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Mathematical modelling in food processing: Overview 

 
Ranjeet Singh, Chandan Solanki, Sandeep Dawange and K Bembem 

 
Abstract 

Mathematical modelling plays a vital role in understanding and optimizing various aspects of food 

processing. This review paper aims to provide an overview of the applications of mathematical modelling 

and equations in the field of food processing. It explores the diverse areas of food processing where 

mathematical models have been successfully employed, highlighting their benefits and challenges. 

Additionally, it discusses the significance of mathematical modelling in enhancing food safety, quality, 

and efficiency. This review serves as a valuable resource for researchers, engineers, and professionals 

involved in the food processing industry. 
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Introduction 

Food processing is a diverse field encompassing various operations like heating, cooling, 

mixing, drying, and packaging, all of which require a deep understanding of the underlying 

physical, chemical, and biological processes [1]. Mathematical modelling has emerged as a 

valuable tool in this context, enabling the analysis, optimization, and prediction of these 

intricate processes. Mathematical modelling involves the formulation of mathematical 

equations based on fundamental principles and empirical data to describe and simulate real-

world phenomena [2]. In food processing, mathematical models have been extensively utilized 

to gain insights into heat transfer, mass transfer, fluid flow, reaction kinetics, and microbial 

growth. These models provide a systematic framework for analyzing and optimizing process 

parameters, predicting product quality and safety, and facilitating decision-making across the 

food processing chain [3]. 

Mathematical modelling also plays a significant role in food safety through predictive 

microbiology. Additionally, mathematical models aid in estimating shelf-life, assisting 

manufacturers in optimizing storage conditions and packaging techniques to extend product 

freshness while minimizing waste [4]. Mathematical modelling proves beneficial in resource 

and energy optimization. By analyzing the interplay between process parameters and resource 

utilization, mathematical models assist in minimizing energy consumption, reducing waste 

generation, and optimizing production efficiency [5]. This contributes to the implementation of 

sustainable and environmentally friendly practices within the food processing industry. 

Mathematical modelling also presents challenges such as data availability, accuracy, model 

validation, and computational complexities [6]. However, ongoing advancements in 

computational methods, data-driven modelling, and the integration of machine learning 

techniques offer opportunities to overcome these challenges and further enhance the 

application of mathematical modelling in the field. 

 

Types of mathematical models  

Mathematical models can be broadly classified into different types based on their 

characteristics and the nature of the phenomena they represent. Some common types of 

mathematical models are detailed in Table.1. 
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Table 1: Types of mathematical models in food processing 
 

Type of model Description References 

Empirical 
Models 

Empirical models are based on experimental observations and data. They describe the relationship between 
variables without explicitly considering the underlying physical or mechanistic principles. Empirical models are 
often used when the underlying mechanisms are not well understood or when precise mathematical equations are 

difficult to establish. 

[1, 3, 5] 

Mechanistic 
Models 

Mechanistic models are based on fundamental principles and physical laws governing the system being modelled. 
These models use mathematical equations to represent the relationships between variables and simulate the 

behaviour of the system. 

[1, 6] 

Deterministic 
Models 

Deterministic models assume that the future behaviour of the system can be precisely determined given the initial 
conditions and parameters of the model. These models use a set of mathematical equations to represent the 

relationships between variables and provide a deterministic prediction of system behaviour over time. 

[7, 8] 

Stochastic 
Models 

Stochastic models incorporate randomness or uncertainty into the model's parameters or initial conditions. These 
models take into account the probabilistic nature of the system and use techniques such as probability distributions 

or Monte Carlo simulations to estimate the range of possible outcomes. 

[7, 9] 

Statistical 
Models 

Statistical models are used to analyze and describe relationships between variables based on observed data. 
Statistical models are commonly used in data analysis, regression analysis, and hypothesis testing. 

[10, 11] 

Optimization 
Models 

Optimization models are used to determine the optimal values of decision variables that maximize or minimize an 
objective function while satisfying a set of constraints. These models help in optimizing process parameters, 

resource allocation, or system design. Optimization models use mathematical techniques such as linear 
programming, nonlinear programming, or integer programming. 

[12] 

Simulation 
Models 

Simulation models are used to replicate the behaviour of a real-world system by creating a computer-based model. 
These models incorporate mathematical equations and algorithms to simulate the processes, interactions, and 

dynamics of the system over time. Simulation models are often used to study complex systems, evaluate different 
scenarios, and understand the implications of various decisions. 

[10, 13] 

 
Depending on the specific application and research objectives, 
researchers may utilize a combination of these models or 
develop customized models that suit their needs. 
 
Parameters and variables used in food processing models: 

Food processing models involve various parameters and 
variables that represent the characteristics, conditions, and 
properties of the food system being studied. Common 
parameters and variables used in food processing models are 
detailed in Table 2 below. 

 
Table 2: Parameters and variables used in food processing models 

 

Parameters and variables 

Time: It influences the duration of processing 
operations, microbial growth, and quality changes. 

 
Temperature: It affects heat transfer, microbial 

growth, enzyme activity, and chemical reactions. [1, 3, 5] 

Physical Properties: These 
properties influence the behaviour 
of the food system, such as flow 

characteristics, heat transfer rates, 
and mass transfer rates [1, 3, 5] 

Moisture Content: It affects product 
quality, microbial stability, and texture. 
Moisture content can be represented as a 

variable or a parameter that changes during 
the processing operation. [1, 3, 5] 

pH: It is a measure of acidity or alkalinity and its 
impact on microbial growth, enzyme activity, and 
chemical reactions in food processing that involve 

fermentation, preservation, and other pH-dependent 
processes. [13, 14] 

Mass and Volume: These 
parameters are important for 

calculating mass balances, mixing 
ratios, and determining the 

composition of the final product. [15] 

Concentration: It is commonly used in 
models related to the extraction, diffusion, 
and concentration processes. Concentration 

can be represented as a variable that 
changes over time or space. [15, 16] 

Heat Transfer Coefficients: These coefficients depend 
on factors such as surface area, thermal conductivity, 
and flow conditions. They are essential parameters in 

heat transfer models for processes like thermal 
pasteurization, blanching, and sterilization. [17] 

Reaction Rates: Represented as 
variables or parameters in kinetic 

models for processes like enzymatic 
reactions, Maillard browning, and 

lipid oxidation. [16, 17] 

Microbial Parameters: It is associated 
with microbial growth, survival, and 

inactivation are crucial. These may include 
parameters like microbial growth rates, lag 
times, activation energies, and death rates. 

[18] 

 
The specific parameters and variables employed depend on 
the nature of the process being modelled and the research 

objectives. Table 3 depicts some mathematical modelling in 
food processing. 

 
Table 3: Mathematical modelling in food processing [18 -21, 23, 25] 

 

Mode Area Type of models 

Heat 
Transfer 

Applications of heat transfer models in thermal processing Fourier's Law Model, Newton's Law of Cooling, Stefan-Boltzmann 
Law, Heat Exchanger Models, Computational Fluid Dynamics (CFD) 

Models, Finite Element Method (FEM) Models and Analytical and 
Empirical Models 

Heat conduction, convection, and radiation equations 

Modelling heat transfer in food drying, baking, and 
pasteurization 

Mass 
Transfer 

Diffusion and Fick's laws in modelling mass transfer Fick's Law Model, Stefan-Maxwell Model, Convective Mass Transfer 
Models, Mass Transfer in Porous Media, Mass Transfer in Chemical 

Reaction Models, Computational Fluid Dynamics (CFD) Models, 
Empirical and Semi-Empirical Models. 

Applications of mass transfer models in food drying, freezing, 
and extraction processes 

Fluid Flow 

Equations for fluid flow in pipes, channels, and porous media Eulerian Model, Reynolds-Averaged Navier-Stokes (RANS) Model, 
Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), 

Lattice Boltzmann Method (LBM), Boundary Element Method 
(BEM), Analytical Models 

Modelling fluid flow in food processing operations such as 
mixing, pumping, and filtration. 

Reaction 
Kinetics 

Chemical reaction equations and rate constants Elementary Reaction Models, Rate Laws, Arrhenius Equation, 
Reaction Mechanism Models, Enzyme Kinetics Models, 

Homogeneous and Heterogeneous Reaction Models, Computational 
Reaction Kinetics Models 

Modelling enzymatic reactions, microbial growth, and shelf-
life prediction 
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Mathematical modelling in common unit operations 
Mathematical models play a crucial role in the analysis, 
design, and optimization of various unit operations in food 
processing and other related fields. These models provide 

mathematical representations of the underlying physical 
processes and help in predicting the behaviour of unit 
operations [20, 21, 23], (Table 4).

 
Table 4: Examples of mathematical models used in common unit operations 

 

Unit Operations Mathematical Models Process 

Distillation 

Equilibrium Stage 
Models 

These models divide the distillation column into theoretical equilibrium stages and describe 
the mass and heat transfer between the vapour and liquid phases at each stage. The models 
include material and energy balances, as well as vapour-liquid equilibrium relationships. 

Rigorous Tray-to-Tray 
Models 

These models simulate the distillation column as a series of trays or stages and include 
detailed mass and energy balances, tray efficiencies, and pressure drop calculations. 

Heat Exchangers 

LMTD (Log Mean 
Temperature 

Difference) Method 

This method is used to calculate the heat transfer rate in a heat exchanger with a parallel 
flow, counterflow, or cross-flow arrangement. It is based on the assumption of a constant 

overall heat transfer coefficient and a constant heat capacity rate. 

Effectiveness-NTU 
(Number of Transfer 

Units) Method 

This method is applicable to heat exchangers with complex flow patterns or non-uniform 
temperature profiles. It relates the heat transfer effectiveness to the number of transfer units, 

which represents the heat capacity rate ratio of the two fluid streams. 

Filtration 

Cake Filtration Models 

These models describe the filtration of a suspension through a porous medium, such as a 
filter cake or filter media. They consider variables such as cake thickness, cake resistance, 
pressure drop, and filtration rate, incorporating equations such as Darcy's law and filtration 

resistance equations. 

Filtration Efficiency 
Models 

These models quantify the separation efficiency of a filtration process based on particle size 
distribution, filtration medium characteristics, and operating parameters. They help estimate 

the removal efficiency and predict the filtration performance. 

Fluid Flow 

Bernoulli's Equation 
Bernoulli's equation is used to describe the relationship between fluid pressure, velocity, and 
elevation along a streamline. It is applicable to incompressible flow and is commonly used 

in piping systems, pump calculations, and flow measurements. 

Navier-Stokes 
Equations 

The Navier-Stokes equations represent the fundamental equations of fluid motion and 
describe the conservation of mass, momentum, and energy. These equations, along with 
appropriate boundary conditions and simplifying assumptions, are used in computational 

fluid dynamics (CFD) simulations to analyze complex fluid flow phenomena. 

Mixing 

Perfectly Mixed Model 
This model assumes complete mixing and uniform composition throughout the mixing 

vessel or reactor. It is commonly used for well-agitated systems where the mixing time is 
significantly shorter than the reaction time. 

Residence Time 
Distribution (RTD) 

Models 

RTD models characterize the distribution of residence times of fluid elements in a mixing 
system. These models, such as the ideal stirred tank reactor (CSTR) model or the plug flow 

reactor (PFR) model, provide insights into the extent of mixing and the flow behaviour 
within the system. 

Crystallization 
Population Balance 

Models 

These models describe the crystal size distribution in a crystallization process. They 
incorporate the rates of nucleation, growth, agglomeration, and breakage of crystals, as well 

as mass and energy balances, to predict the crystal size distribution and overall process 
performance. 

 
Predictive Microbiology and Food Safety  
1. Use of mathematical models to predict microbial 

growth and inactivation: Mathematical models play a 
crucial role in predicting microbial growth and 

inactivation in food processing. These models provide 
valuable insights into the behaviour of microorganisms 
under different environmental conditions and help assess 
the effectiveness of control measures. (Table 5) 

 
Table 5: Approaches and mathematical models are used to predict microbial growth and inactivation 

 

Primary Models [20-27] 

Growth Models 

Primary models describe the growth rate of microorganisms as a function of environmental factors such as 
temperature, pH, and water activity. Examples include the exponential, logistic, and Gompertz models. These models 

assume that growth is only influenced by intrinsic factors and do not consider the effects of external stresses or 
inhibitory factors. 

Inactivation 
Models 

Primary models for microbial inactivation describe the decline in microbial populations over time or with exposure to 
a lethal agent, such as heat or antimicrobial treatments. Examples include the first-order, Weibull, and biphasic 

models. These models assume a single population of microorganisms and do not account for factors like microbial 
subpopulations or adaptive responses. 

Secondary Models 

Secondary models build upon primary models by incorporating additional factors that influence microbial growth or 
inactivation. These factors may include the presence of inhibitory compounds, competitive microorganisms, or 

stressors such as high pressure or UV radiation. Secondary models aim to improve the accuracy and applicability of 
predictions by considering more complex scenarios and environmental conditions. 

Response Surface 
Models 

Response surface models (RSM) allow the simultaneous evaluation of multiple environmental factors on microbial 
growth or inactivation. RSM uses statistical techniques to determine the optimal combination of factors that minimizes 

or maximizes microbial populations. This approach is particularly useful for process optimization and designing 
control strategies. 

Predictive 
Microbiology 

Software 

Predictive microbiology software packages, such as ComBase and USDA Pathogen Modeling Program (PMP), 
incorporate various mathematical models and databases to predict microbial growth, inactivation, and the effects of 

different environmental conditions. These tools provide user-friendly interfaces and enable researchers and food 
processors to simulate and predict microbial behaviour in specific food systems 
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2. Risk assessment and decision-making in food safety: 

Risk assessment plays a crucial role in food safety by 

providing a systematic and science-based approach to 

identifying, evaluating, and managing potential hazards 

associated with food products and processes [23-26]. 

(Table. 6).  

 
Table 6: Key steps and considerations in risk assessment and decision-making in food safety 

 

Hazard 

Identification 

The first step in risk assessment is to identify and characterize potential hazards that may be present in the food system. This 

includes biological hazards (e.g., pathogens, toxins), chemical hazards (e.g., pesticides, allergens), and physical hazards (e.g., 

foreign objects). Comprehensive knowledge of potential hazards is essential for risk assessment and subsequent risk 

management strategies. 

Exposure 

Assessment 

Exposure assessment involves estimating the likelihood and level of exposure to hazards by considering various factors such 

as consumption patterns, processing methods, storage conditions, and consumer behaviour. It helps determine the potential 

health risks associated with specific hazards and identifies vulnerable populations that may be at higher risk. 

Hazard 

Characterization 

Hazard characterization involves evaluating the severity of adverse health effects associated with exposure to specific hazards. 

This step includes understanding the dose-response relationship, toxicological data, and epidemiological studies to assess the 

potential health impacts on consumers. 

Risk 

Characterization 

Risk characterization integrates hazard identification, exposure assessment, and hazard characterization to quantify and 

communicate the overall risk to public health. This step involves estimating the likelihood and severity of adverse health 

effects resulting from exposure to specific hazards. Risk characterization helps prioritize risks, set safety standards, and 

establish risk management strategies. 

Risk Management 

Risk management involves the development and implementation of strategies to control or mitigate identified risks. It includes 

regulatory measures, industry practices, quality assurance programs, and other interventions to reduce or eliminate hazards. 

Risk management decisions are based on risk assessment outcomes, societal values, and risk-benefit considerations 

Risk 

Communication 

Effective risk communication is crucial for the transparent and timely dissemination of risk information to various 

stakeholders, including consumers, industry, regulatory agencies, and policymakers. It involves conveying complex scientific 

information in a clear and understandable manner to facilitate informed decision-making and foster trust 

Monitoring and 

Surveillance 

Ongoing monitoring and surveillance are essential for assessing the effectiveness of risk management measures, detecting 

emerging risks, and evaluating changes in food safety practices. Data from surveillance systems, outbreak investigations, and 

laboratory analyses provide valuable insights to update risk assessments and guide decision-making. 

 

Challenges and Future Perspectives 

Challenges 

1. Data Availability and Quality: One of the significant 

challenges in risk assessment and decision-making in 

food safety is the availability and quality of data. 

Accurate and comprehensive data on hazards, exposure 

levels, and health effects are crucial for robust risk 

assessments. However, data may be limited, incomplete, 

or subject to variability, making it challenging to 

accurately quantify risks and make informed decisions. 

2. Emerging Hazards and Complex Systems: The food 

industry is dynamic, with the emergence of new hazards 

and complex production systems. Identifying and 

assessing risks associated with emerging hazards, such as 

new pathogens or novel processing techniques, can be 

challenging. Understanding the interactions between 

different hazards, their cumulative effects, and the impact 

of processing conditions adds complexity to risk 

assessment. 

3. Uncertainty and Variability: Risk assessments involve 

dealing with uncertainty and variability, both inherent in 

the data and the modelling process. Uncertainty arises 

from gaps in knowledge, limitations in data quality, and 

assumptions made during the risk assessment process. 

Addressing uncertainty and variability requires advanced 

statistical methods and sensitivity analysis to assess their 

impact on risk estimates and decision-making. 

4. Globalization and Supply Chains: With the 

globalization of the food supply chain, risks can originate 

from various sources and traverse multiple countries. 

This complexity poses challenges in risk assessment and 

management, as coordinating efforts across jurisdictions 

and ensuring harmonized approaches becomes critical. 

 

Future Perspectives 

1. Advanced Data Collection and Integration: Enhancing 

data collection systems and integrating diverse data 

sources, including genomics, metagenomics, and 

epidemiological data, can improve risk assessments. The 

integration of real-time monitoring systems, advanced 

analytics, and emerging technologies like blockchain can 

enhance data quality, traceability, and rapid response to 

food safety issues. 

2. Predictive Analytics and Modeling: The use of 

advanced predictive analytics and modelling techniques, 

including machine learning and artificial intelligence, can 

improve risk assessments. These techniques can analyze 

large datasets, identify patterns, and predict potential 

risks, allowing for proactive risk management strategies. 

3. One Health Approach: Adopting a One Health 

approach that integrates human, animal, and 

environmental health can enhance the understanding of 

complex foodborne disease dynamics. This approach 

considers the interconnectedness of the food chain, 

zoonotic diseases, and environmental factors, leading to 

more comprehensive risk assessments. 

4. Rapid Diagnostics and Surveillance: Advancements in 

rapid diagnostic technologies and real-time surveillance 

systems can enable early detection and response to 

foodborne hazards. These technologies, including DNA-

based methods and sensor technologies, can improve the 

speed and accuracy of identifying hazards, enabling 

targeted risk management interventions. 

5. Stakeholder Collaboration and Risk Communication: 
Enhancing collaboration and communication between 

stakeholders, including government agencies, industry, 

academia, and consumers, is crucial for effective risk 

assessment and management. Clear and transparent risk 

communication, tailored to different audiences, fosters 

trust, improves compliance, and empowers consumers to 

make informed choices.  

 

Conclusion 

Mathematical modelling and equations have become 

indispensable assets in food processing, allowing for a 

quantitative comprehension of intricate processes and aiding 
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in optimization and decision-making. These models provide 

valuable insights into heat transfer, mass transfer, fluid flow, 

reaction kinetics, and microbial growth. They assist in 

examining various scenarios, optimizing parameters, and 

improving resource efficiency. While challenges like data 

availability and model validation persist, advancements in 

computational methods present opportunities for continued 

progress. Mathematical modelling will remain pivotal in 

ensuring the safety, efficiency, and sustainability of food 

processing practices, thereby shaping the future of the 

industry. 
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