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Abstract 

We consider the approximate solution to the iterative scheme and its convergence. Variational iteration 

method (VIM) is applied to the general solution form of the iterative approximate solutions and a new 

Variational iteration scheme is derived with an improved and higher rate of convergence to approximate 

solution after some few iterations. The modified method proved to accelerate the convergence to the 

exact solution, where a new correction functional is formulated by Lagrange multiplier. 

 

Keywords: Riccati matrix differential equations, variational iteration, he’s method, approximate solution 

 

Introduction 

The fundamental theories of Riccati equation with applications to engineering science with a 

newer application to economics and finance. Various researchers had made attempts to the 

derivation of solutions to the problems by using the classical approach. However, (see) [24] 

applied Adomian decomposition techniques in solving the nonlinear Riccati by analytical  

approach. Again, the work Tan and Abbasbandy (see) [25] applied the method of Homotopy 

Analysis Method (HAM) to solve quadratic Riccati equation. The works of He (see) [26] 

pioneered the rigorous research in the variational iteration method (see) [27, 28]. 

The application of VIM to some problems, proved to be simple to adopt and efficient in 

solving nonlinear problems. 

Mathematical modelling of real-life problems application in control problems generates 

differential equations, integral equations, system of differential and algebraic equations. 

Solutions to such models are difficult to evaluate analytically, hence, numerical and 

approximate methods seem to be appropriate in solving such problems. Several researchers 

investigate Variational iteration methods (VIM) with other numerical and approximate 

methods, where it’s shown by all that this method provide more accurate results and faster 

than the other methods. 

However, a well-known Riccati Matrix Differential Equation (RMDE) has a vast range of 

applications. Various approaches can be used to solve RMDE with constant coefficients 

analytically. See Nguyen T. et al. The method of Nguyen T., et al. [1] is shown to be robust and 

numerically efficient. 

Recently, an improvements were recorded in the application of VIM, see [2-4]. 

Over the years, there is a wide application of RMDE as a control model in which the analytical 

and theoretical results arising from matrix equation has been established. 

Readers are referred the following papers (see) [5-11] for further application areas. 

VIM is an improved general Lagrange’s multiplier method see [10], which has shown to solve a 

large class of nonlinear problems accurately and efficiently 

The novel contribution in our work is the construction of new variational iteration technique 

which solves the nonlinear terms to be differentiable with respect to the dependent variable 

and its derivatives. An improved of VIM to find an accurate approximate numerical solution to 

the problems of RMDEs. 
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Solution of RMDE by VIM 

Consider a system of Riccati equation defined as stated in [15, 16]. The new proposed  approach iteration by considering a linear 

operator where 𝐼, 𝐽, 𝑎𝑛𝑑 𝐾 𝑎𝑟𝑒 𝑛 × 𝑛 matrices such that 𝐼 𝑎𝑛𝑑 𝐾 are expressed as: 

 

𝑄′ + 𝑄𝐽 + 𝐽𝑇𝑄 − 𝑄𝐼𝑄 + 𝐾(𝑡), 0 ≤ 𝑡 ≤ 1                   (1) 

 

By the application of correction functional with respect to the RMDE using VIM, it’s possible  to generate a sequence of 

iteration:  𝐹𝑜𝑟 𝑛 = 0,1,2, …, 
 

𝑄𝑛+1(𝑡) = 𝑄𝑛(𝑡) + ∫ 𝜆(𝑡, 𝑠)[𝑄𝑛
′ (𝑠) + 𝑄𝑛(𝑠)𝐽 + 𝐽𝑇𝑄𝑛(𝑠) − 𝑄𝑛(𝑠)𝐼𝑄𝑛(𝑠) + 𝐾]𝑑𝑠

𝑡

0
           (2) 

 

𝑤ℎ𝑒𝑟𝑒 𝜆 is the Lagrange multiplier. 

 

Rewrite (1) as 𝑄′(𝑡) + 𝑀(𝑡, 𝑄(𝑡)) = 0                     (3) 

 

Where 𝑀(𝑡, 𝑄(𝑡)) = 𝑄(𝑡)𝐽 + 𝐽𝑇𝑄(𝑡) − 𝑄(𝑡)𝐼𝑄(𝑡) + 𝐾 with the components of the nonlinear  

operator Λ necessary for the derivation of the sequence for the RMDE as: 

 

Λ =
𝑑

𝑑𝑡
∙ + ∙ 𝐽 + 𝐽 ∙𝑇−∙ 𝐼                        (4) 

 

by decomposing the nonlinear operator (4) into two parts of linear and nonlinear respectively given by: Φ 𝑎𝑛𝑑 Π, where   

 

Φ ∙=
𝑑

𝑑𝑡
∙ + ∙ 𝐽 + 𝐽𝑇 and Π ∙= − ∙ I                     (5) 

 

The subsequent estimated/ generated sequence of solutions by the method with respect to the defined operators as in (5) nonlinear 

RMDE is defined by: 

 

Φ𝑄(𝑡) + 𝑇𝑄(𝑡) + 𝐾(𝑡) = 0                      (6) 

 

where 𝑄 is to be evaluated from the sequence.  

The correction functional is expressed as: 

 

𝑄𝑛+1(𝑡) = 𝑄𝑛(𝑡) + ∫ 𝜆(𝑡, 𝑠) [Φ(𝑄𝑛(𝑠) + Π (�̂�(𝑠)) + 𝐾(𝑠)] 𝑑𝑠
𝑡

0
               (7) 

 

Where  �̂� is assumed as a restricted variation with 𝜕�̂�𝑛 = 0.               (8) 

 

Formulation of New VIM for Solving RMDEs 

Consider the linear and nonlinear operators denoted by Φ 𝑎𝑛𝑑 Π respectively. 

Let Φ be a new linear operator introduced and stated as: 

 

Φ(𝑄(𝑡)) + Φ1(𝑄(𝑡)) − Φ1(𝑄(𝑡)) + Π(𝑄(𝑡)) + 𝐾(𝑡)                (9) 

 

(9) is used to construct the correction functional using the linear and nonlinear operator  

 

𝑄 as Φ̂(𝑄(𝑡)) = Φ(𝑄(𝑡)) + Φ1(𝑄(𝑡))                     (10) 

 

And Π̂(𝑄(𝑡)) = −Φ1 (�̂�(𝑡)) + Π(�̂�(𝑡))                    (11) 

 

For any sequence generated for 𝑛 = 0,1,2,3, …, and using Φ̂ 𝑎𝑛𝑑 Π̂ is given as: 

 

𝑄𝑛+1(𝑡) = 𝑄𝑛(𝑡) + ∫ 𝜆(𝑡, 𝑠) [
Φ(𝑄𝑛(𝑠) + Φ1(𝑄𝑛(s) − Φ1(�̂�𝑛(s) +

Π (�̂�𝑛(𝑠)) + 𝐾(𝑠)
] 𝑑𝑠

𝑡

0
              (12) 

 

= 𝑄𝑛(𝑡) + ∫ 𝜆(𝑡, 𝑠)[Φ̂(𝑄𝑛(𝑠) + Π̂(�̂�𝑛(𝑠) + 𝐾(𝑠)]𝑑𝑠
𝑡

0
                 (13) 

 

𝑆𝑒𝑡 Φ1(𝑄) = 𝑄, with the Lagrange multiplier 𝜆 and first variation 𝛿 with respect to 𝑄𝑛(𝑡) and  

𝛿�̂�𝑛(𝑡) = 0 𝑎𝑛𝑑 𝛿𝐾(𝑡) = 0, then 

 

𝛿𝑄𝑛+1(𝑡) = 𝛿𝑄𝑛(𝑡) + ∫ 𝜆(𝑡, 𝑠)[(𝑄𝑛
′ (𝑠)) + 𝑄𝑛(𝑠) + Ψ(𝑠, 𝑄𝑛(𝑠)]𝑑𝑠

𝑡

0
                (14) 
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𝑤ℎ𝑒𝑟𝑒 Ψ(𝑠, 𝑄𝑛(𝑠)) = 𝑄𝑛(𝑠)𝐽 + 𝐽𝑇𝑄𝑛(𝑠) − 𝑄𝑛(𝑠) − 𝑄𝑛(𝑠)𝐼𝑄𝑛(𝑠) + 𝐾             (15) 

 

(15) is the nonlinear term such that Ψ can be reformulated in terms of the restricted variation �̂�𝑛(𝑠),  𝛿�̂�𝑛(𝑠) =
0, 𝑎𝑛𝑑 𝛿Ψ(𝑠, �̂�𝑛(𝑠) = 0. 

By conjunction, (14) is reduced to: 

 

𝛿𝑄𝑛+1(𝑡) = 𝛿𝑄𝑛(𝑡) + ∫ 𝜆(𝑡, 𝑠)𝛿𝑄𝑛
′ (𝑠)𝑑𝑠 + ∫ 𝜆(𝑡, 𝑠)𝛿𝑄𝑛(𝑠)𝑑𝑠 + ∫ 𝜆(𝑡, 𝑠)𝛿Ψ (𝑠, �̂�𝑛(𝑠)) 𝑑𝑠

𝑡

0

𝑡

0

𝑡

0
  

 

= 𝛿𝑄𝑛(𝑡) + ∫ 𝜆(𝑡, 𝑠)𝛿𝑄𝑛
′ (𝑠)𝑑𝑠 + ∫ 𝜆(𝑡, 𝑠)𝛿𝑄𝑛(𝑠)𝑑𝑠

𝑡

0

𝑡

0
                  (16) 

 

By integration by parts on (16), we have: 

 

𝛿𝑄𝑛+1(𝑡) = [1 + 𝜆(𝑡, 𝑠)]𝑄𝑛(𝑠)| 𝑠=𝑡 ∫ [1 − 𝜆′(𝑡, 𝑠)]𝛿𝑄𝑛(𝑠)𝑑𝑠
𝑡

0
               (17) 

 

By setting variation principal 𝛿𝑄𝑛+1(𝑡) = 0, and The Euler-Lagrange result to the following differential equation: 1 + 𝜆′(𝑡, 0) =
0                              (18) 

 

With boundary condition: 1 + 𝜆(𝑡, 𝑠)|𝑠=0 = 0                  (19) 

 

The solution of (18) and (19) is 𝜆(𝑡, 𝑠) = 𝑠 − 𝑡 − 1. 

The iteration scheme is reduced to a sequence after the substitution 𝜆 in to (2) 

 

𝑄𝑛+1(𝑡) = 𝑄𝑛(𝑡) + ∫ 𝜆(𝑠 − 𝑡 − 1)[𝑄𝑛
′ (𝑠) + 𝑄𝑛(𝑠)𝐽 + 𝐽𝑇𝑄𝑛(𝑠) − 𝑄𝑛(𝑠)𝐼𝑄𝑛(𝑠) + 𝐾]𝑑𝑠

𝑡

0
         (20) 

 

Convergence Criteria 

Theorem 1: 𝐿𝑒𝑡 𝑄1, 𝑄2, … . 𝑄𝑛 ∈ 𝐶1[0,1] ∀𝑛 = 0,1, …,  
And suppose 𝐶𝑛(𝑡) = 𝑄𝑛(𝑡) − 𝑄(𝑡), ∀ 0 ≤ 𝑡 ≤ 1 such that the nonlinear operator   Π𝑄 = −𝑄𝐼𝑄 satisfies Lipschitz 

condition with constant ℓ < 2‖𝐽‖, then the sequence {𝑄𝑛(𝑡)}, 𝑛 = 0,1, …, generated by the approximate solutions converge to the 

exact solution 𝑄(𝑡), ∀ 0 ≤ 𝑡 ≤ 1 𝑎𝑠 𝑡 → ∞. 

 

Proof 

Equation (20) is the approximate solution of the iteration of (1), given that 𝑄 is the exact solution. It implies that 𝑄 is the VIM 

which follows that the solution is given by: 

 

𝑄(𝑡) = 𝑄(𝑡) + ∫ (𝑠 − 𝑡 − 1)[𝑄′(𝑠) + 𝑄(𝑠)𝐽 + 𝐽𝑇𝑄(𝑠) − 𝑄(𝑠)𝐼𝑄(𝑠) + 𝐾]𝑑𝑠
𝑡

0
           (21) 

 

Using (20) and (21), we have: 𝑄𝑛+1 − 𝑄(𝑡) = 𝑄𝑛(𝑡) − 𝑄(𝑡) + 

 

∫ (𝑠 − 𝑡 − 1) [

𝑄𝑛
′ (𝑡) − 𝑄′(𝑠) + (𝑄𝑛(𝑠) − 𝑄(𝑠)) ∙ 𝐽

+𝐽𝑇(𝑄𝑛(𝑠) − 𝑄(𝑠)) − 𝑄𝑛(𝑠)𝐼𝑄𝑛(𝑠)

+𝑄(𝑠)𝐼𝑄(𝑠)

] 𝑑𝑠
𝑡

0
                (22) 

 

The error function 𝜖𝑛 of the iteration is given as: 

𝜖𝑛(𝑡) = (𝑄𝑛(𝑡) − 𝑄(𝑡)), and by conjunction, (22) is written in terms of the error function (𝜖𝑛)  as 

 

 𝜖𝑛+1(𝑡) = 𝜖𝑛(𝑡) + ∫ (𝑠 − 𝑡 − 1)𝜖𝑛
′ (𝑠)𝑑𝑠 + ∫ (𝑠 − 𝑡 − 1)𝜖𝑛(𝑠)𝐽𝑑𝑠

𝑡

0

𝑡

0
+ 

 

∫ (𝑠 − 𝑡 − 1)𝐽𝑇𝜖𝑛(𝑠)𝑑𝑠 − ∫ (𝑠 − 𝑡 − 1)[𝑄𝑛(𝑠)𝐼𝑄𝑛(𝑠) − 𝑄(𝑠)𝐼𝑄(𝑠)]𝑑𝑠
𝑡

0

𝑡

0
  

 

Given that 0 ≤ 𝑡, 𝑠 ≤ 1, 𝑡ℎ𝑒𝑛 𝑆𝑢𝑝 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠 − 𝑡 − 1 ≤ 1 

 

⟹  𝜖𝑛+1(𝑡) ≤ 𝜖𝑛(𝑡) + ∫ 𝜖𝑛
′ (𝑠)𝑑𝑠 + ∫ 𝜖𝑛(𝑠)𝐽𝑑𝑠 + ∫ 𝐽𝑇𝜖𝑛(𝑠)𝑑𝑠

𝑡

0

𝑡

0

𝑡

0
− ∫ 𝑄𝑛(𝑠)𝐼𝑄𝑛(𝑠)𝑑𝑠

𝑡

0
   

 

= 𝜖𝑛(𝑡) − 𝜖(𝑡) + 𝜖𝑛(0) + ∫ 𝜖𝑛𝐽𝑑𝑠 + ∫ 𝐽𝑇𝜖𝑛(𝑠)𝑑𝑠
𝑡

0

𝑡

0
    

 

− ∫ [𝑄𝑛(𝑠)𝐼𝑄𝑛(𝑠) − 𝑄(𝑠)𝐼𝑄(𝑠)]𝑑𝑠
𝑡

0
                     (23) 

 

Obviously, 𝜖𝑛 = 𝑄𝑛(0)𝑄(0) = 0 the supremum norm of (23) yields 

 

‖𝜖𝑛+1(𝑡)‖  ≤ ∫ ‖𝜖𝑛(𝑠)‖‖𝐽‖𝑑𝑠 + ∫ ‖𝐽𝑇‖‖𝜖𝑛(𝑠)‖𝑑𝑠 + ∫ ‖𝑄𝑛(𝑠)𝐼𝑄𝑛(𝑠) − 𝑄(𝑠)𝐼𝑄(𝑠)‖𝑑𝑠
𝑡

0

𝑡

0

𝑡

0
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≤ ‖𝐽‖ ∫ ‖𝜖𝑛(𝑠)‖𝑑𝑠 + ‖𝐽𝑇‖ ∫ ‖𝜖𝑛(𝑠)‖𝑑𝑠 + ℓ ∫ ‖𝑄𝑛(𝑠) − 𝑄(𝑠)‖𝑑𝑠
𝑡

0

𝑡

0

𝑡

0
  

 

⇒ ‖𝜖𝑛+1(𝑡)‖ ≤ ‖𝐽‖ ∫ ‖𝜖𝑛(𝑠)‖𝑑𝑠 + ‖𝐽𝑇‖ ∫ ‖𝜖𝑛(𝑠)‖𝑑𝑠 + ℓ ∫ ‖𝜖𝑛(𝑠)‖𝑑𝑠
𝑡

0

𝑡

0

𝑡

0
  

 

=  (2‖𝐽‖ + ℓ) ∫ ‖𝜖𝑛(𝑠)‖𝑑𝑠
𝑡

0
                      (24) 

 

By induction, if = 0, then 

 

‖𝜖1(𝑡)‖  ≤ (2‖𝐽‖ + ℓ) ∫‖𝜖0(𝑠)‖𝑑𝑠

𝑡

0

≤ (2‖𝐽‖ + ℓ)
𝑆𝑢𝑝

𝑠 ∈ [𝑡0, 1]
|𝜖0(𝑠)| ∫ 𝑑𝑠

𝑡

0

 

 

≤ (2‖𝐽‖ + ℓ) ∙ 𝑡 ∙ 𝑆𝑢𝑝|𝜖0(𝑡)| 
 

For 𝑛 = 1, then; 

 

‖𝜖2(𝑡)‖  ≤ (2‖𝐽‖ + ℓ) ∫‖𝜖1(𝑠)‖𝑑𝑠

𝑡

0

≤ (2‖𝐽‖ + ℓ) ∫[(2‖𝐽‖ + ℓ)]

𝑡

0

𝑆𝑢𝑝

𝑠 ∈ [𝑡0, 1]
|𝜖0(𝑠)|𝑑𝑠 

 

= (2‖𝐽‖ + ℓ)2 𝑆𝑢𝑝
𝑠∈[𝑡0,1]

|𝜖0(𝑠)| ∫ 𝑑𝑠
𝑡

0
≤

(2‖𝐽‖)2

2
𝑡2 𝑆𝑢𝑝

𝑠∈[𝑡0,1]
|𝜖0(𝑠)|               (25) 

 

For 𝑛 = 2, then; 

 

‖𝜖3(𝑡)‖  ≤ (2‖𝐽‖ + ℓ) ∫ ‖𝜖2(𝑠)‖𝑑𝑠
𝑡

0
≤ (2‖𝐽‖ + ℓ)

∫ (2‖𝐽‖)2𝑠2𝑑𝑠
𝑡

0

2

𝑆𝑢𝑝
𝑠∈[𝑡0,1]

|𝜖0(𝑠)|  

 

≤ 
(2‖𝐽‖)3

3!
𝑡3 𝑆𝑢𝑝

𝑠∈[𝑡0,1]
|𝜖0(𝑠)|                       (26) 

 

For 𝑛 > 3, 𝑎𝑛𝑑 ∀𝑛, 
 

‖𝜖𝑛(𝑡)‖ ≤
(2‖𝐽‖)𝑛

𝑛!
𝑡𝑛 𝑆𝑢𝑝

𝑠∈[𝑡0,1]
|𝜖0(𝑠)| ≤ 

(2‖𝐽‖)𝑛

𝑛!
𝑡𝑛 𝑆𝑢𝑝

𝑠∈[𝑡0,1]
|𝜖0(𝑠)| ∫ 𝑑𝑠

1

𝑡0
 

 

Since (2‖𝐽‖ + ℓ) < 1 as 𝑛 → ∞, 𝑡ℎ𝑒𝑛 
1

𝑛!
→ 0 which implies that ‖𝜖𝑛(𝑡)‖ → 0 𝑎𝑠 𝑛 → ∞,  implies that the sequence of the 

approximate solution using (13) converge to the exact solution  as required. 

 

Illustration of the new algorithm 

We use example to demonstrate the efficiency of the new algorithm. 

 

Consider the scalar RDE 𝑦′(𝑡) −  1 + 𝑦2(𝑡) − 𝑡2 =  0, 𝑦 =  1, 0 ≤ 𝑡 ≤ 1           (27) 

 

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑦(𝑡) = 𝑡 +
𝑒−𝑡2

1+∫ 𝑒−𝑢2
𝑑𝑢

𝑡
0

  

 

The new scheme of VIM for (27), using iteration defined in (20) with the initialization point  with  𝑦0(𝑡) = 1, then: 

 

𝑦1(𝑡) = 𝑦0(𝑡) + ∫ (𝑠 − 𝑡 − 1)[𝑦0
′ (𝑠) − 1 + 𝑦0

2(𝑠) − 𝑠2]𝑑𝑠 = 1 +
𝑡3

3

𝑡

0
+

𝑡4

12
𝑦2(𝑡)  

 

𝑦2(𝑡) = 𝑦1(𝑡) + ∫(𝑠 − 𝑡 − 1)[𝑦1
′ (𝑠) − 1 + 𝑦1

2(𝑠) − 𝑠2]𝑑𝑠 = 1 +
𝑡3

3

𝑡

0

+
𝑡4

6
−

𝑡5

12
−

𝑡6

180
−

𝑡7

63
− 

 

 
𝑡8

112
+

𝑡9

648
−

𝑡10

12960
  

 

Using the same iteration techniques for 𝑦3(𝑡), 𝑦4(𝑡), 𝑦5(𝑡), … 𝑦9(𝑡), 𝑦10(𝑡). The table below  shows the exact solutions with the 

approximations solutions errors. 

 
Steps of Iterations Exact solution Absolute errors at 𝒚𝟗 Absolute errors at 𝒚𝟏𝟎 

0.1 1.00031731 2.11e-16 2.1105e-16 

0.2 1.002419825 3.39e-13 1.68754e-15 
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0.3 1.007794588 4.8642e-11 3.39817e-11 

0.4 1.017650879 1.6154e-9 1.51098e-10 

0.5 1.032957576 2.5009e-8 2.93965e-9 

0.6 1.05446681 2.4036e-7 3.4122e-7 

0.7 1.082727481 1.6713e-6 2.78951e-7 

0.8 1.118092545 9.2128e-6 1.77355e-6 

0.9 1.160723973 4.2708e-5 9.34812e-4 

1 1.2106 1.7329e-4 4.26587e-5 

 

 
 

Fig 1: 9th Iteration, with exact solutions and absolute erros 
 

 
 

Fig 2: 10th Iterations, with exact solutions and absolute errors 

 

Conclusion 

The solution of Riccati matrix differential equations using the improve VIM were established with a higher rate of convergence to 

the exact solution with minimal error as it tends to zero with successive iterations. 
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