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Abstract 

Geostatistical methods can be used to estimate spatial variability of soil characteristics and soil nutrients 

in farmer fields. The study aims to know the spatial variability of four micronutrients (Zn, Fe, Cu & Mn) 

in farmer fields of Raichur district and to determine the nutrient status at unsampled locations by creating 

surface maps of soil nutrients for the entire study area. The spatial variability of these soil nutrients was 

assessed using three semivariogram models: exponential, Gaussian, and stable, and relevant surface maps 

for the entire district were created using ordinary kriging to determine the nutrient status at unsampled 

locations. The results showed that the Exponential model provided the greatest fit in all trace elements, 

with a decreased nugget effect and a wide range. The prediction accuracy of krigged maps was evaluated 

using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and goodness of prediction (G), 

and the exponential model was determined to be the best fit to data. The outcomes of this work will assist 

farmers and agricultural planners in predicting micronutrient concentrations in soils using geostatistical 

models. 
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1. Introduction 

In intensive agriculture, a lack of soil micronutrients has a negative impact on crop output. 

Recent Indian studies report extensive deficiency of micronutrients in farms due to regular 

withdrawal of these nutrients through crop uptake (Shukla et al., 2015) [25]. Further, an 

increased use of chemical fertilizers and high yielding crop varieties alongwith increased 

cropping intensity in last three decades, deficiency of micronutrients has become a major 

constraint to production and productivity of rice, wheat and pulses (Behera S.K. et al. 2009) [2]. 

It has been well established that micronutrients in the soil plays a major role in agriculture; 

still Indian farmers are not paying much attention in their applications. Majority of the Indian 

farmers do not have the facility of soil testing for their agriculture fields but the knowledge of 

status of soil in relation to micronutrients content is needed to maintain soil health, plant health 

as well as human health. 

Geostatistical tools are useful to estimate spatial variability of soil properties and soil nutrients 

at field, catchment as well as regional scales (Tesfahunegn et al., 2011) [27]. Geostatistical 

estimation helps in predicting values at unsampled locations by taking into account the spatial 

correlation between sampled points. There is not much information on the regional variability 

of micronutrients in the study area. As a result, the current study was conducted in Raichur 

district of Karnataka, India for spatial estimation of four soil micronutrients viz., Zinc (Zn), 

Iron (Fe), Copper (Cu), and Manganese (Mn) in absence of any soil testing facility to cater the 

needs of framers (Kumar et al., 2011) [14]. 

 

2. Materials and Methods 

2.1. Study area and data collection 

The study was carried out in Raichur district of Karnataka, India. It is situated in the eastern 

part of Karnataka and lies between 150 09’N and 750 46’ E. The climate is semi arid and arid. 

The district has Laterite, Medium Black, Deep Black and Red Loamy soils. The present study 

covers an area of 8,442 sq kms.  
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The average rainfall of the district is 681 mm. 

The data on 532 geo-referenced soil nutrients of farmer’s 

fields were collected asa part of the Soil Health Card scheme 

of Government of India. The collected soil sample data 

contains latitude & longitude of the sample location along 

with micronutrient status viz., Zinc (Zn), Copper (Cu), Iron 

(Fe), & Manganese (Mn) in the soil. The location map of 

study area and sample data points is shown in Figure-1. 

 

 
 

Fig 1: Location map of study are and sample points 

 

2.2 Spatial interpolation method 

To estimate the status of micronutrient content at unsampled 

locations Ordinary Kriging interpolation method was used. 

Kriging method assumes that the distance or direction 

between sample points reflects a spatial correlation which can 

be used to explain variation in the surface. Kriging goes 

through two step process viz., creation of variograms and 

prediction of unknown values. Before application of ordinary 

kriging interpolation, semivariogram analyses were carried to 

determines the interpolation function (Goovaerts, 1998) [8]. 

Semivariogram depicts the spatial autocorrelation of the 

measured sample points. In this study, three Semivariogram 

models viz., Linear, Exponential and Guassian were evaluated 

to select the best fit with the data. The 532 geo-referenced soil 

sample data were analyzed using ArcGIS 10.4 package to 

define the semivariograms. The general equation of ordinary 

kriging is given below (1) 

 

𝑍̂(𝑆0) =  ∑ λ𝑖
𝑁
𝑖=1 𝑍(𝑆𝑖) (1) 

 

where, Z(si) = the measured value at the ith location, λi = an 

unknown weight for the measured value at the ith location, s0 

= the prediction location, N = the number of measured values 

(Eldrandaly, 2011) [6] 

The semivariograms were calculated for the analysis of the 

spatial variability of micronutrients by using the following 

equation (2) 

 

𝑦(ℎ) =  
1

2𝑁(ℎ)
 ∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2𝑁(ℎ)

𝑖=1   (2) 

 

where y(h) is a experimental semivarince, N(h) is the number 

of pairs of measured values, Z (Xi) and Z (Xi+h) are the 

values of regionalized variable at location Xi and Xi+h 

respectively separated by a vector (h) (Dey et al. 2017) [4] 

In this study, three semivariogram functions viz., Exponential, 

Gaussian & stable were evaluated to select the best fit with 

the data and the equations of these semivariograms functions 

were given below (Batistella et al. 2014) [1] 

 

A. Exponential Semivariogram model 

γ(h) =  co + C1 {1 − exp (
−h

a
)}  (3) 

 

B. Gaussian Semivariogram model 

γ(h) =  co + C1 {1 − exp (−
h2

a2)}  (4) 

 

C. Stable Semivariogram 

γ(h) =  co + C1 {1 − exp (−3 (
h

a
)

θ

)} (5) 

 

Where, C0 is the nugget, C1 is the partial sill, and ‘a’ is the 

range of spatial dependence to reach the sill (C0 + C1), 0<θ<2 

 

The spatial dependence ratio (or nugget/sill ratio), 

i.e. C0/(C0 + C1) and the range are the parameters which 

characterize the spatial structure of a soil property. The range 

defines the distance over which the soil property values are 

correlated with each other. A low value of spatial dependence 

ratio (also called as nugget effect) and a high range generally 

indicates that high precision of the property can be obtained 

by kriging. The nugget/sill ratio was used as the criterion to 

classify the spatial dependence of variables. Ratio values 

lower than or equal to 0.25 were considered to have strong 

spatial dependence, whereas values between 0.25 and 0.75 

indicate moderate dependence and those greater than 0.75 

show weak spatial dependence (Cambardella et al., 1994). 

 

2.3. Prediction accuracy of spatial interpolation maps 

The accuracy of the soil maps were evaluated through a cross-

validation by using three evaluation indices (Dey et al., 2017) 

[4] were used in this study viz., mean absolute error (MAE), 

root mean square error (RMSE), and goodness of prediction 

(G). The MAE, MSE, and RMSE measure the accuracy of 
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prediction, whereas (G) measures the effectiveness of 

prediction. The mathematical equations for the above 

measures are given below 

 

𝑀𝐴𝐸 =  
∑ |𝑍(𝑥𝑖,𝑦𝑖)−𝑍∗(𝑥𝑖,𝑦𝑖)|𝑛

𝑖=1

𝑛
  (6) 

 

𝑀𝑆𝐸 =
∑ [𝑍(𝑥𝑖,𝑦𝑖)−𝑍∗(𝑥𝑖,𝑦𝑖)]2𝑛

𝑖=1

𝑛
  (7) 

 

𝑅𝑀𝑆𝐸 =  √
∑ [𝑍(𝑥𝑖,𝑦𝑖)−𝑍∗(𝑥𝑖,𝑦𝑖)]2𝑛

𝑖=1

𝑛
  (8) 

 

𝐺 =  [1 − 
∑ [𝑍(𝑥𝑖,𝑦𝑖)−𝑍∗(𝑥𝑖,𝑦𝑖)]2𝑛

𝑖=1

∑ [𝑍(𝑥𝑖,𝑦𝑖)− 𝑍̅]2𝑛
𝑖=1

]  𝑋 100  (9) 

 

Where, n is the number of observations, z (xi, yi) is the 

observed soil parameter, z*(xi, yi) is the estimated soil 

parameter, (xi, yi) are sampling coordinates and 𝑍̅ is the mean 

of observed values.  

RMSE provides a measure of the error size, but is sensitive to 

outliers as it places a lot of weight on large errors. MSE 

suffers the same drawbacks as RMSE. Whereas MAE is less 

sensitive to extreme values and indicates the extent to which 

the estimate can be in error. In this study the comparison of 

performance between interpolations was achieved by using 

MAE and RMSE, whereas (G) measures the effectiveness of 

prediction. 

 

3. Results & Discussion 

The descriptive statistics viz., minimum, maximum, mean, 

standard deviation (SD), coefficient of variation (CV), 

skewness and kurtosis values for each analyzed soil property 

(11 soil parameters) were computed and depicted in table 1. It 

clearly indicates that there is more variability in soil 

micronutrients over space in the study area. The variability 

observed in the nutrient concentrations was largely due to 

variation in soil parent material, rainfall and soil 

management (Li et al., 2008). The frequency distribution of 

soil samples in difference concentration for Zinc (A), Iron 

(B), Copper (C) & Manganese (D) are shown in Figure-2. 

 
Table 1: Statistical summary of micronutrients in soils of Raichur District 

 

Micronutrient Minimum Maximum Mean SD CV% Skewness Kurtosis 

Zn (mg/kg) 0.69 9.47 2.94 1.71 58.16 1.22 1.14 

Fe (mg/kg) 0.59 10.13 5.59 2.35 42.04 -0.19 -0.94 

Cu (mg/kg) 0.49 10.93 4.42 2.30 52.04 0.36 -0.68 

Mn (mg/kg) 0.86 10.45 5.68 2.51 44.19 -0.01 -1.10 

 

  
 

  
 

Fig 2: Frequency distribution showing percent soil samples in difference concentration for Zinc (A), Iron (B), Copper (C) & Manganese (D). 

 

In this study, Ordinary kriging is applied to the chosen dataset 

for all the three Semivariogram models viz., Exponential, 

Gaussian and stable for each micronutrient (Zn, Fe, Cu & Mn) 

and the results are shown in table 2. The graph of these 

semivariogram models for each micronutrient (Zn, Fe, Cu & 

Mn) are shown in Figure-3. 

  

(A) 

 

(B) 

(C) (D) 
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Table 2: Semivariogram models for Soil micronutrients 
 

Micronutrient Model parameters Stable Exponential Gaussian 

Zinc 

Spatial Dependence Ratio (N/S) 70.05 14.30 18.26 

Spatial dependence level Weak Strong Strong 

Range (km) 35.45 56.26 31.78 

Iron 

Spatial Dependence Ratio (N/S) 23.82 9.01 26.22 

Spatial dependence level Strong Strong Moderate 

Range (km) 32.77 46.31 30.70 

Copper 

Spatial Dependence Ratio (N/S) 25.36 16.34 27.44 

Spatial dependence level Moderate Strong Moderate 

Range (km) 34.01 38.96 31.77 

Manganese 

Spatial Dependence Ratio (N/S) 25.35 10.01 24.97 

Spatial dependence level Moderate Strong Strong 

Range (km) 22.71 50.49 32.65 

 

Semivariogram depicts the spatial autocorrelation of the 

measured sample points. The distance where the model first 

flattens is known as the range. Sample locations separated by 

distances closer than the range are spatially auto correlated, 

whereas locations farther apart than the range are not. The 

value at which the semivariogram model attains the range (the 

value on the y-axis) is called the sill. The value at which line 

touch y-axis is called nugget. Variance explained by spatial 

autocorrelation – partial sill. 

Low value of RMSE, N/S ratio and high range indicates 

higher precision of soil micronutrient estimation by the 

semivariogram model. The range information in the 

semivariogram serves as a reference in future soil sampling 

strategies. The sample interval should be less than half the 

range of the semivariogram (Kerry and Oliver, 2004) [10]. The 

findings (Table-2) of three semivariogram models, Stable, 

Exponential, and Gaussian, show that the Exponential model 

had the best fit in all trace elements, with a lower nugget 

effect and higher range values than Stable and Gaussian. 

Surface maps for all trace elements (Zn, Fe, Cu, and Mn) 

were generated for the entire district from these models using 

kriging interpolation, which could be used as a guide for 

precise and site-specific micronutrient management as well as 

to know the status of nutrient status at unsampled locations in 

the study region. 

The prediction accuracy of the interpolation technique was 

assessed using three evaluation indices: mean absolute error 

(MAE), root mean square error (RMSE), and quality of 

prediction (G). The study discovered that the prediction 

accuracy outcomes of the semivariogram models under 

consideration for soil nutrient quantification (Table-3). 
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Fig 3: Semivariogram models for Zinc (I), Iron (II), Copper (III) and Manganese (IV) 
 

 
 

Fig 4: Spatial Interpolation map of Zinc over Raichur District 
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Fig 5: Spatial Interpolation map of Iron over Raichur District 
 

 
 

Fig 6: Spatial Interpolation map of Copper over Raichur District 
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Fig 7: Spatial Interpolation map of Manganese over Raichur District 
 

4. Conclusion 

Geostatistical approaches can be used to assess the spatial 

variability of soil properties and nutrients at the field, 

catchment, and regional scales. The investigation intends to 

identify the spatial variability of four micronutrients (Zn, Fe, 

Cu, and Mn) in farmer fields and the nutrient status at 

unsampled places by constructing surface maps of soil 

nutrients for the entire study area. To determine the 

micronutrient status, three semivariogram models were used: 

exponential, Gaussian, and stable, and appropriate surface 

maps were produced for the entire district using ordinary 

kriging. The results revealed that the Exponential model 

provided the best fit in all trace elements, with a lower nugget 

effect and a wide range. The semivariogram's range 

information will be used as a reference in future soil sampling 

procedures. The sample interval should be less than half the 

semivariogram's range. This research will help farmers and 

agricultural planners to predict micronutrient concentrations 

in soils using geostatistical models. 
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