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Abstract 
In recent times, the effectiveness of appropriate time series decomposition techniques has gained large 
acceptance. Among various time series decomposition techniques, singular spectrum analysis (SSA) is a 
highly promising technique. Its successful application has been demonstrated across various contexts, 
showcasing its efficacy in effectively separating and understanding different components within time 
series data. Thus, in this study, we have used SSA and its forecasting method SSA-LRF for modelling 
and forecasting agricultural price series, namely tomato of two markets, i.e., Delhi and Lucknow. 
Further, the results obtained from SSA-LRF are compared with that of the SSA-ARIMA and ARIMA 
models. The comparative analysis was carried out using RMSE, MAPE, and MAE criteria. We report the 
superiority of the SSA-LRF model over others under consideration in terms of the lowest RMSE, MAPE, 
and MAE values. This study has highlighted the importance of decomposition-based forecasting 
techniques such as SSA-LRF for agriculture price series. 
 
Keywords: Agricultural price, decomposition, price forecasting, SSA, ARIMA 
 
1. Introduction 
Precise and reliable forecasts of agricultural commodities price are crucial for achieving a 
balanced supply and demand, ensuring fair remuneration for farmers and affordable prices for 
consumers (Sundaramoorthy et al., 2014) [15]. However, forecasting vegetable prices faces 
significant challenges due to factors like seasonality, perishability, volatility, and non-linear 
characteristics. Various models have been developed to capture the complexity of price series 
(Xiong et al., 2018) [16]. Neural networks were found ineffective at handling seasonal and trend 
variations without data pre-processing (Zhang and Qi, 2005) [9]. The widely recognized and 
commonly utilized approach for forecasting seasonal time series is the seasonal auto-
regressive integrated moving average (SARIMA) model (Box et al., 2015) [3]. Luo et al. 
(2013) [11] employed the SARIMA model to investigate a precise forecasting model for 
cucumber prices, which considers the seasonal effect. They selected (1,0,1)(1,1,1)12 
SARIMA model as it proved to be the most accurate option for short-term vegetable price 
prediction. 
An analysis technique for observed time series may be particularly significant if it is able to 
expose important characteristics of the time series predictability. One such technique is known 
as Singular Spectrum Analysis (SSA). SSA decomposes a time series into interpretable 
components like trends, oscillations, and noise without strict distributional and structural 
assumptions (Golyandina and Zhigljavsky, 2013) [7]. SSA offers various applications, 
including trend identification, smoothing, seasonality extraction, and forecasting (Hassani et 
al., 2007) [8]. 
The flexibility of SSA makes it suitable for non-linear and non-stationary time series analyses, 
as it does not rely on predefined functions like Fourier or wavelet approaches (Beneki et al., 
2012) [2]. SSA has shown superior performance compared to SARIMA and other state space 
models for signal extraction and forecasting in different domains (Yu et al., 2017) [18]. 
Additionally, the SSA-Linear Recurrent Formulae (SSA-LRF) model has been employed 
successfully in hydrological forecasting and other practical applications (Zhang et al., 2011) 
[20].  
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Furthermore, SSA has demonstrated its ability to accurately 
extract and forecast components from various time series, 
including annual precipitation, monthly runoff, and hourly 
water temperature (Marques et al., 2006) [12]. Combining SSA 
with complex seasonality methods, machine learning, and 
auto-regressive models have proven effective in predicting 
Brazil's monthly corn, soybean, and sugar spot prices 
(Palazzi, 2021) [14]. Overall, this study highlights the 
significance of SSA in addressing the challenges posed by 
vegetable price forecasting and emphasizes its potential to 
offer accurate predictions for such complex and non-linear 
time series. 
The subsequent sections of this paper are organized as 
follows: Section 2 provides comprehensive insights into the 
various forecasting models utilized in this study. Section 3 
presents the results and discussion. Ultimately, the paper 
concludes with Section 4. 
 
2. Methodology 
2.1 Singular spectrum analysis (SSA) 
SSA is a non-parametric time-series analysis technique based 
on multivariate statistical concepts. It decomposes a given 
time series into a set of independent additive time series, each 
of which can be classified as trend, periodic or quasi-periodic 
component and residuals. For the implementation of SSA, 
four steps as follows.  
 
First step: Embedding 
The embedding procedure transfers a time series to a 
sequence of multidimensional lagged vectors. The original 
data X = (𝑋𝑋1, 𝑋𝑋𝑁𝑁) is shifted to a trajectory matrix Y = (𝑌𝑌1, 𝑌𝑌𝐿𝐿) 
with L dimensions, where 2 ≤ L ≤ N-1. Each element of the 
matrix Y is defined as 𝑌𝑌𝑖𝑖 =  (𝑥𝑥𝑖𝑖, … , 𝑥𝑥𝑖𝑖+𝐿𝐿−1) and the matrix Y 
is given as follows  
 

 Y = �
X1 X2 ⋯ XK

⋮ ⋱ ⋮
XL XL+1 ⋯ XN

�        (1) 

 
Where K = N − L + 1  
 
Second step: Singular value decomposition (SVD): In this 
step, the matrix Y can be decomposed into 𝑑𝑑 components, 
where d = rank (Y). Through SVD, the Eigen triples (λ𝑖𝑖, 𝑈𝑈𝑖𝑖, 
𝑉𝑉𝑖𝑖) of the matrix Y𝑌𝑌𝑇𝑇  can be obtained in descending order by 
λ𝑖𝑖(λ1≥ · · · ≥λ𝐿𝐿≥ 0).𝑈𝑈𝑖𝑖 denotes the left eigenvector and 𝑉𝑉𝑖𝑖 
denotes the right eigenvector. Therefore, the matrix Y can be 
further rewritten as follows: 
 
Y = 𝑌𝑌1+ 𝑌𝑌2 +. + 𝑌𝑌𝑑𝑑  
 
𝑌𝑌𝑖𝑖 = �𝜆𝜆𝑖𝑖𝑈𝑈𝑖𝑖𝑉𝑉𝑖𝑖𝑇𝑇           (2) 
 
Third step: Grouping 
In this step, r out of d components are selected as the trend 
and seasonality components. Define I = {𝐼𝐼1,., 𝐼𝐼𝑟𝑟} and 𝑌𝑌𝐼𝐼  = 
𝑌𝑌𝐼𝐼1+ 𝑌𝑌𝐼𝐼2 +. + 𝑌𝑌𝐼𝐼𝐼𝐼 , then 𝑌𝑌𝐼𝐼  can represent the trend and 
seasonality component of the data, while the other (𝑑𝑑– 𝑟𝑟) 
components are regarded as the residuals. Where 𝐼𝐼1,., 𝐼𝐼𝑟𝑟  is 
called the Eigen triple grouping. 
 
Fourth step: Diagonal averaging 
In this step, through the Hankelization procedure, the obtained 
group {𝑌𝑌𝐼𝐼1,𝑌𝑌𝐼𝐼2, … ,𝑌𝑌𝐼𝐼𝐼𝐼} are shifted to the time series group 

{𝑋𝑋𝐼𝐼1,𝑋𝑋𝐼𝐼2, … ,𝑋𝑋𝐼𝐼𝐼𝐼}. Then the original time series can be defined 
as follows: 
 
 X = 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+ 𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠+…, + 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟     (3) 
 
2.2 Singular Spectrum Analysis-Linear Recurrent 
Formulae (SSA-LRF) forecasting approach 
In SSA forecast, the model is expressed by a Linear Recurrent 
Formulae (LRF). This LRF applied to the last L -1 terms of 
the initial time series gives a continuation of it. The same idea 
can be applied to a component of the time series. Let 𝑣𝑣2 =
𝜋𝜋12 + 𝜋𝜋22, . +𝜋𝜋𝑟𝑟2, where 𝜋𝜋𝑖𝑖 is the last component of the 
eigenvector 𝑈𝑈𝑖𝑖(𝑖𝑖 = 1,2, . , 𝑟𝑟 < 𝐿𝐿). Moreover, suppose for any 
vector 𝑈𝑈 ∈ 𝑅𝑅𝐿𝐿  denoted by U𝑖𝑖

∇ ∈ 𝑅𝑅𝐿𝐿−1 the vector consisting of 
the first 𝐿𝐿 − 1 components of the vector 𝑈𝑈 and r denotes the 
number of eigenvalues used for reconstruction, we can define 
the coefficient vector 
 
 𝛼𝛼� =  (𝛼𝛼�𝐿𝐿−1, . ,𝛼𝛼�1)` = 1

1−𝑣𝑣2
∑ 𝜋𝜋𝑖𝑖𝑟𝑟
𝑖𝑖=1 𝑈𝑈𝑖𝑖𝛻𝛻      (4)  

 
Considering the above notation, the h-step-ahead out-of-
sample recurrent SSA forecasts (𝑋𝑋�𝑁𝑁+1, . ,𝑋𝑋�𝑁𝑁+ℎ ) can be 
obtained as: 
 

 𝑥𝑥�𝑖𝑖 = �
𝑥𝑥�𝑖𝑖  for 𝑛𝑛 = 1,2, . ,𝑁𝑁 

∑ 𝛼𝛼�𝑖𝑖𝑥𝑥�𝑛𝑛−𝑖𝑖𝐿𝐿−1
𝑖𝑖=1  for 𝑛𝑛 = 𝑁𝑁 + 1, . ,𝑁𝑁 + ℎ�    (5) 

 
Where  𝑥𝑥�1, . ,  𝑥𝑥�𝑁𝑁, are the reconstructed time series as obtained 
from Equation 3 and  𝑥𝑥�𝑁𝑁 , . ,  𝑥𝑥�𝑁𝑁+ℎ, are the estimates for the 
out-of-sample SSA-R forecasts.  
 
2.3 Autoregressive Integrated Moving Average (ARIMA) 
model  
ARIMA models represent a widely used, straightforward 
approach for modelling time series data. The fundamental 
principle behind this modelling strategy is based on the 
assumption of linear correlation among the values of a time 
series variable. In this method, a univariate time series is 
expressed as a function of its own past or lagged values, along 
with random disturbances (Jaiswal et al., 2022) [9]. The 
ARIMA (p, d, q) model, where 𝑝𝑝 and 𝑞𝑞 represent the orders of 
autoregressive (AR) and moving average (MA) components, 
respectively, and 𝑑𝑑 denotes the order of differencing 
(integration), can be expressed as follows: 
 
 𝜑𝜑(𝐵𝐵)Δ𝑑𝑑𝑥𝑥𝑡𝑡 = 𝜃𝜃(𝐵𝐵)𝑢𝑢𝑡𝑡         (6) 
 
𝑥𝑥𝑡𝑡 represents the value of the price series at time t, while 𝑢𝑢𝑡𝑡 is 
the disturbance term at time t, assumed to be randomly and 
identically distributed with a mean of zero and a constant 
variance of 𝜎𝜎2. The backshift operator, denoted by B, is 
defined as 𝐵𝐵𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1. The differencing operator Δ is given 
by, Δ = (1 − 𝐵𝐵), which calculates the difference between 
consecutive values in the series. The polynomials 𝜑𝜑(𝐵𝐵) and 
𝜃𝜃(𝐵𝐵) are both functions of B with degrees p and q, 
respectively. 
 
2.4 Evaluation criteria 
To compare the forecasting performance of the models, three 
indicators including root mean square error (RMSE), mean 
absolute deviation (MAE) and mean absolute percentage error 
(MAPE) have been used. 
Root mean squared error (RMSE):  
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 RMSE = �∑ (𝑥𝑥𝑡𝑡−𝑥𝑥�𝑡𝑡)2𝑛𝑛
𝑡𝑡=1

𝑛𝑛
         (7) 

 
Mean Absolute Percentage Error (MAPE): 
 
 MAPE = 1

𝑛𝑛
∑ �𝑥𝑥𝑡𝑡−𝑥𝑥�𝑡𝑡

𝑥𝑥𝑡𝑡
�𝑛𝑛

𝑡𝑡=1  × 100       (8) 
 
Mean absolute error (MAE) 
 
MAE = 1

𝑛𝑛
∑ |𝑥𝑥𝑡𝑡 − 𝑥𝑥�𝑡𝑡|𝑛𝑛
𝑡𝑡=1          (9) 

 
Where 𝑥𝑥𝑡𝑡  and 𝑥𝑥�𝑡𝑡 are the actual and predicted values, 
respectively, and 𝑛𝑛 is the size of the testing set. 
 
2.5 Diebold-Mariano (DM) test 
In addition to the various accuracy indicators, the Diebold-
Mariano (DM) test (Diebold and Mariano, 2002) [4] is used to 
determine and compare the prediction accuracy among 
competing models. The null hypothesis of the test is that two 
predictions have the same accuracy and therefore, the loss 
differential, (𝑡𝑡) = 𝑓𝑓 (𝑒𝑒1(𝑡𝑡)) − 𝑓𝑓 (𝑒𝑒2(𝑡𝑡)); 𝑡𝑡 = 1, 2, …, 𝑛𝑛 has zero 
expectation, where (𝑒𝑒1(𝑡𝑡)) and (𝑒𝑒2(𝑡𝑡)) are the forecast error 
series obtained from the two models, and 𝑓𝑓(.) is a loss 
function. The DM test statistic is: 
 
 𝑧𝑧𝐷𝐷𝐷𝐷 =
𝑑𝑑�

�𝑉𝑉�𝑑𝑑� 𝑛𝑛�
 ~ 𝑁𝑁(0,1),  where 𝑛𝑛 is the size of the predictions, 𝑑̅𝑑 =

1
𝑛𝑛
∑ 𝑑𝑑𝑡𝑡𝑛𝑛
𝑡𝑡=1 , 𝑉𝑉��𝑑̅𝑑� = 1

𝑛𝑛
�𝛾𝛾0 + 2∑ 𝛾𝛾�𝑘𝑘ℎ−1

𝑘𝑘=1 �, 𝛾𝛾�𝑘𝑘  = 1
𝑛𝑛
�∑ �𝑑𝑑𝑡𝑡 −𝑛𝑛

𝑡𝑡=𝑘𝑘+1

𝑑̅𝑑��𝑑𝑑𝑡𝑡−𝑘𝑘 − 𝑑̅𝑑�� are the sample mean of the loss differential, 
estimate of variance of the mean using h-step forecasts and 
estimate of 𝑘𝑘𝑡𝑡ℎ autocovariance of 𝑑𝑑𝑡𝑡 respectively. 
 
3 Results and Discussion 
3.1 Data description 
This investigation is done on the monthly wholesale price 
(₹/quintal) of the tomato crops from the two major wholesale 
markets of India, namely Delhi and Lucknow markets. The 
price series of the two markets are obtained from the 

Directorate of Marketing and Inspection (DMI), Ministry of 
agriculture and farmer welfare, Government of India. 
(https://agmarknet.gov.in/) from July 2010 to June 2023. 
Table 1 presents the descriptive statistics of the two series 
used in the study, and Fig. 1 shows the time plots of the two 
series. The visualization of the time plots indicates the non-
stationarity and nonlinearity of all two series, however, a 
statistical test for stationarity and linearity are also performed 
to confirm this (Tables 2 and 3). 
 

Table 1: Descriptive statistics of tomato price (₹/quintal) of two 
major markets of India 

 

Statistics Delhi Lucknow 
Mean 1414.90 1630.80 

Maximum 3895.40 4274.50 
Minimum 225.20 403.60 

Standard deviation 754.14 828.54 
Skewness 1.03 0.93 
Kurtosis 3.64 3.31 

Jarque- Bera (𝑝𝑝 −value) 30.72(< 0.001) 23.26(< 0.001) 
 

Table 2: Augmented–Dickey–Fuller (ADF) test results of tomato 
price 

 

Price series ADF Test Conclusion t-statistics 𝒑𝒑 −value 
Delhi -1.78 0.07 Non-stationary Lucknow -1.83 0.06 

 
Table 3: Brock-Dechert-Scheinkman (BDS) test results for tomato 

price 
 

Price 
Series 

Embedding dimension 

Conclusion Epsilon 
2 3 

Statistics 𝒑𝒑 − 
value Statistics 𝒑𝒑 −value 

Delhi 

0.5𝜎𝜎 14.40 < 0.001 16.64 < 0.001 

Non-linear 1.0 𝜎𝜎 11.10 < 0.001 11.70 < 0.001 
1.5𝜎𝜎 8.34 < 0.001 7.97 < 0.001 
2.0 𝜎𝜎 5.27 < 0.001 4.78 < 0.001 

Lucknow 

0.5𝜎𝜎 21.62 < 0.001 12.30 < 0.001 

Non-linear 1.0 𝜎𝜎 18.16 < 0.001 9.72 < 0.001 
1.5𝜎𝜎 24.62 < 0.001 12.13 < 0.001 
2.0 𝜎𝜎 18.94 < 0.001 9.01 < 0.001 

 

 
 

Fig 1: Time plot for monthly tomato price (₹/quintal) of Delhi and Lucknow market 
 

The price series for the markets in Delhi and Lucknow varies 
from ₹ 225.20/quintal to ₹ 3895.40/quintal, and ₹ 
403.60/quintal to ₹ 4274.50/quintal, respectively. Using the 
standard deviation as a crude measure of volatility, it was 
found that the price series for the Delhi and Lucknow markets 

are volatile, with standard deviations of 754.14 and 828.54, 
respectively (Table 1). The price series of two markets are 
leptokurtic and positively skewed, indicating that they are not 
normal, and the Jarque-Bera test further supports this (Jarque 
and Bera, 1980) [10]. Each price series have 156 observations, 
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which are split 144 data points into training and 12 points data 
into testing sets respectively. While the testing set is 
preserved for post-sample prediction, the training set is used 
for model building and in-sample prediction. All the model 
building and statistical analysis were conducted in this study 
using R statistical software, version 4.1.1. 
 
3.2 Choice of parameters and separability  
SSA is a powerful method for decomposing intricate data into 
a few independent and easily understandable components, 
such as trends, oscillations, and residuals. However, its 
success depends heavily on two crucial parameters: the 
window length (L) and the number of eigentriples (r). In 
particular, the appropriate selection of L is crucial to construct 
the trajectory matrix of the time series data accurately. If L is 
too small, closely spaced frequencies may not be 
distinguishable, while an excessively large L value can reduce 
the statistical significance of detected periodicities. Many 
researchers recommend choosing a reasonably large window 
length for time series decomposition to increase 
decomposition detail with longer windows. However, the 
window length should be smaller than half the series length. 
In this investigation, the focus is on analyzing two-price 
series, which exhibit non-stationary, non-linear, and complex 
characteristics. Due to the intricate nature of these series, 
attempting to fully decompose them in a single step is 
difficult. Initially, our attention was directed towards 
extracting the trend component. Given the dynamic nature of 
the trend, this extraction process bears a resemblance to 
smoothing. The parameter r in SSA determines the number of 
eigentriples retained for reconstructing the original time 
series. Selection of r is important as it affects the level of 
smoothing and noise reduction in the reconstructed time 
series. If r is too small, significant information may be lost, 
resulting in an under-smoothed and noisy reconstruction. 

Conversely, an overly large r can lead to an over-smoothed 
reconstruction, causing the loss of important details and 
features in the time series. The parameter r decides the 
numbers of trend, periodic and residuals components. After 
successfully extracting the trend, the remaining data 
constituted the residuals from the first step. The subsequent 
step involved extracting the seasonality component from these 
residuals. To achieve better separability, we determined the 
maximal window length L = 72, ensuring that L ≤ N/2 (N = 
156) and L is divisible by 12 (Golyandina et al., 2001). The 
selection of seasonal components relied on the weighted 
correlation matrix, incorporating various sine waves with 
distinct periods, contingent upon the nature of the price series. 
To accurately identify the desired sine waves, we employed 
scatterplots of eigenvectors and the w-correlation matrix of 
the elementary components. In this study, the initial step 
encompassed the selection of trend components from two 
markets. In the second step, both series have one seasonal 
component and the remaining components in both markets 
were treated as residuals. 
 

Table 4: Forecasting performance of different models of (a) Delhi 
and (b) Lucknow market 

 

Models RMSE MAPE (%) MAE 
ARIMA 908.37 63.30 845.82 

SSA-ARIMA 688.01 49.56 598.44 
SSA-LRF 473.41 27.95 365.76 

 
(b) 

 

Models RMSE MAPE (%) MAE 
ARIMA 1845.11 144.64 1673.02 

SSA-ARIMA 757.17 55.51 669.97 
SSA-LRF 467.03 27.72 391.15 

 

 
(a) 
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(b) 

 

Fig 2: SSA decomposition plots of tomato price series for (a) Delhi, and (b) Lucknow markets 
 

Table 5: Results of Diebold-Mariano (DM) test of tomato price series of Delhi market 
 

Hypothesis DM value 𝒑𝒑 −value Remarks 
H0: The accuracy of both SSA-LRF and SSA- ARIMA is the same. 

H1: The accuracy of SSA-LRF is superior to SSA-ARIMA. -1.88 0.043 The accuracy of SSA-LRF is superior to SSA-ARIMA. 

H0: The accuracy of both SSA-LRF and ARIMA is the same. 
H1: The accuracy of SSA-LRF is superior to ARIMA. -2.67 0.010 The accuracy of SSA-LRF is superior to ARIMA. 

H0: The accuracy of both SSA-ARIMA and ARIMA is the same. 
H1: The accuracy of SSA-ARIMA is superior to ARIMA. -1.90 0.041 

 The accuracy of SSA-ARIMA is superior to ARIMA. 

 
Table 6: Results of Diebold-Mariano (DM) test of tomato price series of Lucknow market 

 

Hypothesis DM value 𝒑𝒑 −value Remarks 
H0: The accuracy of both SSA-LRF and SSA- ARIMA is the same. 

H1: The accuracy of SSA-LRF is superior to SSA-ARIMA. -2.32 0.019 The accuracy of SSA-LRF is superior to SSA-ARIMA. 

H0: The accuracy of both SSA-LRF and ARIMA is the same. 
H1: The accuracy of SSA-LRF is superior to ARIMA. -4.28 <0.001 The accuracy of SSA-LRF is superior to ARIMA. 

H0: The accuracy of both SSA-ARIMA and ARIMA is the same. 
H1: The accuracy of SSA-ARIMA is superior to ARIMA. -4.23 <0.001 The accuracy of SSA-ARIMA is superior to ARIMA. 

 
3.3 Model Implementation and Evaluation  
This study presents the forecasting experiments conducted on 
the tomato price series using the research design described 
earlier. Three accuracy measures and the Diebold-Mariano 
test were used to evaluate the predictive performance of 
different models. Figure 2 displays the outcomes of applying 
the Singular Spectrum Analysis (SSA) technique to the 
decomposition of the two market tomato price series. Each 
original tomato price series was decomposed into trend, 
seasonals, and residual components using SSA. Notably, the 
seasonal component for all tomato price series exhibits a 
consistent periodicity with a 12-month cycle. Subsequently, 
the extracted trend, seasonals, and residual components were 
forecasted using the SSA-LRF method, as discussed in 
Section 2.2. The forecasts for these components were then 
aggregated to generate the final output. The forecasting 
results for 12-month forecasts of RMSE, MAPE, and MAE 

for three models (SSA-LRF, SSA-ARIMA, and ARIMA) are 
presented in Table 4.  
The superior performance of SSA-LRF and SSA-ARIMA 
over ARIMA is attributed to their ability to directly capture 
nonlinearity, high volatility, complexity, and seasonality 
present in the data after the decomposition step. In contrast, 
ARIMA could not directly handle these factors, making data 
pre-processing, such as decomposition via SSA, crucial in 
developing a more accurate forecaster, as demonstrated in the 
proposed SSA-LRF approach. To assess the statistical 
significance of the mentioned models, the DM statistic was 
employed. The results of the DM test (Tables 5 and 6) 
provided evidence that SSA-LRF was the best forecasting 
model among the ones considered in the study. 
 
4. Conclusion  
The results of this study demonstrate the effectiveness of the 
SSA-LRF technique as a forecasting algorithm in the case of 
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tomato price series. The application of SSA successfully 
decomposed the tomato price series into trend, seasonal, and 
residual components. SSA-LRF and SSA-ARIMA forecasting 
models outperformed the traditional ARIMA model due to 
their ability to handle nonlinearity, complexity, and 
seasonality after decomposition. Among these models, SSA-
LRF consistently showed superior predictive performance in 
terms of RMSE, MAPE, and MAE for forecasting tomato 
prices. 
Furthermore, a statistical analysis using the DM test 
confirmed SSA-LRF as the most effective forecasting model 
among the considered model. These findings highlight the 
importance of proper data preprocessing, such as SSA-based 
decomposition, in achieving more accurate predictions for 
tomato prices over the next 12 months. Therefore, the study 
suggests that SSA can be a valuable addition to time series 
analysis and forecasting methodologies for agricultural price 
data, improving the accuracy of predictions and aiding 
decision-making in the agricultural sector. 
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