implies the existence a control 𝑢(∙) such that 

 

lim
𝑡→∞

𝑥(𝑡) = lim
𝑡→∞

{𝑋(𝑡)𝑥0 + ∫ 𝑌(𝑠)
𝑡

0
𝑢(𝑠)𝑑𝑠 + ∫ 𝑋

𝑡

0
𝐵𝑖(𝑠)𝜉𝑡(𝑠)𝑑𝑠} = 0  (8) 

 

Letting 𝜉𝑡 = 0, we have 𝑋(𝑡)𝑥0 + ∫ 𝑌(𝑠)
∞

0
𝑢(𝑠)𝑑𝑠 = 0. It follows that 𝑣𝑋(𝑡)𝑥0 + ∫ 𝑣𝑌(𝑠)

∞

0
𝑢(𝑠)𝑑𝑠 = 0, which implies that 

𝑣𝑋𝑥0 = 0. Since 𝑋 ≠ 0 and 𝑥0 ≠ 0, it follows that 𝑣 = 0, which contradicts the fact that 𝑣 ≠ 0. Therefore, W is nonsingular. 

 

5. Example 

In this section, a two dimensional stochastic differential equation model is given as example. Consider the volatility model; 

 

𝑑𝑆1(𝑡) =
−1

0.25
𝜇1𝑆1(𝑡)𝑑𝑡 + 𝜇2𝑆2(𝑡)𝑑𝑡 + 𝑆1(𝑡)(𝜎11𝑑𝑤1(𝑡) + 𝜎12𝑑𝑤2(𝑡)) + 4𝑢1

𝑑𝑆2(𝑡) = 𝜇1𝑆1(𝑡)𝑑𝑡 −
1

0.25
𝜇2𝑆2(𝑡)𝑑𝑡 + 𝑆2(𝑡)(𝜎21𝑑𝑤1(𝑡) + 𝜎22𝑑𝑤2(𝑡)) + 4𝑢2

}  (9) 

 

This can be written in matrix form 

 

𝑑𝑥(𝑡) =  𝐴(𝑡)𝑥(𝑡)𝑑𝑡 + 𝐶(𝑡)𝑢(𝑡) + ∑ 𝐵𝑖(𝑡, 𝑥(𝑡))𝑑𝑤𝑖(𝑡)
2
𝑖=1 , 𝑥(0) = 𝑥0  (10) 

 

Here,  

𝑥 = (𝑆1, 𝑆2)
𝑇, 𝐴(𝑡) = (

−𝜇1
0.25

 𝜇2

𝜇1
−𝜇2
0.25

) , 𝐵𝑖(∙) = (
𝜎1𝑖 0
0 𝜎2𝑖

) , 𝑖 = 1, 2, 𝐶 = (
4 0
0 4

), 

 

where the processes 𝑆1(𝑡), 𝑆2(𝑡) are correlated with 𝜎21 = 𝜎12 ≠ 0 and  

 

𝐵1(𝑡) = (
𝜎11 0
0 𝜎21

) , 𝐵2(𝑡) = (
𝜎12 0
0 𝜎22

). 

 

5.1 Data Analysis and Result 

 In this section, eighteen years stock exchange market (1997-2014) from the Nigerian exchange market (NSE) were extracted 

from [4] with initial stock prices, volatility, trading days and drift to illustrate its nature. The values to be used in this subsection 

were calculated in details using stock returns over a period with the appropriate allocation as given in [3]. 

 

5.2. Illustration of asymptotic Stability Result 

The volatility matrix 𝐵𝑖 , 𝑖 = 1, 2 in equation (10) with 𝑢 = 0, is given by 

 

∑𝐵𝑖 = (
3.0685 0

0 0.9183
) 

 

The drift matrix 𝐴(𝑡) is given by  
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𝐴(𝑡) = (
−1.6240 0.0182

0.4060 −0.0728
) 

 

with eigenvalues 𝜆 = −0.0681,−1.6288 and the transition matrix of system (10) is obtained by the method in [21] as 

 

𝑋(𝑡) = (0.0182𝑒
−0.0681𝑡 0.0182𝑒−1.6288 𝑡

1.5559𝑒−0.0681𝑡 −0.0048𝑒−1.6288 𝑡
)  (11) 

 

The stability of system (10) with 𝑢 = 0 can be found using Condition (i) and Condition (ii) of Theorem 1 as follows: By 

Condition (i); 

 

∫‖(0.0182𝑒
−14.6843𝑡 0.0182𝑒−0.6140 𝑡

1.5559𝑒−14.6843𝑡 −0.0048𝑒−0.6140 𝑡
) (0.0115𝑒

−14.6843𝑠 0.0437𝑒−14.6843 𝑠

89.2267𝑒−0.6140𝑠 −1.0438𝑒−0.6140 𝑠
)‖𝑑𝑠

𝑡

0

. 

 

By the definition of Euclidean norm, we get 

 

∫ ∥ 𝑋(𝑡)𝑋(𝑠)−1
𝑡

0

∥ 𝑑𝑠 = 1.6768 ≤ 𝐾 

 

To obtain Condition (ii), note that, the 𝐵𝑖 matrices were calculated to give; 

 

‖∑𝐵𝑖 (𝑡, 𝑥(𝑡))𝜉𝑡‖ = 3.2030 ≤ 𝜌. 

 

Observe, that some conditions of Theorem 1 are not satisfied; for example 0 ≤ 𝜌 ≮ 𝑘−1. This implies, the stock price data of the 

NSE extracted and used in for this model is not asymptotically stable. Hence, the system (10) with 𝑢 = 0 is not asymptotically 

stable. 

 

5.3 Illustration on Asymptotic Null Controllability Result 

Consider system (10) where 

 

𝐴(𝑡) = (
−1.6240 0.0182

0.4060 −0.0728
), ∑𝐵𝑖 = (

3.0685 0

0 0.9183
), 𝐶(𝑡) = (

4 0
0 4

) 

 

To prove asymptotic null controllability result for system (10) using the NSE data from [4], is to show the non-singularity of the 

controllability matrix by Theorem 3 as follows. Let  

 

𝑌(𝑠) = 𝑋(𝑡, 𝑠)𝐶(𝑠), with 𝑋(𝑡, 𝑠) as given by (11). So that  

 

𝑌(𝑠) = 𝑋(𝑡, 𝑠)𝐶(𝑠) = (0.0728𝑒
−0.0681𝑡 0.0728𝑒−1.6288𝑡

6.2236𝑒−0.0681𝑡 −0.0192𝑒−1.6288𝑡
), 

 

and  

𝑊 = ∫ 𝑌(𝑠)𝑌𝑇(𝑠)
∞

0

𝑑𝑠 = (
0.0106 0.4517

0.4517 38.7336
) 

 

So that the determinant of the controllability matrix |𝑊| = 0.2065 and is nonsingular. This implies the system (10) is 

asymptotically null controllable. 

 

6. Discussion and Conclusion 

6.1 Discussion 

In [3], the effects of stochastic volatility on the stability of stock market and expected return on normal distribution were discussed. 

It was known that, stochastic volatility has a leverage effect on the size of the tails and skewness of the return distribution. 

However, when the volatility 𝜎 and 𝜉𝑡, the correlation coefficient which indicates the origin of randomness for the underpinning 

Weiner process are absent. That is, if 𝜎 = 0; the volatility becomes deterministic giving a stable market phase because ∑𝐵𝑖 (∙) 
will be zero, this leads to a normally distributed stock returns like that of Black Scholes model. 

In this paper, we have used the vector valued controlled stochastic differential model given by (2) to analyze stability and 

controllability of the dynamics such as expected return, liquidity on stock return and other market conditions in the financial 

market. The stability dynamics of the stochastic model given by (3) was analyzed using Theorem 1 and 2 where the stock price 

solution to the stochastic model was used to develop and analyze conditions under which the random price of stock in the 

financial market would become stable.  
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The analysis of the stock market using data obtained from Adeosun et al., [4] shows price stability within the trading periods which 

is expected from the NSE when volatility becomes deterministic because the processes 𝐵𝑖 and 𝑢 are assumed to be zero in system 

(10), giving a stable market phase as seen in the phase portraits Figure 1. 

 

 
Fig 1: Phase portrait for eigenvalue trajectories 

 

The trajectories of eigenvectors which are a function of the drift from infinite-distance, moves towards the critical point and 

converges at that point. That is, they move directly towards the critical point and converge at it when the eigenvalues of the 

trajectories are less than zero. However, using the same data on system (10) with 𝑢 = 0 shows price instability; this is an 

anticipated outcome of a stock market trade with volatility of the stock under various random features as shown in Figure 2.  

 

 
 

Fig 2: Phase portrait of unstable eigenvalue trajectories 
 

In Figure 3, an open loop response showing asymptotic null controllability of system (10) is presented using same data but with 

some effective stock control measures. This implies random prices of stock in the stock market would become stable if for every 

initial expected rate of share price change in the stock market. There is a control measure defined on the randomness of the 

stochastic trading period such that, the solution (which is the stock market prices) at the initial trading in the floor of the stock 

market is the initial expected rate of share price, and the price remains the same at the close of the trading periods. 

 

 
 

Fig 3: Controlled and uncontrolled responses of system 
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7. Conclusion 

In this research paper, results for stability and controllability for stock exchange market were obtained; first by developing a 

vector valued stochastic differential system with control. The stability analysis was obtained by utilizing the characteristics of the 

transition matrix solution for the vector valued system with some boundedness condition placed on the stochastic part. The 

controllability result is then obtained with respect to the nonsingularity of the controllability matrix which is a function of the 

drift. Illustrative examples on the effectiveness of the theoretical analysis of the model are given and simulation output results 

presented using MATLAB. 
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