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Abstract 

Let Fq be the finite field with q elements, p, q be two odd primes with gcd(p, q) = 1. Let q be primitive 

root modulo 2pm, m ⩾ 1 be an integer. In this paper, we obtain weight distribution of all the irreducible 

cyclic codes of length 2pm over Fq by using their generating polynomials. 
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1. Introduction 

Let 𝐹𝑞 be the finite field with 𝑞 elements, 𝑛 be a positive integer with gcd(𝑛, 𝑞) =  1. By 

Wedderburn Artin Theorem every semi-simple ring can be written as direct sum of its 

minimal ideals. Each minimal ideal of Rn represents an irreducible cyclic code of length n 

under the 1-1 correspondence c0 + c1x + . . . + cn−1xn−1 → (c0, c1, . . . , cn−1).We also know 

that every cyclic code of length n with digits in finite field Fq forms a vector space 

having qn elements. Thus we denote a cyclic code of length n over Fq by Fn. A 

minimal ideal in Rn is called an irreducible cyclic code of length n over Fq. If is an 

irreducible cyclic code of length n over Fq and v, then the weight of v is defined to be 

the number of non-zero entries in v. We denote it by wt(v). If A(n) denotes the number of 

codewords of weight w in C, then A(n), A(n), . . . , A(n) is called weight distribution of C. 

The weight distribution of irreducible cyclic code is important due to its application in 

error detection and correction of codes. Thus the problem of determining the weight 

distribution of a code is of much interest. Many authors have worked on this problem for a 

long time. Ding [4] determined the weight distribution q-arry irreducible cyclic codes of 

length n provided  where t = On (q) (the multiplicative order of q modulo 

n) Sharma, Bakshi and Raka [2] determined the weight distribution of all ir- reducible 

cyclic codes of length 2m over Fq. In [1], Sharma and Bakshi have obtained the weight 

distribution of some irreducible cyclic codes of length pm where p is an odd prime co-prime to 

q and m ⩾ 1 is an integer.Further Kumar et al. [17, 18] have obtained weight distribution of 

some irreducible cyclic codes of length pm, 2pm and n by different technique.Apart from this 

Batra and Arora [8], have discussed the generating polynomial and minimum distance of 

some cyclic codes of length 2pn. 

In this paper, we determine the weight distribution of all irreducible cyclic codes of length 

2pm over Fq, where q is primitive root modulo pm and p is an odd prime such that gcd(2p, 

q) = 1 and m ⩾ 1 is an integer. 
 

2. Cyclotomic Cosets Modulo 𝟐𝒑𝒎 

Let 𝑆 =  {0, 1, 2, … , 2𝑝𝑚 − 1 }. For 𝑎, 𝑏 ∈ 𝑆, say that 𝑎~𝑏 if 𝑎 ≅ 𝑏𝑞𝑖(mod 2𝑝𝑚) for some 

integer 𝑖 ≥ 0. This defines an equivalence relation on the set S. The equivalence classes due to 

this relation are called 𝑞 −cyclotomic cosets modulo 2𝑝𝑚. The 𝑞 – cyclotomic coset 

containing 𝑠 ∈ 𝑆 is denoted by 𝐶𝑠 = {𝑠, 𝑠𝑞, 𝑠𝑞2, … , 𝑠𝑞𝑡𝑠−1}, where 𝑡𝑠 is the least positive 

integer such that 𝑠𝑞𝑡𝑠  ≡ 𝑠 (mod 2𝑝𝑚) and |𝐶𝑠 | denotes the cardinality of 𝐶𝑠.  
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In this section, we describe the 𝑞 −cyclotomic cosets modulo 2𝑝𝑚, where 𝑝 and 𝑞 are distinct odd primes and 𝑜(𝑞)2𝑝𝑚 =
𝜑(2𝑝𝑚)

𝑑
, 𝑑 is a positive integer and 𝜑 is Euler’s phi-function. 

 

2.1. Theorem If 𝑝 and 𝑞 are odd primes such that 𝑜(𝑞)2𝑝𝑚 =  𝜑(2𝑝𝑚)/𝑑, 𝑑 is a positive integer, then 2(𝑚𝑑 + 1) q- cyclotomic 

cosets (mod 2𝑝𝑚) are given by  

(i) C0 = {0},  

(ii) 𝐶𝑝𝑚 = {𝑝𝑚}. 

(iii)  

For 0  𝑗  𝑚1, 0  𝑘  𝑑1, 
 

(iii) 𝐶𝑔𝑘𝑝𝑗 = {𝑔𝑘𝑝𝑗, 𝑔𝑘𝑝𝑗𝑞, 𝑔𝑘𝑝𝑗𝑞2, … , 𝑔𝑘𝑝𝑗𝑞
𝜑(2𝑝𝑚−𝑗)

𝑑
−1},  

 

(iv) 𝐶2𝑔𝑘𝑝𝑗 = {2𝑔𝑘𝑝𝑗 , 2𝑔𝑘𝑝𝑗𝑞, 2𝑔𝑘𝑝𝑗𝑞2, … , 2𝑔𝑘𝑝𝑗𝑞
𝜑(2𝑝𝑚−𝑗)

𝑑
−1}, where 𝑔 is primitive root modulo 2𝑝𝑚.  

 

Proof. Trivial.  

3. Weight Distribution of Minimal Cyclic Codes of Length 𝟐𝒑𝒎  

Definition 3.1. Let 𝛼 be the primitive 2𝑝𝑚th root of unity in some extension of 𝐹𝑞 . Then corresponding to the 𝑞 − cyclotomic 

coset 𝐶𝑠, 𝑀𝑠
(𝑛)(𝑥) = ∏ (𝑥 − 𝛼𝑗),𝑗∈𝐶𝑠

  

 

is called minimal polynomial of 𝛼𝑠 over 𝐹𝑞 . 

 

Definition 3.2 Let 𝕄𝑠
(2𝑝𝑚)

 be the minimal cyclic code of length 2𝑝𝑚 over 𝐹𝑞. It is well known that 𝕄𝑠
(2𝑝𝑚)

 is the ideal in 𝑅2𝑝𝑚 

generated by 𝑔(𝑥) =
𝑥2𝑝𝑚

−1

𝑀𝑠
2𝑝𝑚

(𝑥)
. Then 𝑔(𝑥) is called the generating polynomial of 𝕄𝑠

(2𝑝𝑚)
. 

 

Remark 3.3 If 𝐶𝑠1,𝐶𝑠2
, … , 𝐶𝑠𝑘  are all the distinct 𝑞 − cyclotomic cosets modulo 2𝑝𝑚, then 𝕄𝑠1

(2𝑝𝑚)
, 𝕄𝑠2

(2𝑝𝑚)
, … , 𝕄𝑠𝑘

(2𝑝𝑚)
 are 

precisely all the distinct minimal cyclic codes of length 2𝑝𝑚 over 𝐹𝑞. 

 

Theorem 3.4 Let 𝐹𝑞 be the finite field with 𝑞 elements, 𝑝, 𝑞 be two odd primes with gcd(𝑝, 𝑞) = 1 and 𝑚 ≥ 1 be an integer. Let 

the multiplicative order of 𝑞 modulo 2𝑝𝑚 is 𝜑(2𝑝𝑚). Then 

(i) The codes 𝕄0
(2𝑝𝑚)

, 𝕄
𝑝𝑚
(2𝑝𝑚)

, 𝕄
𝑔𝑘𝑝𝑗
(2𝑝𝑚)

 and 𝕄
2𝑔𝑘𝑝𝑗
(2𝑝𝑚)

, 0 ≤ 𝑗 ≤ 𝑚 − 1, 0 ≤ 𝑘 ≤ 𝑑 − 1, are precisely all the distinct minimal cyclic 

codes of length 2𝑝𝑚 over 𝐹𝑞, where 𝜑 denote the Euler’s Phi function. 

(ii) All the nonzero codewords in 𝕄0
(2𝑝𝑚)

 and 𝕄
𝑝𝑚
(2𝑝𝑚)

 have weight 2𝑝𝑚. 

(iii) The codes 𝕄
𝑔𝑘𝑝𝑗
(2𝑝𝑚)

 and 𝕄
2𝑔𝑘𝑝𝑗
(2𝑝𝑚)

 are equivalent to 𝕄
𝑝𝑗
(2𝑝𝑚)

 and 𝕄
2𝑝𝑗
(2𝑝𝑚)

 respectively, therefore they have same weight 

distribution. 

 

Proof. (i) By Theorem 2.1, 𝐶0, 𝐶𝑝𝑚, 𝐶𝑔𝑘𝑝𝑗 and 𝐶2𝑔𝑘𝑝𝑗 are all distinct 𝑞 − cyclotomic cyclotomic cosets modulo 2𝑝𝑚. Therefore, 

by Remark 4.3.3 𝕄0
(2𝑝𝑚)

, 𝕄
𝑝𝑚
(2𝑝𝑚)

, 𝕄
𝑔𝑘𝑝𝑗
(2𝑝𝑚)

 and 𝕄
2𝑔𝑘𝑝𝑗
(2𝑝𝑚)

, 0 ≤ 𝑗 ≤ 𝑚 − 1, 0 ≤ 𝑘 ≤ 𝑑 − 1, are all the distinct minimal cyclic codes of 

length 2𝑝𝑚 over 𝐹𝑞. 

(ii) By Definition 3.1, 𝑥 − 1 is minimal polynomial of 𝕄0
(2𝑝𝑚)

, therefore by Definition 3.2,  

 

𝑥2𝑝𝑚
−1

𝑥−1
= 1 + 𝑥 + 𝑥2 + ⋯ + 𝑥2𝑝𝑚−1. is the generating polynomial of 𝕄0

(2𝑝𝑚)
 .  

 

Thus every non− zero codeword in 𝕄0
(2𝑝𝑚)

 has weight 2𝑝𝑚. Now, 𝕄
𝑝𝑚
(2𝑝𝑚)

 is the minimal cyclic code corresponding to 𝑞 − 

cyclotomic coset 𝐶𝑝𝑚. Then by Definition 3.1, the minimal polynomial of 𝛼𝑝𝑚
 is 𝑥 − 𝛼𝑝𝑚

, where 𝛼 is primitive 2𝑝𝑚th root of 

unity. Then, 𝛼𝑝𝑚
= −1. 

By Definition 3.2, the generating polynomial of 𝕄
𝑝𝑚
(2𝑝𝑚)

 is  

 

𝑥2𝑝𝑚
− 1

𝑥 + 1
= −1 + 𝑥 − 𝑥2 + ⋯ + 𝑥2𝑝𝑚−1.  

 

Thus every non−zero codeword in 𝕄
𝑝𝑚
(2𝑝𝑚)

 has weight 2𝑝𝑚. 

Theorem 3.5 (i) Let 1 ≤ 𝑗 ≤ 𝑚. The minimal cyclic code 𝕄
𝑝𝑚−𝑗
(2𝑝𝑚)

 is the repetition code of the minimal cyclic code 𝕄1
(2𝑝𝑗)

 of 

length 2𝑝𝑗 corresponding to the 𝑞 − cyclotomic coset containing 1, repeated 𝑝𝑚−𝑗 times. 
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(ii) Let 𝑤 ≥ 0, then 

 

𝐴𝑤
(2𝑝𝑚)

= {
0, if 𝑝𝑗does not divide 𝑤;

𝐴
𝑤′
2𝑝𝑚−𝑗

, if 𝑤 = 2𝑝𝑗𝑤 ′, 0 ≤ 𝑤 ′ ≤ 2𝑝(𝑚−𝑗),
 

 

where 𝐴𝑤
2𝑝𝑚

 and 𝐴
𝑤′
2𝑝𝑚−𝑗

 denote the weight distribution of 𝕄
𝑝𝑗
(2𝑝𝑚)

 and 𝕄1
(2𝑝𝑚−𝑗)

 respectively. 

 

Proof. Let 𝛼 be the fixed 2𝑝𝑚th root of unity. By definition 3.2, the generating polynomial polynomial of 𝕄
𝑝𝑚−𝑗
(2𝑝𝑚)

 is 
𝑥2𝑝𝑚

−1

𝑀
𝑝𝑚−𝑗
2𝑝𝑚

(𝑥)
, 

where 𝑀
𝑝𝑚−𝑗
2𝑝𝑚

(𝑥) =  ∏ (𝑥 − 𝛼𝑠)𝑠∈𝐶
𝑝𝑚−𝑗

 and 𝐶𝑝𝑚−𝑗 is cyclotomic coset modulo 2𝑝𝑚. 

 

Now, 
𝑥2𝑝𝑚

−1

 𝑀
𝑝𝑚−𝑗
2𝑝𝑚

(𝑥)
=

(𝑥2𝑝𝑗
−1)

∏ (𝑥−𝛼𝑠)𝑠∈𝐶
𝑝𝑚−𝑗

 (1 + 𝑥2𝑝𝑗
+ 𝑥4𝑝𝑗

+ ⋯ + 𝑥(𝑝𝑚−𝑗−1)2𝑝𝑗
). 

 

For any 𝑠 ∈ 𝐶𝑝𝑚−𝑗, 𝛼𝑠 are roots of 𝑥2𝑝𝑗
− 1 .  

Consequently, ∏ (𝑥 − 𝛼𝑠)𝑠∈𝐶
𝑝𝑚−𝑗

 is an irreducible factor of 𝑥2𝑝𝑗
− 1. 

It is clear that, ∏ (𝑥 − 𝛼𝑠)𝑠∈𝐶
𝑝𝑚−𝑗

= ∏ (𝑥 − 𝛼𝑝𝑚−𝑗𝑙𝑠
)

𝜑(𝑝𝑗)−1

𝑠=0 . Let 𝛼𝑝𝑚−𝑗
= 𝛽, then ∏ (𝑥 − 𝛼𝑝𝑚−𝑗𝑙𝑠

)
𝜑(𝑝𝑗)−1

𝑠=0 = ∏ (𝑥 −
𝜑(𝑝𝑗)−1

𝑠=0

𝛽𝑙𝑠
) , where 𝛽 is the 2𝑝𝑗th root of unity Similarly, the generating polynomial of 𝕄1

(2𝑝𝑗)
 is 

𝑥2𝑝𝑗
−1

𝑀1
2𝑝𝑗

(𝑥)
, where 𝑀1

2𝑝𝑗
(𝑥) =

 ∏ (𝑥 − 𝛽𝑠)𝑠∈𝐶1
, where 𝛽 is the 2𝑝𝑗th root of unity Also, ∏ (𝑥 − 𝛽𝑠) = ∏ (𝑥 − 𝛽𝑙𝑠

),
𝜑(2𝑝𝑗)−1

𝑠=0  𝑠∈𝐶1
where 𝐶1 is cyclotomic coset 

modulo 2𝑝𝑗 . Consequently, ∏ (𝑥 − 𝛼𝑠)𝑠∈𝐶
2𝑝𝑚−𝑗

= ∏ (𝑥 − 𝛽𝑠)𝑠∈𝐶1
. 

By the above discussion and Lemma 4.1, 𝕄
2𝑝𝑚−𝑗
(2𝑝𝑚)

 is the repetition code of the minimal cyclic code 𝕄1
(2𝑝𝑗)

 of length 2𝑝𝑗 

corresponding to the 𝑞 − cyclotomic coset containing 1, repeated 𝑝𝑚−𝑗 times.  

 

4. Weight Distribution of 𝕄𝟏
(𝟐𝒑𝒓)

(𝟏 ≤ 𝒓 ≤ 𝒎) 

Case (i) The multiplicative order of 𝑞 modulo 2𝑝𝑚 is 𝜑(2𝑝𝑚). 

Lemma 4.1. If the multiplicative order of 𝑞 modulo 2𝑝𝑚 is 𝜑(2𝑝𝑚), then the generating polynomial of 𝕄1
(2𝑝𝑟)

 is 𝑥𝑝𝑟−1(𝑝+1) +

𝑥𝑝𝑟
− 𝑥𝑝𝑟−1

− 1 and the vectors 𝑒𝑖+𝑝𝑟−1(𝑝+1) + 𝑒𝑖+𝑝𝑟 − 𝑒𝑖+𝑝𝑟−1 − 𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑝𝑟−1(𝑝 − 1) or 1 ≤ 𝑖 ≤ 𝜑(2𝑝𝑟), constitute a basis 

of 𝕄1
(2𝑝𝑟)

 over 𝐹𝑞. 

Proof. As multiplicative order of 𝑞 modulo 2𝑝𝑚 is 𝜑(2𝑝𝑚), therefore multiplicative order of 𝑞 modulo 2𝑝𝑟 is 𝜑(2𝑝𝑟), for 1 ≤
𝑟 ≤ 𝑚. 
Hence the 𝑞 − cyclotomic coset modulo 2𝑝𝑟 containing 1 is 

 𝐶1 = {1, 𝑞, 𝑞2, … , 𝑞𝜑(2𝑝𝑟)−1}.  

This is a reduced residue system modulo 2𝑝𝑟. Let 𝛼 be a primitive 2𝑝𝑟th root of unity. 

By Definition 3.2, the generating polynomial 𝑔(𝑥) of 𝕄1
(2𝑝𝑟)

 is 
𝑥2𝑝𝑟

−1

𝑀1
2𝑝𝑟

(𝑥)
, where 𝑀1

2𝑝𝑟
(𝑥) =  ∏ (𝑥 − 𝛼𝑗)𝛼∈𝐶1

. 

Now, we assert that 𝑀1
2𝑝𝑟

(𝑥) =
𝑥2𝑝𝑟

−1

(𝑥𝑝𝑟−1
+1)(𝑥𝑝𝑟

−1)
 . 

If 𝛼 is primitive 2𝑝𝑟th root of unity, then 𝛼𝑗 is again primitive 2𝑝𝑟th root of unity for each 𝑗 ∈ 𝐶1.Since 𝛼 is 2𝑝𝑟th root of unity, 

therefore 𝛼𝑝𝑟
≠ 1. So, 𝛼 is a root of (𝑥𝑝𝑟

+ 1).Thus,  

𝑥2𝑝𝑟
− 1 = (𝑥𝑝𝑟

− 1)(𝑥𝑝𝑟−1
+ 1)(1 − 𝑥𝑝𝑟−1

+ 𝑥2𝑝𝑟−1
− ⋯ + 𝑥(𝑝−1)𝑝𝑟−1

). 

Consequently, 𝑀1
2𝑝𝑟

(𝑥) = (1 − 𝑥𝑝𝑟−1
+ 𝑥2𝑝𝑟−1

− ⋯ + 𝑥(𝑝−1)𝑝𝑟−1
). 

Hence, 𝑔(𝑥) =  (𝑥𝑝𝑟
− 1)(𝑥𝑝𝑟−1

+ 1) = 𝑥𝑝𝑟−1(𝑝+1) + 𝑥𝑝𝑟
− 𝑥𝑝𝑟−1

− 1. 

So 𝕄1
(2𝑝𝑟)

 is the subspace of 𝑅2𝑝𝑟 spanned by 𝑔(𝑥), 𝑥𝑔(𝑥), … , 𝑥(𝑝−1)𝑝𝑟−1−1𝑔(𝑥). 

But under the standard isomorphism 𝑥𝑖−1 → 𝑒𝑖 from 𝑅2𝑝𝑟 to 𝐹𝑞
2𝑝𝑟

, 𝑥𝑖−1𝑔(𝑥) corresponding to 𝑒𝑖+𝑝𝑟−1(𝑝+1) + 𝑒𝑖+𝑝𝑟 − 𝑒𝑖+𝑝𝑟−1 − 𝑒𝑖 

for each 𝑖.  
 

Remark 4.2 

Let 𝑉𝑖 be the vector subspaces of 𝐹𝑞
2𝑝𝑟

 spanned by 

 

 𝑒𝑖+𝑝𝑟+𝑗𝑝𝑟−1 + 𝑒𝑖+𝑝𝑟+(𝑗−1)𝑝𝑟−1 − 𝑒𝑖+𝑗𝑝𝑟−1 − 𝑒𝑖+(𝑗−1)𝑝𝑟−1 for 1 ≤ 𝑖 ≤ 𝑝𝑟−1 and 1 ≤ 𝑗 ≤ 𝑝 − 1. Then by the above lemma, 

𝕄𝟏
(𝟐𝒑𝒓)

≅ 𝑽𝟏 ⊕ 𝑽𝟐 ⊕ … ⊕ 𝑽𝒑𝒓−𝟏. 
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Definition 4.3 A vector 𝑣 ∈ 𝑉𝑖 is called basic vector if 𝑣 = ∑ 𝛼𝑗(𝑒𝑖+𝑝𝑟+𝑗𝑝𝑟−1 + 𝑒𝑖+𝑝𝑟+(𝑗−1)𝑝𝑟−1 − 𝑒𝑖+𝑗𝑝𝑟−1 − 𝑒𝑖+(𝑗−1)𝑝𝑟−1  ),𝑘+𝑙
𝑗=𝑘  

where 0 ≠ 𝛼𝑗 ∈ 𝐹𝑞 , 𝑘 ≥ 1, 𝑙 ≥ 0, 𝑘 + 𝑙 ≤ 𝑝 − 1. The integer 𝑙 is called the length of 𝑣 denoted by 𝑙(𝑣), 𝑘 is called initial point of 

𝑣, denoted by 𝐼(𝑣) and 𝑘 + 𝑙 is called the end point of 𝑣 denoted by 𝐸(𝑣). 

 

Definition 4.4.4. Let 𝑣1, 𝑣2, … , 𝑣𝑡 ∈ 𝑉𝑖 . We say that 𝑣1, 𝑣2, … , 𝑣𝑡 is a chain in 𝑉𝑖 if each 𝑣𝑗, 1 ≤ 𝑗 ≤ 𝑡, is a basic vector and 

𝐼(𝑣𝑗) ≥ 𝐸(𝑣𝑗−1) + 2 for 2 ≤ 𝑗 ≤ 𝑡. Note that each vector 𝑣 ∈ 𝑉𝑖 can be written as the sum of 𝑣1, 𝑣2, … , 𝑣𝑡 and 𝑤𝑡(∑ 𝑣𝑗
𝑡
𝑗=1 ) =

 ∑ 𝑤𝑡(𝑣𝑗)𝑡
𝑗=1 . 

 

Remark 4.5. Any 𝑣 ∈ 𝑉𝑖 can be written as 𝑣 = ∑ 𝑣𝑗
𝑡
𝑗=1 , where 𝑣1, 𝑣2, … , 𝑣𝑡 is a chain in 𝑉𝑖 and 𝑤𝑡(∑ 𝑣𝑗

𝑡
𝑗=1 ) = ∑ 𝑤𝑡(𝑣𝑗)𝑡

𝑗=1 . 

Notations 4.6. Let 𝑍 denote the set of integers. For any 𝑡, 𝜆 ∈ 𝑍, 𝑡 ≥ 1 and 𝜆 ≥ 2, let 𝐵𝑡(𝜆) = {(𝜆1, 𝜆2, … , 𝜆𝑡) ∈ 𝑍𝑡 ∶ 2 ≤ 𝜆𝑗 ≤

𝑝 for all 𝑗, ∑ 𝜆𝑗 = 𝜆𝑡
𝑗=1 } and for any(𝜆1, 𝜆2, . . . , 𝜆𝑡) ∈ 𝐵𝑡(𝜆), define 𝐶𝑡(𝜆1, 𝜆2, … , 𝜆𝑡) = {(𝑙1, 𝑙2, … , 𝑙𝑡) ∈ 𝑍𝑡 ∶ 𝑙𝑗 ≥ 𝜆𝑗 −

2 for all 𝑗, ∑ 𝑙𝑗 ≤ 𝑝 − 2𝑡𝑡
𝑗=1 }. Given any (𝑙1, 𝑙2, … , 𝑙𝑡) ∈ 𝐶𝑡(𝜆1, 𝜆2, … , 𝜆𝑡), let 𝐴(𝜆1, 𝜆2, … , 𝜆𝑡; 𝑙1, 𝑙2, . . . , 𝑙𝑡) =

𝑎(𝑙1,𝑙2,… ,𝑙𝑡) (
𝑙1

𝜆1 − 2
) (

𝑙2

𝜆2 − 2
) . . . (

𝑙𝑡

𝜆𝑡 − 2
) (𝑞 − 1)𝑡(𝑞 − 2)𝜆−2𝑡 = 𝜂(say), 

 

Where 

 

𝑎(𝑙1,𝑙2,…,𝑙𝑡) =  ∑  ∑ … 

𝑝−∑ 𝑙𝑖−2(𝑡−1)+1𝑡
𝑖=2

𝑘2=𝑘1+𝑙1+2

𝑝−∑ 𝑙𝑖−2𝑡+1𝑡
𝑖=1

𝑘1=1

∑  ∑ 1

𝑝−𝑙𝑡−1

𝑘𝑡=𝑘𝑡−1+𝑙𝑡−1+2

.

𝑝−∑ 𝑙𝑖−3𝑡
𝑖=𝑡−1

𝑘𝑡−1=𝑘𝑡−2+𝑙𝑡−2+2

 

 

Lemma 4.7 

(i) If 0 ≠ 𝑣 ∈ 𝑉𝑖, then 4 ≤ 𝑤𝑡(𝑣) ≤ 2𝑝. 

(ii) If 𝑣 ∈ 𝑉𝑖 is basic vector of length 𝑙, then 4 ≤ 𝑤𝑡(𝑣) ≤ 2𝑙 + 4. 
 

Proof. (i) Let 𝑣 ∈ 𝑉𝑖. Then  

 

𝑣 = ∑ 𝛼𝑗(𝑒𝑖+𝑝𝑟+𝑗𝑝𝑟−1 + 𝑒𝑖+𝑝𝑟+(𝑗−1)𝑝𝑟−1 − 𝑒𝑖+𝑗𝑝𝑟−1 − 𝑒𝑖+(𝑗−1)𝑝𝑟−1  )

𝑝−1

𝑗=1

 

 

= 𝛼1(𝑒𝑖+𝑝𝑟+𝑝𝑟−1 + 𝑒𝑖+𝑝𝑟 − 𝑒𝑖+𝑝𝑟−1 − 𝑒𝑖 ) 

 

+𝛼2(𝑒𝑖+𝑝𝑟+2𝑝𝑟−1 + 𝑒𝑖+𝑝𝑟+𝑝𝑟−1 − 𝑒𝑖+2𝑝𝑟−1 − 𝑒𝑖+𝑝𝑟−1  ) + ⋯  

 

+ 𝛼𝑝−2(𝑒𝑖+𝑝𝑟+(𝑝−2)𝑝𝑟−1 + 𝑒𝑖+𝑝𝑟+(𝑝−3)𝑝𝑟−1 − 𝑒𝑖+(𝑝−2)𝑝𝑟−1 − 𝑒𝑖+(𝑝−3)𝑝𝑟−1  ) 

 

+𝛼𝑝−1(𝑒𝑖+𝑝𝑟+(𝑝−1)𝑝𝑟−1 + 𝑒𝑖+𝑝𝑟+(𝑝−2)𝑝𝑟−1 − 𝑒𝑖+(𝑝−1)𝑝𝑟−1 − 𝑒𝑖+(𝑝−2)𝑝𝑟−1  ) 

 

= 𝛼1(𝑒𝑖+𝑝𝑟 − 𝑒𝑖 ) + {𝛼1(𝑒𝑖+𝑝𝑟+𝑝𝑟−1 − 𝑒𝑖+𝑝𝑟−1  ) + 𝛼2(𝑒𝑖+𝑝𝑟+𝑝𝑟−1 − 𝑒𝑖+𝑝𝑟−1  )} 

 

+ ⋯ + { 𝛼𝑝−2(𝑒𝑖+𝑝𝑟+(𝑝−2)𝑝𝑟−1 − 𝑒𝑖+(𝑝−2)𝑝𝑟−1) + 𝛼𝑝−1(𝑒𝑖+𝑝𝑟+(𝑝−2)𝑝𝑟−1 − 𝑒𝑖+(𝑝−2)𝑝𝑟−1  )}+ 𝛼𝑝−1(𝑒𝑖+𝑝𝑟+(𝑝−1)𝑝𝑟−1 − 𝑒𝑖+(𝑝−1)𝑝𝑟−1  ) 

 

= 𝛼1(𝑒𝑖+𝑝𝑟 − 𝑒𝑖 )+ 𝛼𝑝−1(𝑒𝑖+𝑝𝑟+(𝑝−1)𝑝𝑟−1 − 𝑒𝑖+(𝑝−1)𝑝𝑟−1  ) 

 

+(𝛼1 + 𝛼2)(𝑒𝑖+𝑝𝑟+(𝑝−2)𝑝𝑟−1 − 𝑒𝑖+(𝑝−2)𝑝𝑟−1) + ⋯ + (𝛼𝑝−1 + 𝛼𝑝−2)(𝑒𝑖+𝑝𝑟+(𝑝−2)𝑝𝑟−1 − 𝑒𝑖+(𝑝−2)𝑝𝑟−1  ) 

 

= 𝛼1(𝑒𝑖+𝑝𝑟 − 𝑒𝑖 )+ 𝛼𝑝−1(𝑒𝑖+𝑝𝑟+(𝑝−1)𝑝𝑟−1 − 𝑒𝑖+(𝑝−1)𝑝𝑟−1  ) 

 

+ ∑ (𝛼𝑗 + 𝛼𝑗+1)(𝑒𝑖+𝑝𝑟+𝑗𝑝𝑟−1 − 𝑒𝑖+𝑗𝑝𝑟−1  )
𝑝−2
𝑗=1                    (1) 

 

𝛼𝑗 ∈ 𝐹𝑞 . If 𝑣 ≠ 0, then at least one 𝛼𝑗 ≠ 0. 

 

hus from (1), we have 𝑤𝑡(𝑣) ≥ 4. 
 

For maximum weight we assume 𝛼𝑗 ≠ 0, for 𝑗 = 1, 2, … , 𝑝 − 2.  

 

Thus from (1), we have 𝑤𝑡(𝑣) ≤ 2𝑝. 

(ii) Let 𝑣 ∈ 𝑉𝑖 is basic vector of length 𝑙, then by Definition 4.3, 𝑣 = ∑ 𝛼𝑗(𝑒𝑖+𝑝𝑟+𝑗𝑝𝑟−1 + 𝑒𝑖+𝑝𝑟+(𝑗−1)𝑝𝑟−1 − 𝑒𝑖+𝑗𝑝𝑟−1 −𝑘+𝑙
𝑗=𝑘

𝑒𝑖+(𝑗−1)𝑝𝑟−1  ), 
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Where 

 0 ≠ 𝛼𝑗 ∈ 𝐹𝑞 , 𝑘 ≥ 1, 𝑙 ≥ 0, 𝑘 + 𝑙 ≤ 𝑝 − 1. 

 

Then,  

𝑣 =  𝛼𝑘(𝑒𝑖+𝑝𝑟+(𝑘−1)𝑝𝑟−1 − 𝑒𝑖+(𝑘−1)𝑝𝑟−1)+ 𝛼𝑘+𝑙(𝑒𝑖+𝑝𝑟+(𝑘+𝑙)𝑝𝑟−1 − 𝑒𝑖+(𝑘+𝑙)𝑝𝑟−1  ) 

 

+ ∑ (𝛼𝑗 + 𝛼𝑗+1)(𝑒𝑖+𝑝𝑟+𝑗𝑝𝑟−1 − 𝑒𝑖+𝑗𝑝𝑟−1  )𝑘+𝑙−1
𝑗=𝑘   (2) 

 

Since 𝑣 is basic vector, so 𝛼𝑗 ≠ 0 and the sum in (2) has 𝑙 terms, therefore 4 ≤ 𝑤𝑡(𝑣) ≤ 2𝑙 + 4. 

 

Lemma 4.8 If 𝑙, 𝑘, 𝜆 are integers satisfying 0 ≤ 𝑙 ≤ 𝑝 − 1, 1 ≤ 𝑘 ≤ 𝑝 − 𝑙 − 1 and 2 ≤ 𝜆 ≤ 𝑙 + 2, then the number of basic 

vectors in 𝑉𝑖 is (
𝑙

𝜆 − 2
) (𝑞 − 1)(𝑞 − 2)𝜆−2.  

 

Proof. For any basic vector 𝑣 ∈ 𝑉𝑖 such that length of 𝑣 is 𝑙 and weight 2𝜆, then by equation (2),  

 

𝑣 = 𝛼𝑘(𝑒𝑖+𝑝𝑟+(𝑘−1)𝑝𝑟−1 − 𝑒𝑖+(𝑘−1)𝑝𝑟−1)+ 𝛼𝑘+𝑙(𝑒𝑖+𝑝𝑟+(𝑘+𝑙)𝑝𝑟−1 − 𝑒𝑖+(𝑘+𝑙)𝑝𝑟−1  ) + ∑ (𝛼𝑗 + 𝛼𝑗+1)(𝑒𝑖+𝑝𝑟+𝑗𝑝𝑟−1 − 𝑒𝑖+𝑗𝑝𝑟−1  ),

𝑘+𝑙−1

𝑗=𝑘

 

 

where 𝛼𝑗 ∈ 𝐹𝑞 are non zero for 𝑘 ≤ 𝑗 ≤ 𝑘 + 𝑙.  

Now we observe that the weight of 𝑣 is 2𝜆 if and only if out of a total of 𝑙 sums (𝛼𝑗 + 𝛼𝑗+1), 0 ≤ 𝑗 ≤ 𝑘 + 𝑙 − 1, exactly 𝜆 − 2 are 

non zero. That is possible if and only if there exists 𝑖1, 𝑖2, … , 𝑖𝜆−2 ≤ 𝑘 + 𝑙 − 1 such that (𝛼𝑖1
+ 𝛼𝑖2

) ≠ 0, (𝛼𝑖2
+ 𝛼𝑖3

) ≠

0, … , (𝛼𝑖𝜆−2
+ 𝛼𝑖𝑘+𝑙

) ≠ 0 and 𝛼𝑗 + 𝛼𝑗+1 = 0, otherwise. We observe that the total number of choices of such a nice element 𝑣 is 

(
𝑙

𝜆 − 2
) (𝑞 − 1)(𝑞 − 2)𝜆−2. 

 

Remark 4.9. In the above lemma the number of basic vectors is independent of the choice of the initial point. 

Definition 4.10. For any integer 𝜆 ≥ 0, define 

 

 𝑁(𝜆) = {

 1, if 𝜆 = 0,
0, if 1 ≤ 𝜆 ≤ 3 or 𝜆 ≥ 2𝑝 + 1,

∑ ∑ ∑ 𝜂, otherwise.(𝑙1,𝑙2,...,𝑙𝑡)∈𝐶𝑡(𝜆1,𝜆2,…,𝜆𝑡)(𝜆1,𝜆2,… ,𝜆𝑡)∈𝐵𝑡(𝜆)𝑡≥1

 

 

Lemma 4.11. Let 𝜆 be an integer such that 2 ≤ 𝜆 ≤ 𝑝. Then, for each 𝑖, 1 ≤ 𝑖 ≤ 𝑝𝑟−1, the number of vectors in 𝑉𝑖 having weight 

2𝜆 are exactly 𝑁(𝜆 ). 

 

Proof. Let 𝐴𝑖(2𝜆) be the set of all codewords in 𝑉𝑖 having weight 2𝜆. Let 𝑊𝑖(𝜆1, 𝜆2, . . . , 𝜆𝑡; 𝑙1, 𝑙2, … , 𝑙𝑡) be the set of all𝑣 ∈ 𝑉𝑖 

such that 𝑣 = ∑ 𝑣𝑗
𝑡
𝑗=1 , 𝑣1, 𝑣2, … , 𝑣𝑡 is a chain in 𝑉𝑖 and 𝑤𝑡(𝑣𝑗) = 2𝜆𝑗 , 𝑙(𝑣𝑗) = 𝑙𝑗  for 1 ≤ 𝑗 ≤ 𝑡 . Then,  

 

𝑤𝑡(𝑣) = 𝑤𝑡 (∑ 𝑣𝑗

𝑡

𝑗=1

) = ∑ 𝑤𝑡(𝑣𝑗)

𝑡

𝑗=1

= ∑ 2𝜆𝑗

𝑡

𝑗=1

= 2𝜆. 

 

We claim that 𝐴𝑖(2𝜆) is the disjoint union of 𝑊𝑖(𝜆1, 𝜆2, … , 𝜆𝑡; 𝑙1, 𝑙2, … , 𝑙𝑡). 
i.e.  

 

𝐴𝑖(2𝜆) = ⋃ ⋃ ⋃ 𝑊𝑖(𝜆1, 𝜆2, . . . , 𝜆𝑡; 𝑙1, 𝑙2, … , 𝑙𝑡).(𝑙1,𝑙2,...,𝑙𝑡)∈𝐶𝑡(𝜆1,𝜆2,...,𝜆𝑡)(𝜆1,𝜆2,...,𝜆𝑡)∈𝐵𝑡(𝜆)𝑡≥1   (3) 

 

Let 𝑣 be an arbitrary vector of 𝑊𝑖. Then by the above discussion 𝑤𝑡(𝑣) = 2𝜆. Consequently, 𝑣 ∈ 𝐴𝑖(2𝜆). Thus the union on right 

hand side is the sub set of 𝐴𝑖(2𝜆). Now, let 𝑣 be an arbitrary element of 𝐴𝑖(2𝜆), then 𝑤𝑡(𝑣) = 2𝜆. By using Remark 4.5, we get 

𝑣 = ∑ 𝑣𝑗
𝑡
𝑗=1 , 𝑣1, 𝑣2, … , 𝑣𝑡 is a chain in 𝑉𝑖 and 𝑤𝑡(𝑣𝑗) = 2𝜆𝑗 , 𝑙(𝑣𝑗) = 𝑙𝑗 , for 1 ≤ 𝑗 ≤ 𝑡 . Then by Lemma 4.4.7, 4 ≤ 𝜆𝑗 ≤ 2𝑝, 𝑙𝑗 ≥

𝜆𝑗 − 2 for all 𝑗. Also 

 

∑ 𝑙𝑗

𝑡

𝑗=1

= ∑(𝐸(𝑣𝑗)) − 𝐼(𝑣𝑗))

𝑡

𝑗=1

 

 

= ∑(𝐸(𝑣𝑗−1)) − 𝐼(𝑣𝑗))

𝑡

𝑗=2

+ 𝐸(𝑣𝑡) − 𝐼(𝑣1). 

 

As, 𝐸(𝑣𝑡) ≤ 𝑝 − 1, 𝐼(𝑣1) ≥ 1, i.e.− 𝐼(𝑣1) ≤ −1 and (𝐼(𝑣𝑗) − 𝐸(𝑣𝑗−1)) ≥ 2, 
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 i.e. (𝐸(𝑣𝑗−1) − 𝐼(𝑣𝑗)) ≤ −2. 

  

Therefore,  

 

∑ 𝑙𝑗

𝑡

𝑗=1

≤ ∑ −2

𝑡

𝑗=2

+ 𝑝 − 1 − 1 = 𝑝 − 2𝑡. 

 

This implies that (𝑙1, 𝑙2, , … , 𝑙𝑡) ∈ 𝐶𝑡(𝜆1, 𝜆2, … , 𝜆𝑡) and ∈ 𝑊𝑖(𝜆1, 𝜆2, . . . , 𝜆𝑡; 𝑙1, 𝑙2, … , 𝑙𝑡) . It is clear that the union of right hand side 

of (3) is disjoint. Now to evaluate |𝑊𝑖(𝜆1, 𝜆2, … , 𝜆𝑡; 𝑙1, 𝑙2, … , 𝑙𝑡)| we find out the number of chains 𝑣1, 𝑣2, … , 𝑣𝑡 in 𝑉𝑖 such that 

𝑤𝑡(𝑣𝑗) = 2𝜆𝑗 , 𝑙(𝑣𝑗) = 𝑙𝑗 for all 𝑗. As 𝑘𝑗 = 𝐼(𝑣𝑗). Then 𝑘1 ≥ 1, 𝑘𝑡 + 𝑙𝑡 ≤ 𝑝 − 1 and 𝑘𝑗−1 + 𝑙𝑗−1 + 2 ≤ 𝑘𝑗 for 2 ≤ 𝑗 ≤ 𝑡. 

 

For 𝑗 = 2, 𝑘1 + 𝑙1 + 2 ≤ 𝑘2,  (4) 

For 𝑗 = 3, 𝑘2 + 𝑙2 + 2 ≤ 𝑘3,  

implies 𝑘2 ≤ 𝑘3 − 𝑙2 − 2. 

 

 Using 𝑘2 in (4), we get 

 

𝑘1 + 𝑙1 + 2 ≤ 𝑘3 − 𝑙2 − 2, 
 

implies 𝑘1 ≤ 𝑘3 − (𝑙1 + 𝑙2) − 2.2 (5) 

 

For 𝑗 = 4, 𝑘3 + 𝑙3 + 2 ≤ 𝑘4, 
implies  𝑘3 ≤ 𝑘4 − 𝑙3 − 2. 
 

 Using 𝑘3 in (5), we ge 

 

𝑘1 ≤ 𝑘4 − (𝑙1 + 𝑙2 + 𝑙3) − 2.3  (6) 

 

Continuing in this way for 𝑗 = 𝑡, we get  

 

 𝑘1 ≤ 𝑘𝑡 − (𝑙1 + 𝑙2 + 𝑙3 + ⋯ + 𝑙𝑡−1) − 2(𝑡 − 1).  (7) 

 

 But 𝑘𝑡 ≤ 𝑝 − 1 − 𝑙𝑡 and 𝑘1 ≥ 1. Using (4) to (7) inequalities, we get 𝑘1 ≤ 𝑝 − 1 − (𝑙1 + 𝑙2 + 𝑙3 + ⋯ + 𝑙𝑡−1 + 𝑙𝑡) − 2(𝑡 − 1). 
 

Implies 

 

1 ≤ 𝑘1 ≤ 𝑝 − (𝑙1 + 𝑙2 + 𝑙3 + ⋯ + 𝑙𝑡−1 + 𝑙𝑡) − 2𝑡 + 1.  
 

By the above discussion the number of choices for 𝑘1 is 

 

∑ 1.

𝑝−∑ 𝑙𝑗
𝑡
𝑗=1 −2𝑡+1

𝑘1=1

 

 

Similarly, the number of choices for initial point 𝑘2 of 𝑣2 is  

 

∑ 1.

𝑝−∑ 𝑙𝑗
𝑡
𝑗=2 −2(𝑡−1)+1

𝑘2=𝑘1+𝑙1+2

 

 

Therefore, total number of choices for initial points of 𝑣1, 𝑣2, … , 𝑣𝑡 is 

 

=  ∑  ∑ … 

𝑝−∑ 𝑙𝑖−2(𝑡−1)+1𝑡
𝑖=2

𝑘2=𝑘1+𝑙1+2

𝑝−∑ 𝑙𝑖−2𝑡+1𝑡
𝑖=1

𝑘1=1

∑  ∑ 1

𝑝−𝑙𝑡−1

𝑘𝑡=𝑘𝑡−1+𝑙𝑡−1+2

.

𝑝−∑ 𝑙𝑖−3𝑡
𝑖=𝑡−1

𝑘𝑡−1=𝑘𝑡−2+𝑙𝑡−2+2

 

 

By using Lemma 4.8, the number of basic vectors 𝑣𝑗 of length 𝑙𝑗 weight 𝜆𝑗 and having a fixed initial point 𝑘𝑗  is given by  

 

(
𝑙𝑗

𝜆𝑗 − 2
) (𝑞 − 1)(𝑞 − 2)𝜆𝑗−2 for each 𝑗, 1 ≤ 𝑗 ≤ 𝑡.  

 

 By using Notation 4.4.6, we get 
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|𝑊𝑖(𝜆1, 𝜆2, … , 𝜆𝑡; 𝑙1, 𝑙2, … , 𝑙𝑡)| =  𝜂.  (8) 

 

Using (3) and (8),  

 
|𝐴𝑖(2𝜆)| = 𝑁(2𝜆) for 2 ≤ 𝜆 ≤ 𝑝.  
 

Theorem 4.12. Let 𝐹𝑞 be the finite field with 𝑞 elements; 𝑝, 𝑞 be two odd primes with gcd(𝑝, 𝑞)= 1 and 𝑚 ≥ 1 be an integer. If 

the multiplicative order of 𝑞 modulo 2𝑝𝑚, then the weight distribution 𝐴2𝑤
(2𝑝𝑟)

, 𝑤 ≥ 0, of the minimal cyclic code 𝕄1
(2𝑝𝑟)

is given 

by 

 

𝐴2𝑤
(2𝑝𝑟)

= ∑ ∏ 𝑁(𝑤𝑖)
𝑝𝑟−1

𝑖=1 (𝑤1,𝑤2,…,𝑤𝑝𝑟−1) , where ∑ 𝑤𝑖
𝑝𝑟−1

𝑖=1 = 𝑤.  

 

Proof. Let 𝐴(2𝑤) be the set of codewords in 𝕄1
(2𝑝𝑟)

 of weight 2𝑤, 𝑤 ≥ 0. By Remark 4.2, 𝕄1
(2𝑝𝑟)

≅ 𝑉1 ⊕ 𝑉2 ⊕ … ⊕ 𝑉𝑝𝑟−1, 

where 𝑉𝑖 is the vector subspace of 𝐹𝑞
2𝑝𝑟

 spanned by 𝑒𝑖+𝑝𝑟+𝑗𝑝𝑟−1 + 𝑒𝑖+𝑝𝑟+(𝑗−1)𝑝𝑟−1 − 𝑒𝑖+𝑗𝑝𝑟−1 − 𝑒𝑖+(𝑗−1)𝑝𝑟−1  for 1 ≤ 𝑖 ≤ 𝑝𝑟−1 and 

1 ≤ 𝑗 ≤ 𝑝 − 1. Let 𝑥 be any element of 𝕄1
(2𝑝𝑟)

 of weight 2𝑤. Then, by the above discussion 𝑥 corresponds 𝑣 ∈ 𝑉1 ⊕ 𝑉2 ⊕ … ⊕

𝑉𝑝𝑟−1such that 𝑣 = ∑ 𝑣𝑖
𝑝𝑟−1

𝑖=1  and 𝑤𝑡(𝑣𝑖) = 2𝑤𝑖 , satisfying 𝑤 = ∑ 𝑤𝑖
𝑝𝑟−1

𝑖=1 . To determine the number of elements 𝑥 in 𝕄1
(2𝑝𝑟)

having 

weight 2𝑤, we have to determine the number of 𝑣𝑖 in 𝑉𝑖 such that 𝑤𝑡(𝑣𝑖) = 2𝑤𝑖. By Lemma 4.11, the number of 𝑣𝑖 having weight 

2𝑤𝑖 in 𝑉𝑖 is 𝑁(2𝑤𝑖) for each 𝑖, 1 ≤ 𝑖 ≤ 𝑝𝑟−1.  

If we fix 𝑤𝑖, satisfying 𝑤 = ∑ 𝑤𝑖
𝑝𝑟−1

𝑖=1  for each 𝑖, 1 ≤ 𝑖 ≤ 𝑝𝑟−1. Then by the above discussion, the number of codewords of weight 

2𝑤𝑖 is ∏ 𝑁(2𝑤𝑖)
𝑝𝑟−1

𝑖=1 . Consequently, 𝐴2𝑤
(2𝑝𝑟)

= ∑ ∏ 𝑁(2𝑤𝑖)
𝑝𝑟−1

𝑖=1 (𝑤1,𝑤2,…,𝑤𝑝𝑟−1) , 𝑤 = ∑ 𝑤𝑖
𝑝𝑟−1

𝑖=1 . 

This completes the proof of the Theorem.  
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