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Development of hybrid model for improvement of 

forecast Agricultural commodity price 

 
Borsha Neog, Bipin Gogoi and AN Patowary 

 
Abstract 

Auto regressive fractional integrated moving average (ARFIMA) is widely applied for time series 

forecasting in long memory for divergent domain from several decades. The major limitation of this 

model is presumption of linearity. In real world, most of the long memory time series data are not purely 

linear, therefore hybrid model is evolved to enhance the prediction ability of ARFIMA models by fusing 

with other non-linear models. With this reasoning, this present study attempts to predict the price of 

Onion using ARFIMA-ANN and ARFIMA-SVM models. Results of this experiment justified the results 

of hybrid model gives better results with comparison to linear and non-linear models. 

 

Keywords: ARFIMA, ANN, forecasting, price, time series 

 

Introduction 

Price instability and uncertainty pose a restriction on decision and policy makers. Price 

forecasting of agricultural commodity plays a vital role for both production and market 

strategy. Price forecasting allows a Mach between the supply and demand of the commodity. It 

is a herculean task because it depends on many factors which cannot be accurately predicted. 

Nonlinear and non-stationary behaviour are the pivotal problems in agricultural price data. 

Prices of agricultural commodity are also volatile in nature due to seasonality, inelastic 

demand, production uncertainty and also because many agricultural commodities are 

destructive in nature. 

The presence of long memory in price of agricultural commodity has been an important 

subject for both theoretical and empirical studies. Since the data points are dependent over 

time and to make business decisions presence of long memory is a crucial information. Long 

memory can be measured by Hurst exponent. Many methods have been proposed for Hurst 

parameter estimation such as rescaled range (R/S), aggregated variance method, periodogram 

method, absolute value method, Higuchi’s method and Wavelet based method. 

Traditional time series models namely ARIMA models cannot describe long memory 

phenomenon. Therefore, to overcome such limitations different models has been established, 

among which most widely used model is autoregressive fractionally integrated moving 

average (ARFIMA) model given by Granger and Joyeux (1980) [2]. The properties of the 

process are widely discussed by Hosking (1981) [4]. (Magsood, A. and Aqil, S.M. (2014) [5]. 

Romalingam (2010) made overall review of long-memory independently. Long memory 

studies using hybrid ARFIMA and feed forward neural network carried out by Aladag et al. 

(2012) [1], Wiri et al. (2022) [13] used ARFIMA modelling in Nigeria exchange rate. Not much 

research work has been done in agriculture sector using long memory time series. 

In general, the estimators of fractional order of integration d can be classified into two groups; 

parametric and semi parametric methods. In parametric approach, parameters are estimated 

simultaneously and in semi parametric methods, parameters are estimated in two steps: In the 

first step, d is estimated and in second step remaining parameters are estimated (Reisen, V, 

Abraham, B. and Loper, S. 2001) [8]. Mostly used semi parametric methods were proposed by 

Geweke and Porter- Hudak (1983) [3], Kuensch (1987) [4], Robinson et al. (1995) [9] & Reisen 

and Lopes (1999) [7], while the exact maximum likelihood (EML), proposed by Sowell (1992) 
[11] and modified profile likelihood (MPL) are the most common parametric methods. 
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So, the main aim of this paper is to develop a suitable model 

for forecasting of monthly price of vegetable (onion) in 

Assam. Data collected from Directorate of Economics & 

Statistics, Assam during the period January, 2010 to 

December, 2020. 

 

2. Data and methodology 

Monthly wholesale price data on selected agricultural crops 

are obtained from the various issues of “Agricultural prices in 

India” published by the Directorate of economics and 

statistics, Government of India during Jan, 2010 Dec, 2020. 

Methodology part consists with detection of long memory 

with its different tests, tests of stationarity, ARFIMA and its 

parameter estimation, ANN and SVM model and hybrid 

ARFIMA-ANN and hybrid ARFIMA-SVM model. 

 

2.1. Long memory Process 

Long memory in time series can be defined as autocorrelation 

at long lags (Robinson 1995) [9]. Mathematically, if the time 

series xt is said to be long memory series if the autocorrelation 

function ρt satisfies the condition: 

 

lim𝑡→∞ ∑ |𝜌𝑡| → ∞

𝑛

𝑡=−𝑛

 

 

Where n is the sample size, for detection of long memory, 

many statistical tests are available in literature viz., Rescaled 

range (R/S), aggregated variance method, absolute value 

method, periodogram method, Higuchi’s method and Wavelet 

based method. 

A brief description of the test R/S test, Absolute value method 

are given: 

 

2.1.1. Rescaled range statistic (R/S) 

The first test for long memory was used by the hydrologist 

Hurst (1951) for the design of an optimal reservoir for the 

Nile River, of where flow regimes were persistent. Hurst gave 

the following formula: 

 

(R/S)n=CnH 

 

R/S is the rescaled range statistic measured over a time index 

n, c is a constant and H is the Hurst exponent. The aim of the 

R/S statistic is to estimate the Hurst exponent which can 

characterize a series. Estimation of Hurst exponent can be 

done by transforming to  

 

Log (R/S)n= log (C) + H log (n) 

 

Rescaled range statistic (R/S) is defined as the range of partial 

sums of deviation of a time series from its mean, rescaled by 

its standard deviation: consider the sample {x1, x2,…, xk} 

from a stationary long memory process { xn; t=1,2,…, N}, 

and let the partial sums of xk is ∑ 𝑥𝑗
𝑘
𝑗=1 ; k=1,2,…, n. 

Let 𝑥𝑛̅̅ ̅= 
1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1  and Sn

2= 
1

𝑛−1
∑ (𝑥𝑘 − �̅�)2𝑛

𝑘=1  be the sample 

mean and sample variance respectively. The rescaled range 

statistic (R/S) is defined as: (Magsood, A. and Aquil, S. M. 

2014); 

 

R/S= 
1

𝑆𝑛
[𝑀𝑎𝑥1≤𝑘≤𝑛(∑ (𝑥𝑗 − �̅�𝑛)) − 𝑀𝑖𝑛1≤𝑘≤𝑛(∑ (𝑥𝑗 −𝑘

𝑗=1
𝑘
𝑗=1

�̅�𝑛))] 
 

Where n: number of observations. 

Sn= the standard deviation. 

 

In addition, the Hurst coefficient H can be used to estimate 

the fractional differencing parameter d by the equation:  

 

d= H-0.5 

 

This method is considered as semi parametric of estimating 

ARFIMA models. 

 

2.2.2. Absolute value Method 

The data is divided in the same way as the aggregated 

variance method to form aggregated series, the sum of the 

absolute values of the aggregated series is computed as (Sun, 

R., Chen, Y. and Li, Q. 2007) [12]: 

 

1

𝑁
𝑚⁄

∑|𝑥(𝑚)(𝑘)|

𝑚

𝑘=1

 

 

The logarithm of this statistic is plotted versus the logarithm 

of m. For long-range dependent time series with parameter H, 

the result should be a line with slope H-1. 

 

2.2. The ARFIMA model 

ARFIMA model used for long range dependent time series. 

ARFIMA (p, d, q) model (Granger and Joyeux (1980)) [2] is 

given as follows: 

 

𝜑(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜃(𝐵)𝑒𝑡 , −0.5 < 𝑑 < 0.5 

 

Where B is the back-shift operator such that BXt=Xt-1 and et is 

a white noise process with E(et)=0 and variance is σe
2. The 

polynomials 

 𝜑(𝐵) = (1 − 𝜑1𝐵 − ⋯ − 𝜑𝑝𝐵𝑝) and 𝜃(𝐵) = (1 − 𝜃1𝐵 −

⋯ − 𝜃𝑞𝐵𝑞 ) have orders p and q respectively with all their 

roots outside the unit circle. The process is stationary if d=0 

and the effect of shock to et on x(t+j) decays geometrically as j 

increases. For d=1, the process is non-stationary. 

An ARFIMA (p, d, q) process may be differenced a finite 

integral number until d lies in the interval [-0.5, 0.5] and will 

then be stationary and invertible (sun, R., Chen, Y. and Li, 

Q.2007) [12]. The ARFIMA process is stationary but not 

invertible if d=-0.5, the ARFIMA process has an intermediate 

memory or over differenced if -0.5<d<0. In that case, the 

inverse autocorrelation decay hyperbolically. When d=0, the 

ARFIMA process can be white noise and when 0<d<0.5, the 

ARFIMA (p, d, q) process is a stationary process with long 

memory and the auto covariance function exhibits hyperbolic 

decay (Doornik, J.A. and Ooms, M. 2004; Sun, R., Chen, Y. 

and Li, Q.2007) [12]. 

 

2.2.1. Estimation of ARFIMA models 

There are two types of estimation methods: Parametric and 

Semi-Parametric methods. The methods which are 

implemented in their chapter are described below. 

 

2.2.1.1 Parametric estimation methods 

The parametric methods estimate all parameters of the 

ARFIMA process in one step. Exact maximum likelihood 

(EML), proposed by Sowell (1992) [11]. The EML method is 

chosen in this chapter for estimating the parameters of 

ARFIMA model. 

Let y be the sample time series. The log-likelihood of the 

estimation is simple and it is based on the normality 

https://www.mathsjournal.com/
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assumption and with a procedure to compute the 

autocovariances in the T x T covariance matrix Σσe
2R of a T x 

1 vector of observations y, the log-likelihood for the 

ARFIMA (p, d, q) model with k regressors is (Lildholdt, 

P.2000; Doornik, J.A. and Ooms, M. 2004):  

 

σϵ
2- 

1

2
𝑙𝑛|𝑅| −

1 

2𝜎𝑒
2 𝑍𝑅−1𝑍 

 

Where 

 

Z= y-xβ 

 

when σɛ
2 and β are concentrated out, the resulting normal 

profile likelihood function becomes: 

 

log L (d, ɸ, θ) = C- 
1

2
𝑙𝑛|𝑅|- 

𝑇

2
ln [𝑧 ̂ ́ R-1 𝑧]̂ 

 

Where �̂� = y- x�̂� 

 

and �̂� = (�́�𝑅−1𝑥  )−1𝑥 ́ 𝑅-1y 

 

2.2.1.2. Semi - Parametric estimation methods 

The most popular and widely used of all semi-parametric 

estimation method was proposed by Geweke and Porter – 

Hudak (1983) [3] (Joe, B and Sisir, R. 2014), this method is 

based on an approximated regression equation obtained from 

the logarithm of the spectral density function. The GPH 

estimation procedure is a two – step procedure which begins 

with the estimation of d (Paul, R.K. 2014) and is based on the 

following log – periodogram regression (Bhardwaj, G., and 

Swanson, N.R. (2006)) 

 

Ln [ I (wj)]= β0 + β1ln [4sin2 (wj
2)]+ υj 

 

Where wj= 
2𝜋𝑗

𝑇
, j=1,2,…,m 

 

The estimate of d, say �̂�𝐺𝑃𝐻; is �̂�1, wj represents the m=√T. 

Fourier frequencies, and I(wj) denote the sample periodogram 

defined as: 

 

I(wj)= 
1

2𝜋𝑇
|∑ 𝑦𝑡𝑒−𝑤𝑗𝑡𝑇

𝑡=1 |
2
  

 

The second step of the GPH estimation procedure involves 

fitting an ARMA model to data according to box and Jenkins 

method, given the estimate of d. The GPH estimate is denoted 

as �̂�𝐺𝑃𝐻.Reisen and Lopes (1999) [7] modified the GPH 

procedure by replacing the periodogram by a “smoothed” 

estimate of the spectral density. Reisen and Lopes (1999) [7] 

proposed to use a Blackman- Tukey type estimate of the 

spectral density (Joe, B. and Sisir, R. 2014) 

 

Fm(x) = 
1

2𝜋
∑ 𝑘(

𝑠

𝑚
)�̂�𝑚

𝑠=−𝑚  (𝑠) cos(𝑠𝑥) 

 

Henceforth, the smoothed periodogram estimate of d is denote 

as �̂�𝑠𝑝𝑒𝑟𝑖𝑜. Both �̂�𝐺𝑃𝐻 and �̂�𝑠𝑝𝑒𝑟𝑖𝑜 although simpler to 

implement are inefficient in the non-stationary region i.e., 
|𝑑| > 1 = 2. 

Another semi-parametric estimator, the local whittle 

estimator, is also often used to estimate d. This estimator was 

proposed by Kuench (1987) and modified by Robinson (1995) 
[10]. The local whittle estimator of d; say �̂�𝑤 is obtained by 

maximizing the local whittle log likelihood at Fourier 

frequencies close to zero, given by (Bhardwaj, G. and 

Swanson, N.R. 2006): 

 

Г(d)= -
1

2𝜋𝑚
∑

𝐼(𝑤𝑗)

𝑓(𝑤𝑗;𝑑)
−

1

2𝜋𝑚
∑ 𝑓(𝑤𝑗; 𝑑)𝑚

𝑗=1
𝑚
𝑗=1  

 

2.2.2. Ljung-Box test 

The Ljung-Box test, named after statisticians Greta M. 

Ljung and George E.P. Box, is a statistical test that checks if 

autocorrelation exists in a time series. It is sometimes called 

Box-Pierce test. The test identifies whether errors are iid (i.e., 

white noise). The null hypothesis of Ljung-Box test is 

H0: The residuals are independently distributed and the 

alternative hypothesis is  

H1: The residuals are not independently distributed; they 

exhibit serial correlation. 

The test statistic for the Ljung-Box test is as follows: 

 

Q = n(n+2) Σpk
2 / (n-k) 

 

Where 

n = sample size 

pk = sample autocorrelation at lag k 

The test statistic Q follows a chi-square distribution 

with h degrees of freedom; that is,  

 

Q ~ χ2(h). 

 

We reject the null hypothesis and say that the residuals of the 

model are not independently distributed if Q > χ2
1-α, h 

 

2.2.3. Brock- Dechert- Scheinkman (BDS) Test 

This test was proposed by Brock et al. (1991) called the 

Brock- Dechert- Scheinkman (BDS) statistic, for residual 

analysis. This test can be applied for estimation of residuals of 

time series model and used as a model selection tool. In the 

recent work, BDS test is used in detecting deterministic 

nonlinear dynamics and chaos theory. Now it is not only used 

for detecting deterministic chaos, but also used for testing 

residuals. Under the null hypothesis of independent and 

identical distribution (IID), the BDS test statistic have its 

ability in distinguishing random time series from the time 

series generated by low dimensional chaotic or nonlinear 

stochastic processes. 

Under the null hypothesis, the BDS statistic for m>1 is 

defined as 

 

BDS (m, M, r) = 
√𝑀

𝜎
[𝐶(𝑚, 𝑟) − 𝐶𝑚(1, 𝑟)] 

 

It has a limiting standard normal distribution as M→∞ and 

obtain its critical values using the standard normal 

distribution. 

 

2.3 Artificial Neural Network (ANN) model 

ANN(s) models are set of nonlinear models that can capture 

different nonlinear structures present in the data set. The 

specification of ANN model does not require any prior 

assumption of the data generating process, instead it is largely 

depended on characteristics of the data known as data-driven 

approach. Single hidden layer feed forward network is the 

most widely used model for time series modelling and 

forecasting. This model is constructed by a network of three 

layers of simple processing units, and thus termed as 

multilayer ANNs. The first layer is input layer, the middle 

layer is the hidden layer and the last layer is output layer. 

https://www.mathsjournal.com/
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Fig 1: Neural Network architecture 

 

The relationship between the output (yt) and the inputs (yt-1,yt-

2, …, yt-p) can be mathematically represented as follows: 

 

Yt= f (∑ 𝑤𝑗𝑔 (∑ 𝑤𝑖𝑗 
𝑞
𝑖==0

𝑞
𝑗=0 𝑦𝑡−𝑖))  (1) 

 

Where wj(j=0,1,2,…,q) and wij(i=0,1,2,…,p; j=0,1,2,…,q) are 

the model parameters often called the connection weights; p is 

the number of input nodes and q is the number of hidden 

nodes, g and f denote the activation function at hidden and 

output layer respectively. 

 Recently, support vector machine (SVM) method developed 

by Vapnik et al. (2000) has wide range of applications such as 

data mining, classification, regression and time series 

forecasting. In time series forecasting, SVM becomes 

successful by solving nonlinear regression estimation 

problems. 

 

 
 

Fig 2: SVM architecture 

 

2.4. Hybrid approach 

Hybrid model is a combination of two or more models. Use of 

hybrid models becomes necessary because a single model 

may not handle the inherent data patterns like nonlinearity 

and non-stationarity simultaneously. However, both statistical 

and AI based time series models have their prerequisite 

assumptions. These limitations demand the necessity for 

combining two or more models for forecasting. The proposed 

approach considered time series (yt) as a function of linear 

and non-linear components. Hence yt= f (Lt, Nt) where yt is a 

time series data; Lt and Nt represents the linear and nonlinear 

component respectively. This approach follows the Zhang’s 

https://www.mathsjournal.com/
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(2003) hybrid approach, accordingly the relationship between 

linear and nonlinear components can be written as following 

 

Yt= Lt + Nt 

 

The main strategy of this approach is to model the linear and 

nonlinear components separately by different model. The 

methodology consists of three steps. Firstly, ARFIMA model 

is applied to the data series to fit the linear part. Let the 

prediction series provided by ARFIMA model denoted as 𝐿�̂�. 

In the second step, instead of predicting the linear component, 

the residuals denoted as et which are nonlinear in nature are 

predicted. The residuals can be obtained by subtracting the 

predicted value 𝐿�̂� from actual value of the considered time 

series yt. 

et= yt- 𝐿�̂� 

 

Now the residuals are predicted employing an ANN and SVM 

model. Let the prediction series provided by ANN/SVM 

model denoted as 𝑁�̂�. Finally, the predicted linear and 

nonlinear components are combined to generate aggregate 

prediction. 

 

𝑦�̂�= 𝐿�̂� + 𝑁�̂� 

 

BDS test is used to test for non-linearity in this study. 

The graphical representation of proposed approach is 

expressed in the figure 6.2.3 & 6.2.4 

 

 
 

Fig 3: Schematic representation of ARFIMA-ANN hybrid methodology 

 

 
 

Fig 4: Schematic representation of ARFIMA-SVM hybrid methodology 

 
For long memory time series ARFIMA have been used. 
However, it is obvious that ARFIMA is not adequate for non-
linear part. It can be applied only for linear part. In real 
situation, it is difficult to completely know the characteristics 
of data. Hybrid methods have the capability to modelling for 
linear and non-linear dataset. To model long memory time 
series, any hybrid approaches using nonlinear techniques 
SVM has not been proposed in any literature. In this chapter, 
a new hybrid approach has been proposed ARFIMA-ANN & 
ARFIMA-SVM for forecasting of price of agricultural 
commodity.  
 
2.5. Forecasting Performance 
Forecasting Performance of the model has been adjusted by 
computing mean absolute error (MAE). The model with 
minimum values of MAE for training and testing data set is 
preferred for forecasting purpose. The MAE is computed as  
 

MAE= 
1

𝑛
∑ |𝑦𝑡 − �̂�𝑡|𝑛

𝑡=1  

Where n is the total number of forecast values. Yt is the actual 
value at period t and �̂�𝑡 is the corresponding forecast value. 
The model with better forecasting power has lower values of 
MAE compared with other models. 
The statistical software viz., R and Excel were used for 
modelling and forecasting of price of vegetables in Assam. R 
software package arfima and TSA package was used for 
ARFIMA, ‘Forecast’ was used for modelling and forecasting 
using NN and package ‘e 1071’ was used for modelling and 
forecasting using SVM. 
 
3. Results and Discussion 
 For the present study, Monthly wholesale price data on 
selected agricultural crops are obtained from the various 
issues of “Agricultural prices in India” published by the 
Directorate of economics and statistics, Government of India 
during the period Jan,2010 to Dec., 2020. Out of 120 
observations, 84 observations have been used for model 
estimation and remaining 36 observations are used for 
validation. Summary statistics of price of onion is given in the 
Table 6.1.  

 
Table 1: Summary statistics of price of Onion 

 

Statistic Series Statistic Series 

Observation 120 Standard Deviation 1396.09 

Mean 2205.54 Kurtosis 4.908 

Median 1750.00 Skewness 1.991 

Mode 1600.00 Coefficient of Variation (CV) 63.29 

https://www.mathsjournal.com/
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Fig 1: Trend of Prices of Onion in Assam 

 

As Table 6.1 shows, the price series of onion has the mean of 

2205.54 and the standard deviation of 1396.09 in the sample 

period. To validate the stationarity of the time series, two tests 

namely Augmented Dickey- Fuller test and Philips-Perron test 

are used. Results of the Stationarity tests are reported in table 

6.3.2. The results indicate that price of onion time series is 

stationary. 

 
Table 2: Testing for stationarity of Onion 

 

ADF test statistic P PP test statistic p 

-4.731 0.001 -5.034 0.001 

 

 
 

Fig 2: Plot of ACF of Onion 

 

 
 

Fig 3: Plot of PACF of Onion 
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The auto correlation function (ACF) and Partial 

autocorrelation function (PACF) for the actual price series 

were investigated and it has been found that though the 

stationarity tests validated that the series is stationary but plot 

of ACF shows a slow decay towards zero. This indicating the 

possible presence of long memory in the series. The long 

memory for the series was tested using R/S method and 

Absolute value method. The results of the above tests are 

given in Table 6.3. 

 
Table 3: Test for long memory of Onion 

 

R/S method Absolute value method 

H=.897 H=.862 

 

The estimated Hurst exponent 0.5<H<1, so this result 

provides more evidence for the existence of the long memory 

property in the price series. In this study, common parameter 

estimation exact maximum likelihood (EML) proposed by 

Sowell (1992) [11] were used for estimation of parameters. 

Based on the smallest value of AIC, the best ARFIMA model 

was chosen. The value of all parameters are given in table 6.4. 

 
Table 4: Parameter estimates of ARFIMA model of Onion 

 

Parameters Estimates Probability Log-Likelihood AIC 

d 0.153 0.001 

-977.8 1967.625 

AR1 1.414 0.000 

AR2 -0.670 0.000 

MA1 0.708 0.001 

MA2 -0.233 0.000 

 
Table 5: Forecasted monthly mustard prices using ARFIMA (2, 0.15, 2) of Onion 

 

Months Point forecast Lowest confidence interval Upper confidence interval 

Jan 3261.299 1630.04753 4892.551 

Feb 2481.293 330.11818 4632.469 

Mar 1967.229 -514.49189 4448.950 

Apr 1755.510 -874.48199 4385.501 

May 1794.404 -872.85967 4461.667 

June 1986.230 -682.21598 4654.676 

July 2227.263 -445.74475 4900.272 

Aug 2436.055 -248.46373 5120.574 

Sep 2566.752 -127.06983 5260.574 

Oct. 2608.959 -87.95643 5305.875 

Nov 2578.620 -118.33043 5275.570 

Dec 2505.193 -193.09381 5203.481 

 

 
 

Fig 4: Graphical representation of Forecast of monthly mustard prices using ARFIMA (2, 0.15, 2) of Onion 

https://www.mathsjournal.com/
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Fig 5: Residual Graphs of Onion 

 

As we discussed here hybrid methodology contains both 

linear and non-linear part in the model. The linear part of the 

model estimated by ARFIMA model and for non-linear part 

residuals are required to check for their linearity assumption 

(Zhang 2003). Plot obtained in Fig 6.3.5. Indicates that the 

residuals of ARFIMA model are nonlinear and BDS test was 

confirmed that same as p< 0.001, hence we can apply ANN 

and SVM for non-linear part. We have tried different neural 

networks with different time delays with different hidden 

nodes on residuals and the results are given in table 6.6. 

 
Table 6: MAE for Neural Network models for price of onion 

 

Model parameters MAE for Training MAE for Testing 

1:2s:1l 422.326 682.977 

1:4s:1l 422.532 683.948 

1:6s:1l 424.169 679.948 

1:8s:1l 425.803 685.395 

1:10s:1l 425.249 687.915 

2:2s:1l 416.502 694.815 

2:4s:1l 414.847 696.513 

2:6s:1l 415.029 705.172 

2:8s:1l 415.728 700.846 

2:10s:1l 413.814 713.957 

3:2s:1l 413.814 687.079 

3:4s:1l 416.463 693.348 

3:6s:1l 417.460 694.065 

3:8s:1l 418.084 699.099 

3:10s:1l 417.216 700.031 

4:2s:1l 421.667 712.911 

4:4s:1l 411.968 713.906 

4:6s:1l 416.202 722.075 

4:8s:1l 417.214 715.604 

4:10s:1l 418.049 724.093 

5:2s:1l 414.681 729.268 

5:4s:1l 414.592 736.072 

5:6s:1l 411.181 734.991 

5:8s:1l 420.766 735.852 

5:10s:1l 416.562 733.163 

6:2s:1l 425.016 756.339 

6:4s:1l 413.674 761.804 

6:6s:1l 417.525 756.993 

6:8s:1l 413.686 760.932 

6:10s:1l 418.327 767.831 

 

From the above table, the model 3:2s:1l was found to be the 

best one on the basis of minimum values of MAE for 

training=413.814 and testing= 687.079. From this selected 

model we have got the estimated values of residuals and fitted 

values of price of onion obtained by ARFIMA (2,15,2) then 

forecast value of price was obtained through hybrid approach 
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i.e., ARFIMA (2,15,2)-ANN. The goodness of fit measure 

MAE for hybrid ARFIMA-ANN was found to be 497.673 as 

compare to 506.667 ARFIMA (2, 15, 2). Residuals obtained 

by using ARFIMA (2, 15, 2) were applied on the non-linear 

approach support vector machine using radial basis function 

as kernel. Forecast values of price obtained through ARFIMA 

(2.15, 2) were corrected by using the residuals through SVM 

and estimated the value MAE for hybrid ARFIMA-SVM. 

MAE for hybrid ARFIMA-SVM was found to be 460.383 as 

compare to 506.667 of ARFIMA (2, 15, 2) and 497.673 of 

hybrid ARIMA-ANN. Hence the performance of hybrid 

model found to be better than ARFIMA (2, 15, 2) alone. 

For the purpose of forecast value of price through hybrid 

approach, we have got forecast of residuals through the best 

neural model (03:2s:1l) for January to December in the year 

2021. Based on the forecasted value of residuals we found the 

forecast value of price through hybrid approaches and 

presented in Table 6.3.7 along with forecast values by 

ARFIMA (2, 15, 2). 

 
Table 7: Experimental Results of forecast of Price of Onion 

 

Lead 

Period 

Actual 

values of 

Price 

Forecast Price 

by ARFIMA 

(2,0.15,2) 

Forecast Price by 

Hybrid Approach 

using ANN 

% 

Deviation 

Lead 

Period 

Actual 

values of 

Price 

Forecast Price 

by ARFIMA 

(2,0.15,2) 

Forecast Price by 

Hybrid Approach 

using ANN 

% 

Deviation 

1 2400 2264.929 --- --- 61 2100 2659.061 2704.821 36.953 

2 1300 2326.394 --- --- 62 1900 1449.527 1470.102 29.995 

3 850 1324.705 --- --- 63 1900 1717.810 1747.157 8.044 

4 850 935.354 964.187 13.433 64 1450 1870.373 1899.195 0.042 

5 850 1104.960 1128.597 32.776 65 1350 2019.148 2054.711 41.704 

6 925 1274.113 1301.424 40.694 66 1750 1683.638 1714.109 26.971 

7 950 1403.523 1432.682 50.809 67 1750 1582.311 1611.745 7.900 

8 1500 1423.831 1451.364 3.242 68 1675 1963.245 1991.127 13.778 

9 1675 1863.285 1892.033 12.957 69 1600 2005.069 2033.852 21.423 

10 1700 1993.227 2021.194 18.894 70 1600 1893.669 1924.539 20.283 

11 1600 1925.938 1956.416 22.276 71 1475 1785.153 1813.585 13.349 

12 1600 1761.584 1790.116 11.882 72 1575 1773.473 1801.627 22.144 

13 450 1725.523 1753.947 289.76 73 1300 1676.638 1704.779 8.239 

14 450 746.964 771.199 71.377 74 1300 1767.254 1796.630 38.2023 

15 650 739.729 766.892 17.983 75 1300 1549.935 1577.552 21.350 

16 975 1075.632 1097.881 12.603 76 1025 1538.222 1567.303 20.561 

17 775 1458.854 1487.867 91.983 77 1125 1565.332 1592.477 55.363 

18 900 1288.941 1317.080 46.342 78 1250 1345.256 1372.680 22.015 

19 1150 1317.491 1345.701 17.017 79 1250 1427.494 1455.695 16.455 

20 1150 1509.684 1535.445 33.517 80 2900 1568.704 1595.657 27.652 

21 1050 1494.578 1521.907 44.944 81 2650 1574.442 1602.987 44.724 

22 1300 1365.111 1393.221 7.171 82 3300 2967.688 3002.199 13.291 

23 1900 1553.346 1581.511 6.763 83 4200 2765.276 2795.599 15.284 

24 2050 2080.909 2110.684 2.960 84 4500 3086.592 3126.916 25.549 

25 1700 2197.384 2228.765 31.103 85 4250 3763.393 3797.551 15.609 

26 2250 1801.161 1832.802 18.542 86 3300 3937.348 3975.781 6.452 

27 1350 2190.557 2222.586 64.636 87 1600 3573.368 3613.092 9.487 

28 1225 1450.832 1476.691 20.546 88 1275 2645.034 2680.242 67.515 

29 1250 1286.755 1318.768 5.501 89 1275 1177.567 1206.628 5.362 

30 1675 1401.151 1426.669 14.825 90 1600 1038.093 1066.428 16.358 

31 2800 1856.107 1887.015 32.607 91 2175 1379.649 1405.443 12.159 

32 4900 2864.019 2898.863 40.839 92 2250 1889.939 1923.017 11.585 

33 4900 4633.167 4674.096 4.610 93 2250 2456.226 2490.325 10.681 

34 5950 4475.930 4516.126 24.098 94 1725 2469.629 2502.013 11.201 

35 2550 4981.814 5029.085 97.219 95 1725 2329.679 2361.674 36.908 

36 2300 1878.126 1904.657 17.188 96 1725 1785.667 1813.160 5.111 

37 1475 1429.281 1467.444 0.512 97 1350 1745.5 1774.313 2.858 

38 1250 1132.538 1148.597 8.112 98 1150 1818.433 1845.835 36.728 

39 1090 1276.917 1311.272 20.300 99 1150 1549.806 1579.057 37.309 

40 1125 1386.133 1417.281 25.981 100 1150 1387.755 1416.789 23.199 

41 1575 1522.607 1553.458 1.367 101 1400 1431.628 1458.512 26.827 

42 1600 1937.211 1967.203 22.951 102 1650 1482.424 1509.860 7.847 

43 2800 1945.349 1973.943 29.502 103 2050 1715.215 1744.358 5.718 

44 2500 2886.853 2921.054 16.842 104 2700 1930.625 1959.876 4.396 

45 2650 2589.110 2618.337 1.194 105 4750 2234.271 2265.457 16.094 

46 2150 2525.420 2561.491 19.139 106 4600 2735.561 2768.361 41.718 

47 2300 2033.522 2061.189 10.383 107 6900 4422.746 4462.241 2.994 

48 2250 2135.466 2167.584 3.663 108 8850 4204.389 4241.787 38.524 

49 2400 2170.867 2200.748 8.302 109 4000 5840.852 5891.279 33.431 

50 2400 2334.301 2368.229 1.324 110 3050 7403.506 7448.589 86.214 

51 2400 2351.844 2384.470 0.647 111 1800 2948.265 2987.423 2.051 

52 1900 2333.801 2366.809 24.568 112 1850 1619.922 1664.425 7.531 

53 1950 1889.612 1919.884 1.544 113 1850 1015.187 1023.765 44.661 
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54 1950 1918.372 1949.580 0.021 114 1875 1591.442 1626.585 12.076 

55 2400 1988.349 2017.232 15.948 115 2175 2021.071 2055.607 9.632 

56 2500 2413.846 2447.075 2.116 116 2400 2183.829 2219.950 2.066 

57 5700 2517.089 2549.561 55.270 117 4050 2425.788 2458.461 2.435 

58 4100 5204.393 5248.598 28.014 118 6150 2566.275 2596.632 35.885 

59 3300 3833.218 3865.943 17.149 119 4650 3903.088 3939.517 35.943 

60 1975 2264.929 964.186 13.434 120 4150 5660.411 5701.045 22.603 

 
Table 8: MAE of different models for price of onion 

 

Data ARFIMA ANN SVM ARFIMA-ANN ARFIMA-SVM 

Training 446.406 413.814 398.936 446.767 382.648 

Testing 647.276 687.079 640.284 659.587 612.735 

 

From the above table, the value of MAE under training set for 

different models ARFIMA (2,15,2), ANN (03:2s:1l), SVM, 

ARFIMA-ANN and ARFIMA-SVM are found to be 446.406, 

413.814, 398.936, 446.767 & 382.648 respectively, whereas 

the value of MAE under testing set are found to be 647.276, 

687.079, 640.284, 659.587 & 612.735 respectively. Based on 

these results, the model ARFIMA-SVM can be recommended 

for forecasting of price of agricultural commodity because of 

the minimum value of MAE both under training and testing 

set. 

 

4. Conclusion 

 For linear Structure, long memory time series has been 

analysed by using ARFIMA model. In case long memory time 

series, ARFIMA model is not always adequate for linear and 

non-linear dataset. In this context, hybrid methods were 

evolved for both linear and non-linear part which can be an 

effective way to improve forecasting performance. Based on 

the results obtained from this work combines model gives 

better accuracy for forecasting of price of agricultural 

commodity. This approach can be further extended by using 

some other machine learning techniques for varying 

autoregressive and moving average orders so that practical 

validity of the model can be well established. 
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