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Abstract 
Time series modelling and forecasting is a vibrant research field that had attracted the interest of the 
scientific community in recent decades. Forecasts of agricultural prices are proposed to be useful for 
farmers, governments, policy makers and agribusiness industries. In this study, an effort is made to 
compare the forecasting capabilities of well-known linear Auto Regressive Integrated Moving Average 
(ARIMA) models, Time Delay Neural Network (TDNN) models and Hybrid (ARIMA-TDNN) models 
using data on monthly wholesale price of four major oilseed crops of India viz. groundnut, soybean, 
sesame and rapeseed and mustard from Jan-2001 to Dec-2021. Finally, the forecasting performance of 
these models are evaluated and compared by using common criteria’s such as; Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and percentage of 
forecasts of correct sign. Results showed that the lowest RMSE and MAE were achieved for the hybrid 
model than the ARIMA and ANN for all the four crops prices with the exception of MAPE which gave 
higher value and the percentage of forecasts of correct sign were achieved highest for the hybrid model 
than others. Key findings revealed that the Hybrid (ARIMA-ANN) model outperformed each individual 
ARIMA and ANN model, for forecasting of four major oilseed crops price. 
 
Keywords: Oilseed crops, time series forecasting, ARIMA, TDNN, hybrid methodology 

 
1. Introduction 
Oilseeds play an important role in Indian agriculture as second major crop (next to cereals) 
occupying 11 per cent of the total cropped area and 9 per cent of the total agricultural 
production. Oilseeds grown area in India was (288.18 lakh ha), production (365.65 lakh 
tonnes) and productivity (1269 kg/ha) during 2020-21. Status in Gujarat area was (33.56 lakh 
ha), production (61.88 lakh tonnes) and productivity (1844 kg/ha) during 2020-21 (Anon., 
2021a) [2]. Agricultural price forecasts are meant to assist farmers, governments, and 
agribusiness industries in making decisions that influence producers, consumers, and 
policymakers. As a result, policymakers, businesspeople, traders and farmers are concerned 
about the ability to reliably estimate the price of oilseeds. There are also few issues, first is the 
domestic production of oilseeds in India is high but cannot satisfied domestic requirement so 
need to import the much more quantity from the rest of countries, and second one is the price 
volatility of oilseeds is also high due to various factors i.e. national market, international 
market and climatic factor. To overcome these issues, we were undertaken this study to 
develop an appropriate model for forecasting agricultural price series that exactly reveals the 
characteristic of series which was needed for the benefits of the traders, policymakers and 
farmers. Because of the importance of oilseeds and edible oils in the country's economy, the 
oilseed crops were purposefully chosen for the study. 
 

1.1 Time Series Forecasting 

Time series data is a data set that contains a succession of observations on a single 

phenomenon through time. Time series data includes daily maximum temperatures, weekly 

interest rates, monthly price statistics, annual crop production and so on. The majority of the 

time, these observations are made at evenly spaced, discrete time intervals.  

Time series forecasting is a type of forecasting in which previous observations of the same 

variable are gathered and evaluated to create a model that describes the underlying  
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relationship. The time series is then extrapolated into the 

future using the model. When there is limited information 

about the underlying data generation process or when there is 

no appropriate explanatory model that ties the prediction 

variable to other explanatory factors, this modelling method is 

highly beneficial.  

Time series models are often divided into two groups in the 

literature: linear and nonlinear models. Linear models are 

simple, traditional, easy and predict only linear patterns of 

time series. Exponential Smoothing, Moving Average and 

ARIMA are some of the linear time series models. Neural 

network models come under the nonlinear category. 

Nonlinear models are complex than linear models but flexible 

and hence used to capture nonlinearity of time series. 

 

1.2 ARIMA Model 

Early attempts to study time series, particularly in the 19th 

century, were generally characterized by the idea of a 

deterministic world. Yule (1927) [14] was the first to introduce 

the concept of stochasticity in time series, proposing that 

every time series can be thought of as the realisation of a 

stochastic process. Since then, a number of time series 

methods have been developed based on this simple concept. 

Slutsky, Walker, Yaglom and Yule were among the first to 

propose the concept of autoregressive (AR) and moving 

average (MA) models. The linear forecasting problem of 

Kolmogorov was formulated and solved using Wold's 

decomposition theorem (1941). Since then, a large body of 

research dealing with parameter estimation, identification, 

model verification and forecasting has arisen in the field of 

time series; see, for example, Newbold (1983) [12] for an early 

survey. 

The publication of Time Series Analysis: Forecasting and 

Control by Box and Jenkins (1970) [4] integrated the existing 

knowledge. Furthermore, the researchers established a three-

stage iterative cycle for time series identification, estimate 

and verification (dubbed the Box–Jenkins technique). The 

book had a huge impact on modern time series analysis and 

forecasting theory and practice. The computer revolutionized 

the way ARIMA models and their extensions were used in 

many fields of science. However, in the mid-1960s, choosing 

a model was mostly a matter of the researcher's opinion; there 

was no technique that could uniquely identify a model. Since 

numerous strategies and procedures, such as Akaike's 

information criterion (AIC), Akaike's final prediction error 

(FPE) and Bayesian information criterion (BIC), have been 

proposed to add mathematical rigour to the search process of 

an ARIMA model. The maximum likelihood method is 

commonly used to estimate the number of parameters in an 

ARIMA model. If a time series is known to follow a 

univariate ARIMA model, forecasts using disaggregated 

observations are at least as good as forecasts using aggregated 

observations in terms of mean square error (MSE). The 

technique emphasises the recent past rather than the distant 

past, hence it is better for short-term prediction than long-

term.  

The fundamental disadvantage of ARIMA, as previously 

stated, is that it assumes a linear pattern in time series and 

hence does not capture nonlinear patterns. Machine learning 

techniques, particularly Artificial Neural Networks (ANN) 

models, are an appealing alternative to classic statistical 

models as it captures an uncertain functional relationship, 

which is difficult to fit by other models (Darbellay and Slama, 

2000) [6]. 

 

1.3 Artificial Neural Networks 

Artificial neural networks (ANNs) can be beneficial for 

nonlinear processes with uncertain functional relationships 

that are difficult to incorporate into a model (Darbellay and 

Slama, 2000) [6]. The major benefit of ANNs is that they give 

a very flexible framework for approximating any sort of data 

nonlinearity. The basic feature of ANNs is that before 

reaching the output variable the inputs and dependent 

variables are filtered via one or more hidden layers, each of 

which contains hidden units or nodes. Hence the ultimate 

output is linked to the intermediate output. 

Both forecasting scholars and practitioners were considered 

ANNs to be an appealing alternative tool. ANNs are valuable 

for forecasting tasks due to a number of distinctive 

characteristics. First, unlike traditional model-based methods, 

ANNs are data-driven self-adaptive methods with a little 

priori assumption about the models for the problem at hand. 

Secondly, ANNs have the ability to generalize. And thirdly, 

Universal functional approximators are ANNs.  

There are two methods that neural networks can simulate time 

series data. The first method is to establish recurrent 

connections between output nodes and the layer above 

(Elman, 1990) [8]. The second option is to add buffers to the 

nodes outputs (Haykin, 1999) [9]. A well-known illustration 

for the later models is the time-delay neural network (TDNN), 

which will be used for this study. Each layer in a TDNN is 

connected to the buffered output of the layer before it, 

allowing it to relate current input to previous values. TDNN is 

commonly used in time series analysis due to its ease of 

implementation (Zhang and Qi, 2005) [16]. 

 

1.4 Combining Forecasts 

For the past three decades, researchers have looked into 

combining, mixing, or pooling quantitative forecasts obtained 

from a variety of time series approaches and data sources. 

There have been numerous suggestions for integrating 

different models. For time series forecasting, a hybrid 

technique combining ARIMA and ANN has been developed 

in the literature.  

The hybrid model's motivation was stemed from the 

following perspectives. To begin with, determining whether a 

time series under study is created from a linear or nonlinear 

underlying process, or whether one method is more effective 

than the other in out-of-sample forecasting performance, is 

typically challenging in reality. As a result, forecasters were 

found it challenging to select the best strategy for their 

particular circumstances. Typically, several different models 

are tested and the one that produces the most accurate results 

is chosen. Due to various potential impacting factors such as 

sampling variance, model uncertainty and structural change, 

the final selected model is not necessarily the best for future 

usage. The difficulty of model selection can be made easier 

with a little more effort by integrating multiple strategies. 

Second, time series in the actual world are rarely pure linear 

or nonlinear. There are often both linear and nonlinear 

patterns in them. If this is the case, neither ARIMA nor ANNs 

can be used to model and forecast time series because the 

ARIMA model can't handle nonlinear relationships and the 

neural network model can't handle both linear and nonlinear 

patterns equally well. As a result, complicated autocorrelation 

structures in data can be more correctly described by merging 

ARIMA and ANN models. Finally, the forecasting literature 

almost uniformly agreed that no single strategy was best in 

every case. This is owing to the fact that real-world problems 

are frequently complicated and no single model will be able to 
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represent all patterns equally well. Many empirical 

investigations demonstrated that mixing multiple different 

models can typically enhance predicting accuracy over a 

single model without the necessity to determine the "real" or 

"best" model. As a result, integrating several models may 

improve forecasting performance by increasing the possibility 

of capturing distinct patterns in the data. Furthermore, the 

integrated model may be more robust in the face of possible 

data structural changes. The analysis of data for this study 

was carried out by using R 4.2.0 software. 

 

2. Methodology  

2.1 Time Series Forecasting 

Visualizing the graph of time series were a key step in data 

exploration. The curve of a time series with a level, trend and 

seasonal component can be visualized to anticipate the time 

series. The time plot is a graph that depicts the variation of 

data over time. 

 

2.2 Stationarity Test 

The time series was said to be stationary if the mean and 

variance of the stochastic time series data remain constant 

across time. It denotes that the data has neither increased nor 

decreased. Along the time axis, the data must be roughly 

horizontal. The Augmented Dickey Fuller (ADF) Test and the 

Phillips-Perron Test (PP test) are two statistical tests for 

determining the stationarity of time series. We were used 

ADF test because it had been utilized for a larger and more 

complicated set of time series models. The ADF statistic used 

in the ADF test is a negative number. The more negative it is, 

the stronger the rejection of the hypothesis that there is a unit 

root. 

 

2.2.1 Augmented Dickey Fuller (ADF) Test 

The ADF test given by Dickey and fuller (1979) [7] consists of 

estimating the following regression equation: 

 

Δ𝑦𝒕 = 𝑎1 + 𝑎2t + 𝛿𝑦𝑡−1 + ∑ biyt−i
h
i=1  + 𝑒𝑡      (1) 

 

Where, Δ𝑦𝒕 = 𝑦𝑡 − 𝑦𝑡−1, 𝑎1, 𝑎2 and 𝑏𝑖 are the parameters of 

regression model, h is length of the lag, 𝛿 = 𝜌 − 1 and –1 ≤ 𝜌 

≤ 1 and 𝜌 is correlation between consecutive variable. 

In ADF test, whether the time series having a unit root or not, 

which means the time series under consideration will be 

stationary or not is tested. 

 

𝐻0: 𝛿 = 0, Time series is non-stationary 

𝐻1: 𝛿 ≠ 0, Time series is stationary 

 

Based on p-value of the test, it was decided that whether the 

data are stationary or not. 

 

2.3 ARIMA Model  

The future value of a variable is supposed to be a linear 

function of numerous prior observations and random errors in 

an autoregressive integrated moving average model. That is, 

the underlying process that generate the time series has the 

form 

 

yt = c + ϕ1yt-1 + ϕ2yt-2 + …+ ϕpyt-p + εt  

- θ1εt-1 - θ2εt-2 - … - θqεt-q         (2) 

 

Where, c is constant term related to mean, yt and εt are the 

actual observation and random error at time period t, 

respectively; ϕi (i = 1, 2, …, p) and θj (j = 1, 2, …, q) are 

model parameters. p and q are integers and often referred to as 

order of the model. Random errors εt are assumed to be NID 

(0, 2). 

Several essential special examples of the ARIMA family of 

models are included in Equation (2). Eq. (2) becomes an AR 

model of order p if q= 0. When p=0, the model is reduced to a 

q-order MA model. One of the most important aspects of 

developing an ARIMA (p, d, q) model was determining the 

right model order (p, d, q), where d is the order of 

differencing. We use the procedure to analyze and forecast 

agricultural prices which had five steps, which were described 

below: 

 

Step 1: Determine whether the time series is stationary 

The series under study must be stationary. The statistical 

features of a stationary time series, such as the mean and 

variance, remain constant over time. As indicated earlier the 

presence of stationarity in the data can be obtained by simply 

plotting the raw data or by plotting the autocorrelation and 

partial autocorrelation function.  

To test stationarity, statistical tests the Dickey-Fuller test was 

used. Some kinds of transformation, such as logarithms or 

square root transformation, could attain stationarity in 

variance. If there is a time trend or seasonality in the series, or 

if there is any nonstationary pattern, the series was 

differenced repeatedly until it becomes stationary. In this 

study, we were applying differencing for making the series 

stationary. 

 

Step 2: Identify the model 

Once the time series has been stabilised, candidate ARIMA 

models were identified. Multiple ARIMA models that closely 

suit the data could be identified after getting the Auto 

Correlation Function (ACF) and Partial Auto Correlation 

Function (PACF). The order of tentative models could be 

determined during the identification process by looking for 

significant autocorrelation and partial autocorrelation 

functions. 

Step 3: Estimate the model parameters 

Step 4: Perform diagnostic checking 

Step 5: Select the most suitable ARIMA model 

 

The most suitable ARIMA model was selected using the 

smallest Akaike Information Criterion (AIC) (Akaike, 1977) 
[1] or Schwarz-Bayesian Criterion (SBC) (Schwarz, 1978) [13]. 

AIC is given as: 

 

AIC = (−2 log L + 2m)         (4) 

 

Where, m= p + q and L is the likelihood function for the 

model. SBC was also used as an alternative to AIC which is 

given as:  

 

SBC = log 2 + (m log n) / n        (5) 

 

Here, 2 is error variance and n is the number of observations. 

If the model was not being adequate, a new tentative model 

was identified and the above steps were repeated. Diagnostic 

information may help to suggest alternative model(s). These 

steps of model building process are typically repeated several 

times until a satisfactory model was finally selected.  

The final model can then be used for prediction purposes. 

Schematic representation of Box-Jenkins methodology 

showed in Figure 1. 
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Fig 1: Schematic representation of Box-Jenkins methodology (Box and Jenkins, 1970) [4] 
 

2.4 Non-Linearity Test 

Before applying neural network model to the residual of the 

time series, the linearity was checked. Here, BDS test (Broock 

et al., 1996) [5] was used for checking non-linearity. BDS test 

statistics, which was calculated as follows: 

First, the m-histories’ of the data x_t^m= 

(x_t,x_(t+1),…,x_(T-m+1)) are calculated for t = 1, 2, …, T-

m for some integer embedding dimension m ≥ 2. To converts 

the series of scalars into a series of vectors of overlapping 

series. Select m value in such a way that the embed time 

series into m-dimensional vectors, by taking each m 

successive points in the series. 

 

 𝑥1
𝑚 = ( 𝑥1, 𝑥2, … , 𝑥𝑚)  

 𝑥2
𝑚 = ( 𝑥2, 𝑥3, … , 𝑥𝑚+1) 

𝑥𝑇−𝑚
𝑚 = (𝑥𝑇−𝑚, 𝑥𝑇−𝑚+1, … , 𝑥𝑇)       (6)  

 

The correlation integral was then computed, which counts the 

proportion of points in m-dimensional hyperspace that are 

within a distance (∈) of each other. 

 

CmT(∈) = 
2

(T−m+1)
 ∑ 𝐼𝑒 (𝑡⟨𝑚 𝑥𝑡

𝑚 − 𝑥𝑠
𝑚)      (7) 

 

Where, Ie is an indicator function that equals one if ‖𝑥𝑡
𝑚 −

𝑥𝑠
𝑚‖ ⟨ ∈ and zero otherwise, and ‖. ‖ denotes the sup. norm. 

BDS show that under the null hypothesis that the observed xt 

are iid, then Cm,I(∈) – CI,T(∈)m with probability one as the 

sample size tends to infinity and ∈ tends to zero. The BDS 

test statistic, which has a limiting standard normal 

distribution, then, follows as: 

 

Wm,I (∈) = 
𝑇1/2𝐶𝑚,𝐼 (∈) −𝐶𝐼,𝑇 (∈)𝑚

𝑚,𝐼 (∈)
        (8) 

 

Where, m,I (∈) will be estimated by 

 

m,I (∈) = 
6 ∑  ℎ𝑒 (∈)𝑡⟨𝑠⟨𝑟  𝑥𝑡

𝑚,𝑥𝑟
𝑚,𝑥𝑠

𝑚

[(T−m+1)(T−m)(T−m−1)]
       (9) 

 

And, 

 

h∈(i,j,k) = 
[ 𝐼∈(𝑖,𝑗) 𝐼∈(𝑗,𝑘) 𝐼∈(𝑖,𝑘) 𝐼∈(𝑘,𝑗) +𝐼∈(𝑗,𝑖) 𝐼∈(𝑖,𝑘)]

3
    (10) 

Two parameters are to be chosen: the value of ∈ (the radius of 

the hyper-sphere which determines whether two points are 

‘close’ or not) and m (the value of the embedding dimension). 

Broock et al. (1996) [5] recommend that ∈ is set to between 

half and three halves the standard deviation of the actual data 

and m is set in line with the number of observations available. 

BDS test is a two-tailed test, we would reject the null 

hypothesis if the BDS test statistic was greater than or less 

than the critical values. Usually, 5% level of significance was 

considered for hypothesis testing and the hypothesis are as 

follows: 

 

H0: Residual is linear 

H1: Residual is nonlinear 

 

2.5 Artificial Neural Network (ANN) Model  

The main disadvantage of the ARIMA model is that it ignores 

the nonlinear component of time series data, which is 

bounded by residuals in nonlinear time series. Machine 

learning techniques were increasingly appropriate in dealing 

with such situations. It is obvious from the literature that the 

hybrid model will perform better than the individual model in 

many circumstances. In hybrid model, a combination of 

ARIMA & ANN was used to predict linear & non-linear 

components of a time series, simultaneously. 

The foremost important thing in model fitting was dividing 

the dataset into training and testing. Most of the researchers 
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followed particular procedures for splitting dataset. It was 

used 80 percent or 90 percent for training and 20 percent or 

10 percent for testing. In this study, last 24 months data (2 

years) were used as testing. From the literature, the fact 

confirmed was that more the number of training observations 

resulted into the better fit of model. 

 

2.5.1 Architecture of ANN 

The ANN model was made up of multiple interconnected 

units called neurons. One input layer, one output layer and 

one or more hidden layers made up a standard ANN model. 

Each layer has nodes, which include input nodes, output 

nodes and hidden nodes. Each layer's output is the weighted 

sum of its inputs, which is a typical feature. 

 

ui = ∑ 𝑤𝑖𝑗 ∗ 𝑜𝑢𝑡𝑝𝑢𝑡𝑗 + 𝑣𝑖𝑗         (11) 

 

Where, 𝑢𝑖 is the value of net input of ith node, 𝑤𝑖𝑗 is the 

weights connecting jth to ith neuron, 𝑣𝑖 denotes bias for ith 

node. Many nonlinear functions are available in literature to 

be used as an activation function by researchers. The two 

most widely used activation functions are identity function 

and sigmoid function. 

 

∅(𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡) = {
1, 𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (12) 

 

g(𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡) = 
1

1+𝑒−𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡        (13) 

 

Where ∅ and g represents identity and logistic activation 

function respectively. 

 

2.6 Time-Delay Neural Network 

The TDNN model with one hidden layer was written as 

I:Hs:Ol, where I is the number of input nodes, H is the 

number of hidden nodes, O is the number of output nodes, l 

indicates the linear transfer function and s denotes the logistic 

sigmoid transfer function. 

For modelling the residual component, a feed-forward Time-

Delay Neural Network (TDNN) with a single hidden layer 

was used as a multi-scale learning tool in this study. The 

general expression for a TDNN with single hidden layer is 

given by (Jha and Sinha, 2012) [10]: 

  

𝑦𝑡+1 = 𝑔 (∑ 𝛼𝑗
𝑞
𝑗=0 𝑓(∑ 𝛽𝑖𝑗𝑦𝑡−𝑖

𝑝
𝑖=0 ))      (14) 

 

Where 𝑦𝑡+1 = ln (𝑦𝑡+1/ 𝑦𝑡) is the predicted value for 𝑦𝑡 at time 

t, 𝛼𝑗 (𝑗=0, 1, 2,., 𝑞) and 𝛽𝑖𝑗 (𝑖=0, 1, 2,., 𝑝; 𝑗=1, 2,., 𝑞) are the 

model parameters, 𝑝 is number of input layer nodes, 𝑞 is the 

number of hidden layer nodes, 𝑓 and 𝑔 denote the activation 

function at hidden and output layer respectively and 𝑦𝑡−𝑖 is the 

ith input (lag) of the model. There is no formula for calculating 

the number of layers and nodes. These parameters are 

discovered using the trial-and-error method, which entails 

running tests using given data.  

Many studies have concluded that a neural network model 

with a single hidden layer was sufficient to accurately mimic 

any complex nonlinear function. The selection of an 

activation function is also a challenging undertaking because 

it is one of the most important factor to consider when 

employing a neural network model.  

A single hidden layer and a single input layer were utilized in 

this study to forecast future values based on previously 

recorded values. The logistic sigmoid transfer function is one 

of the most common activation functions for adding 

nonlinearity to a model. Schematic presentation of TDNN 

with one hidden layer is shown in Figure 2 

 

 
 

Fig 2: Time-Delay Neural Network (TDNN) with one hidden layer 
 

2.7 Hybrid Model (Zhang, 2003) [15] 

Both ARIMA and ANN models have achieved successes in 

their own linear or nonlinear domains. However, none of 

them is a universal model that is suitable for all 

circumstances. The approximation of ARIMA models to 

complex nonlinear problems may not be adequate. On the 

other hand, using ANNs to model linear problems have 

yielded mixed results. For example, when there are outliers or 

multicollinearity in the data, neural networks can significantly 

perform better to attain the linearity of time series. It was also 

established that the performance of neural networks for linear 

regression problems depend on the sample size and noise 

level. So, it is not appropriate to apply ANNs blindly to any 

type of data. The real-world time series data may contain both 

linear and nonlinear components so a hybrid methodology 

that has both linear and nonlinear modelling capabilities can 

be a good strategy for practical application. By combining 

different models, different aspects of the underlying patterns 

may be captured. 

A hybrid model comprising a linear and nonlinear component 

will be employed in this experiment. 

 

yt = Lt + Nt            (15) 

 

Where, yt is the time series data, Lt is linear AR component 

and Nt is the nonlinear component. The ARIMA model is 

applied to the data series to fit the linear part. Then the 
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residuals are modeled using neural networks. Let r be the 

residual of the linear component, then 

  

rt = yt - 𝐿̂t            (16) 

 

Where, 𝐿̂t is the estimate of the linear AR component. For 

nonlinear components, we apply neural networks: 

 

𝑟̂t = f (rt-1, rt-2, …, rt-p)         (17) 

 

Where, p is the number of input delays and f is the nonlinear 

function. 

So the combined forecast will be, 

yt = 𝐿̂t + 𝑟̂t + εt           (18) 

 

Where, εt is the error of the combined model. Since ARIMA 

models cannot model nonlinearity, it is assumed that the 

residuals of the linear component will contain nonlinear 

component which would be modelled using neural networks. 

In this way hybrid model is exploiting the strength of both 

components. To improve overall modelling and forecasting 

performance, it may be useful to model linear and nonlinear 

patterns independently using various models and then 

combine the forecasts. Schematic representation of proposed 

hybrid model is shown in Figure 3. 

 

 
 

Fig 3: Schematic representation of proposed hybrid methodology 

 

2.8 Forecast Evaluation Methods 

Comparisons of the ARIMA and neural network 

models predicting abilities were made by using three criteria 

based on error terms. The first one is root mean square error 

(RMSE), which measures the overall performance of a model. 

The formula for RMSE is given by,  

 

RMSE = √
1

𝑛
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑛

𝑡=1         (19) 

 

Where, yt is the actual value for time t, 𝑦̂𝑡 is the predicted 

value for time t and n is the number of observations used in 

predictions. 

The second criterion is the mean absolute error (MAE). It is a 

measure of average error for each point forecast made by the 

two methods. MAE is given by, 

 

 MAE = 
1

𝑛
 ∑ |𝑦𝑡 − 𝑦̂𝑡|𝑛

𝑡=1          (20) 

 

And the third one is mean absolute percentage error (MAPE), 

MAPE is given by, 

 

MAPE = 
1

ℎ
 ∑

|𝑒𝑡|

𝑦𝑡
 x 100ℎ

𝑡=1         (21) 

 

Where, 𝑦𝑡 is the time series, h is the forecast horizon and 𝑒𝑡 is 

the residuals of the time series 𝑒𝑡 = 𝑦𝑡 − 𝑦̂𝑡. 

 

2.9 Turning Point Evaluation 

Several researchers have suggested that RMSE type measures, 

such as RMSE, MAE, and MAPE, may not be appropriate for 

nonlinear models because they can imply that a nonlinear 

model is less accurate than a linear one even when the former 

is the true data generating process. In effect, a nonlinear 

model may generate more variation in forecast values than a 

linear model, and thus may be overly penalized for large 

magnitude errors. As part of the forecast accuracy, in this 

study we calculated the percentage of forecasts that correctly 

predicted the direction of monthly price change. 

 

3. Empirical results 

3.1 Data  

The data of monthly wholesale price (Rs./q) for four major 

oilseed crops of India viz. groundnut, soybean, sesame and 

rapeseed and mustard were collected from Centre for 

Monitoring Indian Economy Pvt. Ltd. (CMIE) for period Jan. 

2001 to Dec. 2021 (Anon., 2021b) [3]. 

 

3.2 Discussion 

Visualisation of data was the foremost process of time series 

analysis. So the time plot that shows the changes in data over 

time was used. The presence of components such as level 

(Cyclic + Irregular variation), trend and seasonality in dataset 

can also be identified from the time plot. The characteristics 

of price series like stationarity and linearity can also be 

visualized by time plot. The Figure 4(a), (b), (c) & (d) 

presented the time plot of groundnut, soybean, sesame & 

rapeseed and mustard prices. Descriptive statistics of the price 

series used in the experiments are presented in Table 1. 

https://www.mathsjournal.com/


 

~46~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

 
 

Fig 4 a): Time plot for groundnut price 

 

 
 

Fig 4 b): Time plot for soybean price 

 

 
 

Fig 4 c): Time plot for sesame price 

 

 
 

Fig 4 d): Time plot for rapeseed and mustard price 
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Table 1: Descriptive statistics of the price series used in the experiments 
 

Statistics Groundnut Soybean Sesame Rapeseed and mustard 

Observations 252 252 252 252 

Mean (Rs./q) 3344.41 2550.62 5633.92 2878.94 

Median (Rs./q) 3396.95 2298.15 5279.70 2633.70 

Maximum (Rs./q) 5996.90 8389.20 12119.90 7348.40 

Minimum (Rs./q) 1105.00 875.00 1150.00 899.50 

Standard Deviation (Rs./q) 1342.96 1252.02 2697.76 1249.35 

Skewness 0.11 1.22 0.35 0.99 

Kurtosis -1.38 2.79 -0.90 1.44 

 

Augmented Dickey Fuller (ADF) test was used to test 

stationarity of time series. Results presented in Table 2 

revealed the test result of groundnut, soybean, sesame and 

rapeseed and mustard price. Which showed that original 

groundnut price was stationary while for soybean, sesame and 

rapeseed and mustard original price was non-stationary, so we 

apply first differencing to it after differencing it became 

stationary.  

 
Table 2: Stationarity test for price series used in the experiments 

 

Data Series 
ADF 

t-statistic p-value 

Groundnut Prices Original -3.49 0.04 

Soybean Prices 
Original -2.31 0.45 

1st Difference -7.46 <0.01 

Sesame Prices 
Original -2.86 0.21 

1st Difference -6.86 <0.01 

Rapeseed and Mustard prices 
Original -1.49 0.79 

1st Difference -6.37 <0.01 

 

The order of Moving Average (MA) model can be determined 

using ACF plot by visualizing spikes of the plot and the order 

of Auto Regressive (AR) model can be determined by using 

PACF plot. Figure 5(a), (b), (c), (d) showed ACF-PACF plot 

for price series used in the experiments 

 

  
 

Fig 5 a): Groundnut price 

 

  
 

Fig 5 b): Soybean price 
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Fig 5 c): Sesame price 
 

  
 

Fig 5 d): Rapeseed and mustard price 

 

After visualizing ACF-PACF plot and considering stationarity 

test of different price series the possible ARIMA structures 

for all prices presented in Table 3. Based on the lowest AIC 

and BIC values we obtain the best ARIMA model for each 

series. We select ARIMA (1,0,1), ARIMA (3,1,1), ARIMA 

(1,1,1) and ARIMA (1,1,1) model for groundnut, soybean, 

sesame and rapeseed and mustard price, respectively. 

 
Table 3: Forecasting performance of ARIMA (p,d,q) model for different price series 

 

ARIMA Model AIC BIC 

Groundnut 

1,0,1 3413.17 3427.28 

1,0,2 3413.58 3431.22 

1,0,3 3411.31 3432.48 

7,0,1 3408.68 3435.98 

7,0,2 3406.47 3438.29 

7,0,3 3405.99 3439.35 

 Soybean  

1,1,1 3478.21 3488.78 

3,1,1 3465.01 3482.64 

 Sesame  

1,1,1 3911.48 3922.06 

1,1,2 3914.32 3928.42 

2,1,1 3914.33 3928.43 

2,1,2 3913.49 3931.12 

3,1,1 3914.67 3932.29 

3,1,2 3915.38 3936.53 

 Rapeseed and Mustard  

1,1,1 3218.22 3228.79 

1,1,2 3219.17 3233.27 

2,1,1 3217.87 3231.97 

2,1,2 3215.87 3233.49 

 

Table 5, 6, 7 & 8 summarized forecasting performance of 

various TDNN models for groundnut, soybean, sesame and 

rapeseed and mustard, respectively in terms of training and 

testing RMSE, MAE, MAPE. Table 5 and 7 showed that out 

of 24 neural network structures, a neural network model with 

three input nodes and three hidden nodes (3:3s:1l) performs 
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better than other competing models as it had least RMSE, 

MAE and MAPE values with reasonable number of 

parameters for groundnut and sesame prices, respectively. In 

case of soybean prices, a neural network with two input nodes 

and three output nodes (2:3s:1l) performs better and for 

rapeseed and mustard prices, a neural network with four input 

nodes and two hidden nodes (4:2s:1l) performs better due to 

lower RMSE, MAE and MAPE value with fair numbers of 

parameter as presented in Table 6 and 8, respectively. 

 
Table 5: Forecasting performance of TDNN models for groundnut prices 

 

Model No. of Parameters 
RMSE MAE MAPE 

Training Testing Training Testing Training Testing 

1:1s:1l 4 191.07 254.41 118.69 179.67 4.06 3.36 

1:2s:1l 7 190.53 224.62 118.12 173.04 4.03 3.23 

1:3s:1l 10 190.06 200.09 117.96 156.29 4.03 2.92 

1:4s:1l 13 188.67 199.15 117.71 156.01 4.02 2.90 

1:5s:1l 16 187.67 190.76 117.57 145.99 4.01 2.73 

1:6s:1l 19 187.15 180.73 117.37 139.26 4.00 2.60 

2:1s:1l 5 191.48 216.11 119.53 173.99 4.09 3.26 

2:2s:1l 9 170.10 172.65 109.45 121.46 3.83 2.28 

2:3s:1l 13 161.34 127.89 103.47 98.30 3.60 1.83 

2:4s:1l 17 158.83 80.43 101.36 68.20 3.54 1.26 

2:5s:1l 21 157.71 69.43 100.12 51.73 3.52 0.95 

2:6s:1l 25 156.12 54.11 98.01 38.23 3.42 0.69 

3:1s:1l 6 189.48 212.34 119.85 162.92 4.09 3.05 

3:2s:1l 11 160.14 160.13 106.87 110.43 3.69 2.08 

3:3s:1l 16 136.42 74.17 99.56 47.82 3.45 0.90 

3:4s:1l 21 129.66 43.69 93.59 30.95 3.29 0.58 

3:5s:1l 26 122.90 25.16 90.25 14.52 3.16 0.28 

3:6s:1l 31 117.28 9.07 86.90 5.53 3.05 0.10 

4:1s:1l 7 188.97 201.46 119.12 149.98 4.04 2.83 

4:2s:1l 13 160.38 109.84 107.95 81.50 3.69 1.54 

4:3s:1l 19 137.25 47.68 99.92 37.19 3.44 0.69 

4:4s:1l 25 121.68 25.47 90.46 15.98 3.13 0.29 

4:5s:1l 31 115.46 4.60 86.01 2.49 2.96 0.04 

4:6s:1l 37 110.50 1.18 82.92 0.61 2.83 0.01 

 
Table 6: Forecasting performance of TDNN models for soybean prices 

 

Model No. of Parameters 
RMSE MAE MAPE 

Training Testing Training Testing Training Testing 

1:1s:1l 4 160.24 580.44 110.01 341.14 4.98 6.49 

1:2s:1l 7 158.93 494.45 107.87 314.78 4.87 5.98 

1:3s:1l 10 157.42 373.66 107.74 249.15 4.86 4.82 

1:4s:1l 13 156.38 230.48 107.55 184.47 4.85 3.80 

1:5s:1l 16 154.87 201.15 106.95 154.10 4.84 3.20 

1:6s:1l 19 153.42 195.12 105.94 149.52 4.81 3.11 

2:1s:1l 5 151.79 573.74 109.35 333.78 5.07 6.28 

2:2s:1l 9 146.56 339.93 106.18 261.02 4.87 4.94 

2:3s:1l 13 142.08 157.92 103.38 134.68 4.71 2.74 

2:4s:1l 17 139.71 114.96 101.27 90.85 4.59 2.15 

2:5s:1l 21 137.34 106.29 99.57 76.54 4.51 1.91 

2:6s:1l 25 136.63 85.54 98.86 53.48 4.48 1.39 

3:1s:1l 6 151.20 587.19 109.89 301.63 5.11 5.53 

3:2s:1l 11 143.78 212.60 104.47 154.62 4.82 3.09 

3:3s:1l 16 138.34 99.36 101.23 78.47 4.59 1.69 

3:4s:1l 21 135.28 55.68 100.09 32.82 4.54 0.79 

3:5s:1l 26 132.06 46.31 97.43 23.78 4.43 0.59 

3:6s:1l 31 128.92 41.62 94.95 20.08 4.32 0.52 

4:1s:1l 7 151.37 488.11 109.79 276.77 5.08 5.16 

4:2s:1l 13 142.93 212.75 103.82 140.74 4.78 2.75 

4:3s:1l 19 131.45 66.78 98.49 43.24 4.58 1.00 

4:4s:1l 25 124.34 46.23 94.01 23.72 4.33 0.61 

4:5s:1l 31 113.55 46.15 87.38 27.48 4.08 0.62 

4:6s:1l 37 110.93 32.00 85.16 14.58 3.98 0.38 
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Table 7: Forecasting performance of TDNN models for sesame prices 
 

Model No. of Parameters 
RMSE MAE MAPE 

Training Testing Training Testing Training Testing 

1:1s:1l 4 576.88 412.46 329.91 336.37 7.60 3.97 

1:2s:1l 7 570.46 391.93 326.26 320.77 7.48 3.78 

1:3s:1l 10 565.40 381.60 322.75 312.94 7.45 3.70 

1:4s:1l 13 563.16 321.48 322.45 264.38 7.45 3.17 

1:5s:1l 16 560.56 316.07 322.27 255.62 7.43 3.06 

1:6s:1l 19 559.64 284.60 322.04 222.94 7.42 2.69 

2:1s:1l 5 575.56 406.13 336.98 350.38 7.67 4.15 

2:2s:1l 9 510.35 321.04 318.31 256.86 7.18 3.05 

2:3s:1l 13 481.89 245.02 305.66 183.44 6.74 2.19 

2:4s:1l 17 474.74 179.17 299.84 132.40 6.54 1.58 

2:5s:1l 21 469.04 103.78 294.41 73.66 6.42 0.89 

2:6s:1l 25 461.53 87.72 288.96 62.17 6.37 0.75 

3:1s:1l 6 576.37 361.85 339.03 283.93 7.72 3.39 

3:2s:1l 11 535.49 253.34 328.36 189.08 7.52 2.27 

3:3s:1l 16 470.82 153.94 307.34 106.57 6.75 1.29 

3:4s:1l 21 461.43 82.11 294.47 56.14 6.58 0.67 

3:5s:1l 26 450.00 28.75 285.16 20.43 6.36 0.24 

3:6s:1l 31 442.33 14.01 279.06 8.28 6.22 0.10 

4:1s:1l 7 577.29 341.21 339.07 266.23 7.69 3.16 

4:2s:1l 13 514.46 236.82 318.38 184.70 7.24 2.19 

4:3s:1l 19 467.16 110.33 294.81 79.95 6.54 0.94 

4:4s:1l 25 449.13 32.84 281.76 21.66 6.28 0.25 

4:5s:1l 31 432.21 15.49 271.93 10.16 6.06 0.13 

4:6s:1l 37 414.66 6.98 260.75 3.74 5.87 0.04 

 
Table 8: Forecasting performance of TDNN models for rapeseed and mustard prices 

 

Model No. of Parameters 
RMSE MAE MAPE 

Training Testing Training Testing Training Testing 

1:1s:1l 4 142.43 197.86 86.04 158.00 3.81 2.94 

1:2s:1l 7 141.48 180.53 84.54 138.32 3.73 2.58 

1:3s:1l 10 139.31 153.99 84.01 117.92 3.70 2.25 

1:4s:1l 13 137.93 110.52 83.68 87.62 3.69 1.72 

1:5s:1l 16 137.26 91.11 83.35 74.09 3.67 1.48 

1:6s:1l 19 137.42 91.31 83.23 72.49 3.67 1.43 

2:1s:1l 5 136.62 193.28 80.48 143.59 3.58 2.59 

2:2s:1l 9 132.42 153.46 76.97 118.18 3.45 2.25 

2:3s:1l 13 128.16 85.34 73.45 65.27 3.29 1.29 

2:4s:1l 17 125.02 70.71 72.13 57.04 3.23 1.15 

2:5s:1l 21 122.01 53.58 71.08 44.56 3.18 0.88 

2:6s:1l 25 120.77 45.57 70.99 37.71 3.19 0.75 

3:1s:1l 6 131.46 176.11 80.55 139.48 3.54 2.59 

3:2s:1l 11 122.83 95.57 74.83 73.61 3.34 1.34 

3:3s:1l 16 112.48 50.59 66.60 42.99 2.91 0.80 

3:4s:1l 21 109.89 30.27 65.66 23.32 2.84 0.46 

3:5s:1l 26 107.20 14.72 64.29 10.31 2.78 0.20 

3:6s:1l 31 103.96 12.04 63.25 7.79 2.73 0.15 

4:1s:1l 7 131.08 176.81 80.12 139.79 3.55 2.57 

4:2s:1l 13 119.58 66.05 72.46 50.07 3.22 0.95 

4:3s:1l 19 110.67 34.82 66.69 24.21 2.91 0.47 

4:4s:1l 25 101.82 21.38 63.56 15.45 2.71 0.30 

4:5s:1l 31 100.09 15.40 62.54 9.35 2.67 0.19 

4:6s:1l 37 96.83 12.18 60.16 6.77 2.56 0.14 

 

Table 9 shows the result of BDS (Brock, Dechert and 

Scheinkman) nonlinearity test used for best fitted ARIMA 

model residuals. It revealed that null hypothesis (H0: 

Residuals are linear) was rejected as the test result was found 

to be highly significant for the residuals of best fitted ARIMA 

model after considering two and three embedding dimension 

for each price data. 
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Table 9: BDS nonlinearity test for different series 
 

Series 

Embedding dimension 

Conclusion 2 3 

Statistics Probability Statistics Probability 

Groundnut prices 

5.69 <0.001 6.91 <0.001 

Nonlinear 
4.23 <0.001 4.81 <0.001 

3.88 <0.001 4.79 <0.001 

2.96 <0.001 4.19 <0.001 

Soybean prices 

7.00 <0.001 9.52 <0.001 

Nonlinear 
6.45 <0.001 7.59 <0.001 

6.19 <0.001 6.84 <0.001 

4.59 <0.001 5.33 <0.001 

Sesame prices 

6.50 <0.001 6.67 <0.001 

Nonlinear 
7.21 <0.001 6.76 <0.001 

6.27 <0.001 5.54 <0.001 

6.09 <0.001 5.41 <0.001 

Rapeseed and Mustard prices 

6.42 <0.001 8.61 <0.001 

Nonlinear 
6.03 <0.001 6.79 <0.001 

6.05 <0.001 5.39 <0.001 

6.26 <0.001 5.52 <0.001 

 

After considering nonlinearity of the best fitted ARIMA 

model Residuals, fitted with TDNN. Table 10, 11, 12 & 13 

provides the performance of hybrid models for groundnut, 

soybean, sesame and rapeseed and mustard prices, 

respectively in terms of RMSE, MAE and MAPE. Among 

them the best hybrid model with least RMSE, MAE and 

MAPE values and reasonable number of parameters was 

selected. 

Table 10 stated that out of 24 neural network models, a neural 

network model with two input nodes and four hidden nodes 

(2:4s:1l) was best for forecasting of groundnut prices. While 

in case of soybean and rapeseed and mustard, a neural 

network with three input nodes and three hidden nodes 

(3:3s:1l) performs better for forecasting price as revealed 

from Table 11 and 13, respectively. Table 12 showed that a 

neural network model with four input nodes and three hidden 

nodes (4:3s:1l) performs better among all models for sesame 

price forecasting. 

Comparison of forecasting performance of best fitted 

ARIMA, TDNN and Hybrid model in terms of RMSE, MAE 

and MAPE presented in Table 14. Results revealed that 

hybrid model had least RMSE and MAE value then others 

except MAPE, so it stated that hybrid model have better 

forecasting efficiency.  

Several researchers suggested that RMSE, MAE and MAPE 

type measures may not be appropriate for nonlinear models, 

hence as part of forecast accuracy we calculate the percentage 

of forecast that correctly predicted the monthly price change 

which presented in Table 15. 

 
Table 10: Forecasting performance of hybrid models for groundnut prices 

 

Model No. of Parameters 
RMSE MAE MAPE 

Training Testing Training Testing Training Testing 

1:1s:1l 4 181.09 275.79 112.41 223.23 182.07 127.26 

1:2s:1l 7 171.18 257.21 106.58 201.94 207.65 107.31 

1:3s:1l 10 170.31 231.07 105.23 190.62 185.40 107.84 

1:4s:1l 13 169.55 206.14 104.69 168.15 159.37 103.75 

1:5s:1l 16 168.08 178.13 104.12 144.78 148.85 111.32 

1:6s:1l 19 168.39 178.41 103.58 135.71 191.07 117.68 

2:1s:1l 5 178.58 187.85 111.29 142.00 221.68 152.36 

2:2s:1l 9 145.06 145.96 104.35 115.03 224.94 112.07 

2:3s:1l 13 135.31 99.06 97.44 81.99 135.70 73.43 

2:4s:1l 17 132.38 73.70 94.30 47.30 123.94 29.71 

2:5s:1l 21 129.78 60.09 91.81 34.78 254.62 25.23 

2:6s:1l 25 129.19 44.59 90.81 23.97 250.28 13.73 

3:1s:1l 6 175.39 170.52 109.83 120.80 169.27 140.98 

3:2s:1l 11 147.37 120.81 102.15 95.83 138.86 109.05 

3:3s:1l 16 133.85 70.74 95.91 59.18 149.85 57.20 

3:4s:1l 21 127.57 31.29 91.18 26.45 214.21 27.76 

3:5s:1l 26 122.07 10.81 86.29 8.37 153.87 4.28 

3:6s:1l 31 119.01 5.39 85.33 3.73 119.18 3.69 

4:1s:1l 7 172.05 169.98 107.92 114.02 268.48 139.57 

4:2s:1l 13 151.47 102.74 101.16 78.74 144.95 95.98 

4:3s:1l 19 129.46 38.25 93.71 28.69 189.99 35.14 

4:4s:1l 25 123.26 26.77 90.08 18.28 156.71 16.17 

4:5s:1l 31 110.63 5.08 82.11 3.35 217.89 5.11 

4:6s:1l 37 105.66 0.55 77.89 0.29 310.77 0.16 
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Table 11: Forecasting performance of hybrid models for soybean prices 
 

Model No. of Parameters 
RMSE MAE MAPE 

Training Testing Training Testing Training Testing 

1:1s:1l 4 163.91 559.96 115.01 414.86 137.01 98.16 

1:2s:1l 7 163.16 468.78 114.08 321.48 129.92 85.40 

1:3s:1l 10 162.99 403.79 113.95 305.46 128.74 82.45 

1:4s:1l 13 162.28 333.11 113.31 249.05 127.75 82.49 

1:5s:1l 16 161.75 321.71 112.96 238.99 125.66 80.96 

1:6s:1l 19 159.32 327.26 111.96 227.31 125.75 75.21 

2:1s:1l 5 159.58 465.68 112.57 362.89 176.12 117.10 

2:2s:1l 9 154.35 345.79 110.30 263.21 170.02 105.65 

2:3s:1l 13 147.11 192.50 106.62 147.99 167.71 94.65 

2:4s:1l 17 141.77 134.37 104.42 103.99 150.97 75.54 

2:5s:1l 21 137.84 82.58 101.87 61.53 151.11 52.03 

2:6s:1l 25 132.54 40.87 99.12 30.53 145.48 23.99 

3:1s:1l 6 152.77 459.85 111.38 358.63 153.21 100.76 

3:2s:1l 11 145.81 312.84 106.44 243.49 142.51 84.25 

3:3s:1l 16 140.82 126.07 101.83 103.55 137.45 39.13 

3:4s:1l 21 132.38 52.35 97.50 41.73 137.15 18.37 

3:5s:1l 26 127.39 31.86 94.92 25.38 128.27 13.32 

3:6s:1l 31 124.57 3.46 91.55 2.29 135.16 1.75 

4:1s:1l 7 150.66 475.25 109.75 352.45 157.86 80.54 

4:2s:1l 13 139.77 260.14 102.88 194.34 157.01 59.10 

4:3s:1l 19 134.44 103.46 98.13 80.62 145.95 33.25 

4:4s:1l 25 123.84 62.21 90.73 40.89 127.03 15.48 

4:5s:1l 31 116.61 17.73 85.69 9.77 120.99 2.74 

4:6s:1l 37 112.96 3.33 83.60 1.73 125.01 1.11 

 
Table 12: Forecasting performance of hybrid models for sesame prices 

 

Model No. of Parameters 
RMSE MAE MAPE 

Training Testing Training Testing Training Testing 

1:1s:1l 4 540.94 516.37 321.36 406.99 155.82 97.34 

1:2s:1l 7 492.98 392.46 303.46 336.52 144.53 94.29 

1:3s:1l 10 493.29 332.56 299.12 270.60 148.28 82.78 

1:4s:1l 13 470.72 295.29 293.56 242.46 157.21 77.98 

1:5s:1l 16 475.37 278.23 290.64 236.12 159.01 71.35 

1:6s:1l 19 464.01 284.15 286.31 233.91 159.79 74.70 

2:1s:1l 5 547.97 457.78 324.96 339.26 156.43 88.93 

2:2s:1l 9 494.33 353.25 306.93 267.66 144.97 66.30 

2:3s:1l 13 484.44 262.87 294.74 205.28 153.56 57.29 

2:4s:1l 17 459.76 205.85 289.68 162.86 160.12 49.86 

2:5s:1l 21 463.39 134.71 287.92 98.28 166.09 30.08 

2:6s:1l 25 457.96 89.19 281.84 69.21 177.51 22.38 

3:1s:1l 6 548.69 477.53 323.56 378.08 171.82 87.58 

3:2s:1l 11 491.61 293.48 303.29 220.32 156.11 53.94 

3:3s:1l 16 468.81 161.89 289.66 127.31 144.45 38.23 

3:4s:1l 21 454.48 75.02 277.39 57.42 157.93 21.24 

3:5s:1l 26 440.33 29.34 271.34 20.54 173.22 8.07 

3:6s:1l 31 417.85 9.39 259.64 5.76 164.91 1.96 

4:1s:1l 7 563.13 355.53 332.80 296.44 183.59 83.99 

4:2s:1l 13 487.66 275.64 300.82 206.59 165.42 56.44 

4:3s:1l 19 441.88 106.45 274.87 77.59 139.55 26.00 

4:4s:1l 25 407.02 30.03 258.56 22.37 152.28 8.85 

4:5s:1l 31 417.14 3.98 258.43 2.19 148.60 0.94 

4:6s:1l 37 377.02 0.40 238.64 0.29 148.33 0.15 

 
Table 13: Forecasting performance of hybrid models for rapeseed and mustard prices 

 

Model No. of Parameters 
RMSE MAE MAPE 

Training Testing Training Testing Training Testing 

1:1s:1l 4 129.55 189.75 75.41 150.74 121.41 122.20 

1:2s:1l 7 126.39 183.14 73.72 149.57 131.17 116.70 

1:3s:1l 10 124.36 140.50 72.47 109.37 130.71 88.43 

1:4s:1l 13 111.93 136.46 70.04 104.56 125.22 86.32 

1:5s:1l 16 107.07 125.97 69.12 96.50 122.16 79.98 

1:6s:1l 19 110.92 128.48 68.23 100.53 131.08 83.68 

2:1s:1l 5 126.58 178.20 73.49 142.15 123.83 131.60 

2:2s:1l 9 123.09 107.72 71.49 84.98 145.58 71.63 

2:3s:1l 13 112.28 93.48 68.83 71.76 162.86 63.30 
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2:4s:1l 17 100.72 72.24 65.96 58.98 162.29 54.42 

2:5s:1l 21 93.92 48.55 64.65 39.74 156.32 38.45 

2:6s:1l 25 88.42 39.95 62.13 30.50 159.35 31.44 

3:1s:1l 6 124.37 149.31 71.53 122.56 135.21 114.29 

3:2s:1l 11 115.58 101.12 68.64 84.63 150.61 89.65 

3:3s:1l 16 110.51 61.47 67.20 47.73 166.40 38.70 

3:4s:1l 21 89.41 38.17 61.55 25.70 158.52 25.57 

3:5s:1l 26 89.01 25.01 60.03 17.56 160.05 21.32 

3:6s:1l 31 82.04 6.99 57.75 4.42 154.82 6.06 

4:1s:1l 7 124.29 150.24 71.94 118.08 132.12 105.11 

4:2s:1l 13 108.01 94.21 68.41 74.87 131.70 71.83 

4:3s:1l 19 109.97 43.35 64.66 33.55 140.83 33.17 

4:4s:1l 25 93.81 13.58 59.35 9.92 140.86 7.82 

4:5s:1l 31 80.87 4.05 55.86 2.67 127.94 2.46 

4:6s:1l 37 76.38 1.29 53.60 0.79 142.10 0.98 

 
Table 14: Comparison of ARIMA, TDNN and Hybrid model for different series 

 

Series Model 
RMSE MAE MAPE 

Training Testing Training Testing Training Testing 

Groundnut prices 

ARIMA (1,0,1) 206.26 130.01 4.17 

TDNN (3:3s:1l) 136.42 74.17 99.56 47.82 3.45 0.90 

Hybrid (2:4s:1l) 132.38 73.70 94.30 47.30 123.94 29.71 

Soybean prices 

ARIMA (3,1,1) 235.23 146.01 5.64 

TDNN (2:3s:1l) 142.08 157.92 103.38 134.68 4.71 2.74 

Hybrid (3:3s:1l) 140.82 126.07 101.83 103.55 137.45 39.13 

Sesame prices 

ARIMA (1,1,1) 577.59 337.50 6.89 

TDNN (3:3s:1l) 470.82 153.94 307.34 106.57 6.75 1.29 

Hybrid (4:3s:1l) 441.88 106.45 274.87 77.59 139.55 26.00 

Rapeseed and Mustard prices 

ARIMA (1,1,1) 145.09 86.34 3.38 

TDNN (4:2s:1l) 119.58 66.05 72.46 50.07 3.22 0.95 

Hybrid (3:3s:1l) 110.51 61.47 67.20 47.73 166.40 38.70 

 
Table 15: Percentage of forecast of correct sign for different series 

 

Model Percentage 

Groundnut prices 

ARIMA (1,0,1) 37.50% 

TDNN (3:3s:1l) 38.09% 

Hybrid (2:4s:1l) 50.00% 

Soybean prices 

ARIMA (3,1,1) 33.33% 

TDNN (2:3s:1l) 50.00% 

Hybrid (3:3s:1l) 52.38% 

Sesame prices 

ARIMA (1,1,1) 50.00% 

TDNN (3:3s:1l) 52.38% 

Hybrid (4:3s:1l) 55.00% 

Rapeseed and Mustard prices 

ARIMA (1,1,1) 33.33% 

TDNN (4:2s:1l) 65.00% 

Hybrid (3:3s:1l) 66.67% 

 

4. Conclusion 

This study has compared ARIMA, TDNN and Hybrid model 

in terms of modeling and forecasting using monthly wholesale 

price data of four oilseed crops namely groundnut, soybean, 

sesame and rapeseed and mustard. Based on the 

computational experience with four oilseed crops prices, 

results revealed that the hybrid model was superior to the 

ARIMA model and the ANN model. The lowest RMSE and 

MAE were achieved for the hybrid model than the ARIMA 

and ANN for all the four crops prices with the exception of 

MAPE which gave higher value and the percentage of 

forecasts of correct sign were achieved highest for the hybrid 

model than others. 

The combinatorial approach was devised as an effective way 

to improve forecasting performance because of the 

complexity in linear and nonlinear structures. The empirical 

results with four oilseed crops price data sets clearly showed 

that the hybrid model outperformed each individual model. 
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