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Abstract 

In this paper, seven tests for normality of datasets that are based on entropy estimators are presented. The 

type-I-error rates and the powers of the statistics are compared through extensive simulation studies at a 

sample size of n = 10. The alternative distributions used in the comparative study are categorized into 5 

according to symmetry and support. It is discovered that all the tests considered have good control over 

type-I-error and that no test is universally the best among them. 

 

Keywords: Empirical critical value of a test, entropy estimator, power of a test, test for normality, type-I-

error rate 

 

Introduction 

Goodness-of-fit to the normal distribution of datasets has been tested using different 

techniques in the literature. These techniques have been developed using different 

characterizations of the normal distribution and some transforms of the normal distribution. 

Some of such characterizations include quantile function, distribution function, moment 

generating function, characteristic function, Laplace transform, entropy function, skewness 

and kurtosis. As a result, tests that are developed using a particular characterization are often 

regarded as tests belonging to a class. 

One of the important classes of tests for normality is the class of tests based on the entropy 

estimators. Suppose a random variable X follows a distribution 
( )F x

 with probability density 

function
( )f x

. The entropy of the random variable, denoted by 
( )H f

, is defined by 

Shannon (1948) [9] as: 

 ( ) ( ) log ( )H f f x f x dx



−

= − 
             (1) 

 

Several estimators of (1) have been proposed in the literature. Such estimators include Vasicek 

(1976) [11], van Es (1992) [10], Ebrahimi et al. (1994) [5], Correa (1995) [3], Yokota and Shiga 

(2004) [13], Alizadeh Noughabi and Arghami (2010) [1], Zamanzade and Arghami (2011) [14], 

Kohansal and Rezakhah (2016) [7], Bitaraf et al. (2017) [2] and Madukaife (2023) [8]. The 

estimators are obtained using different nonparametric methods, thereby leaving the estimators 

as biased. Some of the nonparametric methods include kernel density estimation, window size 

spacing, nearest neighbor technique and quantile density estimation of particular interest are 

the estimators based on window size (m) spacing, which have dominated this area of research, 

obtained by a transformation of (1) according to Vasicek (1976) [11] as: 

 
1

1

0

( ) log ( ) ; (0,1)
d

H f F p dp p
dp

− 
=  

 


.          (2) 

Suppose 1 2, , . . ., nx x x
 is a random sample of size n from a continuous distribution ( )F x
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having a probability density function 
( )f x

. Let (1) (2) ( ), , . . ., nX X X
 be the sample order statistics obtained from the sample 

such that ( ) , 1, 2, , . . .,iX i n=
 is the ith smallest observation in the sample. For a non-negative integar, m, such that 2

n
m 

, the 

sample m spacing is defined on ith order by ( ) ( )i m i mX X+ −−
. Using the spacings, researchers have obtained several estimators of 

(1) and (2). Some of these estimators have in turn been applied to develop goodness-of-fit statistics for testing the normality of 

datasets. This is because it is known that among all the statistical distributions that possess a density function 
( )f x

 and having 

variance 
2 , the entropy is maximized by the normal distribution. 

In this paper, the empirical powers of seven of these tests are compared. A review of these statistics is presented in Section 2 

while the empirical power comparison of the tests is presented in Section 3 with resultant discussion. Thereafter, the paper is 

concluded in Section 4. 

 

2. A review of the normality tests 

There are seven tests for normality based on the spacings approach of the Shannon entropy estimators which are compared in this 

paper. In this section, a review of these tests for normality is presented. 

 

2.1 Test of normality based on Vasicek estimator 

Vasicek (1976) [11] obtained an estimator of the derivative of the pth quantile
1( )F p−

 by the slope, given by: 

 

( ) ( ) ;
2

i m i m

n
X X

m
+ −

 − 
for 

( 1)
, 1, 2, . . .,

i i
p i m m n m

n n

−
  = + + −

 

 

Using the estimated derivative, one of the pioneer estimators of the entropy is obtained by Vasicek as: 

 

( ) ( )

1

1
log

2

n

mn i m i m

i

n
HV X X

n m
+ −

=

 
 = −  

 


                  (3) 

 

Based on the estimator in (3), Vasicek (1976) [11] obtained a statistic for testing the normality of datasets. The statistic is given by: 

 
1

( ) ( )
12

n
n

mn i m i m
i

n
TV X X

ms
+ −

=

 
 = −  

 


                   (4) 

 

Where 

 

 

1 2

1
( )

n

ii
s n x X−

=
= −

 
 

The statistic is established to be consistent and invariant with respect to changes in location and scale. Also, the null distribution 

of normality of a dataset is rejected for small values of the statistic. 

 

2.3 Tests of normality according to Esteban et al. (2001) [6] 

The Vasicek estimator in (3) received some criticisms as having a wrong slope measure when 
i m

 or 
1i n m − +

. Such 

criticisms include Dudewicz and Van der Meulen (1981) [4], van Es (1992) [10], Ebrahimi et al. (1994) [5], Correa (1995) [3], etc. 

Based on these criticisms, van Es (1992) [10] proposed an estimator of entropy, given by: 

 

   ( ) ( )

1

1 1 1
log log log 1

n m n

mn i m i

i k m

n
HE X X m n

n m m k

−

+

= =

+ 
 = − + + − +  −  

 
,        (5) 

 

where 
1 k n 

. Also, Wieczorkowski and Grzegorzewski (1999) [12] modified the Vasicek estimator by adding a bias 

correction to have a new entropy estimator given by: 

 

( ) ( ) ( ) ( ) ( )
1

2 2
log log 2 1 2 1 1

m

mn mn

i

m
HW HV n m m n i m

n n
  

=

 
= − + − − + + − + − 

 


, (6) 

where mnHV
 is the Vasicek estimator and 

( )x
 is the digamma function defined by 

( )
log ( ) ( )

( )

d x x
x

dx x


 
= =

 . 
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Esteban et al. (2001) [6], among other things, proposed tests of normality based on these estimators in (5) and (6). The tests are: 

 

 
( )

1

( )

( ) ( )
11

exp 1 1
exp

ˆ ˆ

n n m n m
mn

mn i m i
ii

HE
TE X X

k 

− −

+
==

  
= = −  

  
 

             (7) 

 

And 

 

 
( )

1

( ) ( )
1

exp 1
exp( )

ˆ ˆ

n n
mn

mn i m i m
i

HW
TW X X c

 
+ −

=

 
= = − 

 


               (8) 

 

where mnHE
 and mnHW

 are the van Es and the Wieczorkowski and Grzegorzewski estimators respectively,  

 

1

2 2
1 (2 ) ( 1) ( 1)

m

i

m
c m n i m

n n
  

=

 
= − − + + − + − 

 


 
 

and ̂  is the estimated standard deviation. Esteban et al. (2001) [6] stated that the statistics are invariant with respect to 

transformations of location and scale and concluded that they are both powerful tools for testing normality. 

 

Test of normality based on Alizadeh Noughabi and Arghami estimator 

Alizadeh Noughabi and Arghami (2010) [1] proposed to estimate entropy 
( )H f

 of an unknown continuous probability density 

f
 by: 

( ) ( )

1

1
log

n

mn i m i m

i i

n
HA X X

n a m
+ −

=

 
 = −  

 


,                   (9) 

 

Where 

 

1, 1

2, 1

1, 1 ,

i

i m

a m i n m

n m i n

 


= +   −
 − +    

 

( ) (1)i mX X− =
 for 

i m
 and ( ) ( )i m nX X+ =

 for 
i n m −

. They established that the estimator in (9) is consistent with smaller 

mean square error than the previous estimators in the literature. Based on the Kullback – Leibler divergence between two 

distributions 
f

 and 0f , usually denoted by 
( )0,D f f

, they obtained a statistic for testing the normality of a dataset. The 

statistic is denoted by mnTA
 and defined as: 

 

2ˆlog 2 0.5mn mnTA HA= + −
,                     (10) 

 

where 
2̂  is the estimated variance and mnHA

 is the entropy estimator in (9). They stated that the test which rejects the null 

distribution of normality for large values of the statistic is invariant with respect to changes in location and scale. 

 

Test of normality based on the Zamanzade and Arghami estimator 

Zamanzade and Arghami (2011) [14] proposed a bias and root mean square error (RMSE) reduced estimator of the Shannon 

entropy. It is given by: 

 

( ) ( )

1

1
log

n

mn i m i m

i i

n
HZ X X

n a m
+ −

=

 
 = −  

 


,                   (11) 

 

Where 
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, 1

2, 1

1
, 1 ,

i

i
i m

m

a m i n m

n i
n m i n

m


 


= +   −
 − +
 − +  
  

 

Based on the estimator in (11), they proposed a test for assessing the normality of datasets using the same concept of Kullback – 

Leibler distance measure between two continuous distributions 
f

 and 0f . The statistic is given by: 

 

2ˆlog 2 0.5mn mnTZ HZ= + −
,                     (12) 

 

where mnHZ
 is as defined in (11). The test rejects normality of datasets for large values of the statistic and is said to be affine 

invariant. 

 

Test of normality based on the Bitaraf et al. estimator 

Bitaraf et al. (2017) [2] introduced an internal jth spacing to the Vasicek (1976) [11] modified estimator to obtain a new estimator 

given by: 

 

 .
1

1
log

n

mn i

i

HB T
n =

= 
,                         (13) 

 

where 

1

.

0

1

2
i ij

j

T T
=

= 
; 

( ) ( )
( )

ij i m j i m j

ij

n
T X X

w m j
+ − − +

 = − −
 and 

1, 1

2, 1

1, 1 ,

ij

i m j

w m j i n m j

n m j i n

  −


= − +   − +
 − + +   . 

 

They established the consistency of the estimator and obtained a statistic for assessing normality of datasets based on the 

estimator. The statistic is given by: 

 

  ( ) ( )
1

( ) ( ) ( 1) ( 1)

1 0 1

exp 1

ˆ ˆ 2 2 ( 1)

nn
i m i m i m i mmn

mn
i i i

n X X n X XHB
TB

w m w m 

+ − + − − +

=

 − − 
= = + 

−  


          (14) 

 

They equally stated that the statistic is affine invariant and rejects the null distribution of normality for small values of mnTB
. 

 

Test of normality based on Madukaife estimator 

Madukaife (2023) [8] modified the Bitaraf et al. (2017) [2] doubly spacing approach to obtain a new estimator of the Shannon 

entropy. The estimator is given by: 

 

( )0 1

1

1 1
log

2

n

mn i i

i

HM T T
n =

 
= + 

 


,                      (15) 

 

where 

( ) ( )
( 2 )

ij i m j i m j

ij

n
T X X

w m j
+ − − +

 = − −
 and 

1
1 , 1

3

2, 1

1
1 , 1 ,

3

ij

i m j

w m j i n m j

n m j i n


+   −


= − +   − +

 + − + +  
 . 

 

Based on the statistic in (15), Madukaife (2023) [8] obtained a statistic for testing the normality of datasets. The statistic is given 

by: 
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  ( ) ( )
1

( ) ( ) ( 1) ( 1)

1 0 1

exp 1

ˆ 2 2 ( 2)

nn
i m i m i m i mmn

mn
i i i

n X X n X XHB
TM

s w m w m

+ − + − − +

=

 − − 
= = + 

−  


             (16) 

 

where 

1 2

1
( )

n

ii
s n x X−

=
= −

. The test is said to be consistent and affine invariant, and rejects the null distribution of 

normality for small values of mnTM
. 

 

Simulation study 

This section is of two aspects. The first is the empirical critical values of the seven tests under comparison. The second is the 

empirical power comparison of the tests under several classes of distributions. 

 

Empirical critical values of the tests 

No attempt was made to obtain the theoretical distributions of the various tests for normality under investigation in this study. As 

a result, empirical critical values of the tests are obtained through Monte Carlo simulation and computation. Precisely, 100,000 

samples of the standard normal distribution are simulated at each sample size, n = 10, 20 and 50. Under a combination of each 

sample size (n) and window size (m), each of the seven competing statistics is computed in each of the 100,000 samples. The  - 

level critical value (
c ) of each of the tests in each combination of n and m is the 100 percentile of the 100,000 computed 

values of the statistic, for tests that reject null distribution of normality for small values of the statistics (
( )mnP T c  =

), 

and/or the 
100(1 )−

 percentile of the 100,000 computed values of the statistics, for tests that reject normality for large values 

of the statistics (
( )mnP T c  =

). The results are presented in Table 1. 

 

Table 1: Empirical critical values of the tests,  = 0.05 
 

n m mnTV
 mnTE

 mnTW
 mnTA

 mnTZ
 mnTB

 mnTM
 

10 

1 1.6644 2.9269 0.8288 2.6823 2.6787 - 0.9040 

2 2.0323 2.6871 3.6615 2.4304 2.2814 2.4992 - 

3 2.0912 2.5119 2.9919 2.3070 2.0068 3.0060 3.8172 

4 2.0837 2.3338 1.2106 2.2156 1.7401 3.4657 3.4840 

5 2.0230 2.1993 0.3182 2.1280 1.4767 3.8997 3.4750 

20 

1 2.1908 3.2010 0.7301 2.3925 2.3953 - 1.1360 

2 2.6260 3.2010 9.5400 2.1950 2.1208 2.8651 - 

3 2.7040 3.2010 20.7432 2.1072 1.9534 3.2403 4.4617 

4 2.6969 3.2010 22.0894 2.0446 1.8142 3.4830 3.9168 

5 2.6478 3.2010 15.7484 2.0016 1.6718 3.6858 3.7546 

6 2.5900 3.2010 8.6518 1.9584 1.5370 3.8661 3.6891 

7 2.5253 3.2010 3.9300 1.9130 1.4074 4.0402 3.6688 

8 2.4606 3.2010 1.5411 1.8759 1.2685 4.2182 3.6713 

9 2.3932 3.2010 0.5368 1.8399 1.1399 4.3993 3.6781 

10 2.3287 3.2010 0.1698 1.7974 1.0049 4.5827 3.6930 

30 

1 2.4156 3.3331 0.6445 2.2785 2.2781 - 1.2409 

2 2.8799 3.3331 14.4857 2.0906 2.0448 3.0169 - 

3 2.9962 3.3331 49.7084 2.0173 1.9175 3.3636 4.7418 

4 3.0172 3.3331 82.4870 1.9684 1.8134 3.5715 4.1524 

5 3.0003 3.3331 91.4103 1.9316 1.7147 3.7291 3.9774 

6 2.9615 3.3331 77.9328 1.8960 1.6198 3.8678 3.9067 

7 2.9131 3.3331 55.2207 1.8680 1.5271 3.9853 3.8619 

8 2.8573 3.3331 34.0204 1.8357 1.4312 4.1015 3.8391 

9 2.8043 3.3331 18.7477 1.8063 1.3434 4.2086 3.8238 

10 2.7481 3.3331 9.4337 1.7808 1.2523 4.3255 3.8205 

11 2.6928 3.3331 4.4060 1.7548 1.1631 4.4377 3.8210 

12 2.6367 3.3331 1.9253 1.7318 1.0731 4.5499 3.8252 

13 2.5832 3.3331 0.7947 1.7040 0.9858 4.6658 3.8307 

14 2.5316 3.3331 0.3128 1.6810 0.8942 4.7881 3.8384 

15 2.4824 3.3331 0.1179 1.6506 0.8038 4.9155 3.8546 

 

Empirical power study 
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The powers of the seven statistics that are being compared are computed from 12 different continuous statistical distributions at 

different sample sizes through Monte Carlo simulation. The distributions are grouped into 5, namely: symmetric distributions with 

support 
( , )− 

 as Group I; asymmetric distributions with support 
( , )− 

 as Group II; asymmetric distributions with 

support 
(0, )

 as Group III; symmetric distributions with support 
(0,1)

 as Group IV and asymmetric distributions with support 

(0,1)
 as Group V. The distributions include: 

 

Group I: Support 
( , )− 

, symmetric 

Standard normal 

Standard Laplace  

Student’s t with 2 degrees of freedom 

 

Group II: Support 
( , )− 

, asymmetric 

Skew standard Laplace 

Gumbel with  = 0, 


= 1 

Gumbel with  = 1, 


= 3 

 

Group III: Support 
(0, )

, asymmetric 

Standard exponential 

Gamma with 


= 1,  = 2 

Standard lognormal 

Weibull with 


= 1,  = 2 

Chi-square with 2 degrees of freedom 

 

Group IV: Support 
(0,1)

, symmetric 

Uniform with (0, 1) 

Beta with  = 2, 


= 2 

Beta with  = 0.5, 


= 0.5 (arcsine) 

Group V: Support 
(0,1)

, asymmetric 

Beta with  = 1, 


= 3 

Beta with  = 3, 


= 0.5 

 

Under each combination of n and m, 10,000 samples are simulated from each distribution and each of the competing statistics is 

computed from each sample. Normality of each sample is tested at 0.05 level of significance. The power of each statistic is 

defined as the proportion of the 10,000 samples that are rejected by the statistic. It is expressed in this work in percentage. The 

results are presented in Table 2 for sample sizes n = 10 with the optimal window size in parenthesis and the highest power under 

each alternative distribution in bold font. 

 

Table 2: Empirical power comparison of the tests, n = 10,  = 0.05 
 

Distributions mnTV
 mnTE

 mnTW
 mnTA

 mnTZ
 mnTB

 mnTM
 

Normal (0,1) 5.3 (1) 5.0 (1) 5.2 (2) 5.2 (1) 5.4 (1) 4.8 (2) 5.0 (3) 

Laplace (0,1) 9.8 (5) 11.3 (4) 9.0 (5) 42.5 (5) 42.1 (4) 9.9 (2) 9.2 (5) 

Students’ t (2) 19.9 (5) 24.4 (5) 18.8 (5) 65.8 (4) 65.9 (2) 18.6 (5) 18.4 (5) 

Skew Laplace (0,1,1) 9.3 (1) 9.9 (1) 9.2 (5) 42.2 (4) 42.8 (2) 9.6 (5) 9.3 (5) 

Gumbel (0,1) 12.6 (5) 12.2 (5) 13.2 (4) 31.6 (2) 31.8 (2) 12.9 (5) 12.9 (5) 

Gumbel (1,3) 13.1 (5) 15.9 (1) 13.5 (4) 99.7 (5) 99.7 (2) 13.8 (4) 12.6 (5) 

Exponential (1) 45.0 (3) 32.8 (4) 48.2 (4) 21.8 (1) 21.7 (1) 49.1 (4) 46.6 (4) 

Gamma (1,3) 44.9 (3) 32.0 (4) 47.3 (4) 2.2 (1) 2.1 (1) 46.8 (4) 46.3 (4) 

Lognormal (0,1) 59.6 (3) 49.6 (3) 61.7 (4) 57.3 (2) 57.2 (1) 61.3 (4) 60.9 (5) 

Chi-square (2) 46.9 (4) 42.9 (2) 47.0 (4) 74.3 (2) 75.1 (2) 48.1 (4) 48.3 (4) 

Weibull (1,2) 45.1 (3) 44.8 (4) 47.5 (4) 74.7 (2) 74.4 (2) 48.3 (4) 48.6 (4) 

Uniform (0,1) 16.6 (2) 16.2 (2) 16.7 (2) 0.1 (1) 0.1 (1) 16.9 (2) 16.8 (2) 

Beta (2,2) 7.5 (3) 5.9 (2) 7.9 (2) 0.0 0.1 (1) 31.5 (3) 30.8 (2) 

Beta (0.5,0.5) 50.9 (2) 50.5 (2) 50.4 (2) 2.6 (1) 2.9 (1) 80.1 (3) 50.5 (1) 

Beta (1,3) 24.1 (3) 28.2 (4) 24.6 (4) 0.4 (1) 0.8 (1) 58.3 (3) 58.5 (3) 

Beta (3,0.5) 67.1 (2) 68.9 (2) 67.9 (3) 18.5 (1) 18.4 (1) 89.8 (2) 88.9 (4) 
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From the results in Table 2, all the seven tests recorded approximately 5.0 power performance under the normal distribution, 

which is the null distribution. This shows that they all have good control over the type-I-error since the level of significance at 

which the tests are carried out is the same 5.0% level. Under the remaining alternative distributions in groups I and II with support 

from 
( , )− 

, the mnTA
 and mnTZ

 statistics showed dominant superiority in terms of power performance among all the tests 

considered, with the mnTZ
 outperforming the mnTA

 to appear as the most powerful statistics in those categories of alternative 

distributions. 

Under the distributions with support from the 
(0, )

 considered in this work, the mnTW
, mnTA

, mnTZ
, and the mnTB

 all 

recorded high power performances with the mnTW
, and mnTB

 as the most powerful among all the tests considered under this 

category of alternative distributions. Finally for distributions with support from the 
(0,1)

, both symmetric and asymmetric which 

are considered, the mnTB
 and mnTM

 showed dominant superiority in terms of power performance among all the statistics 

considered, with the mnTB
 being more powerful than the mnTM

 to be the most powerful statistic under this category of 

alternative distributions. 

 

Conclusion 

Quite a good number of tests for normality that are based on the Shannon entropy estimators exist. Previous studies have shown 

that these seven considered in this study have potential of having good power performances. The result of the comparison carried 

out in this study have shown that none of the statistics is universally the most powerful under different categories of alternative 

distributions. As a result, for alternative distributions with support from 
( , )− 

, the mnTA
 and mnTZ

 can be regarded as good 

statistics for testing normality. Also for alternative distributions with support from 
(0, )

, the mnTW
, and mnTB

 can be 

regarded as good statistics for testing normality. Finally for alternative distributions with support from 
(0,1)

, the mnTB
 and 

mnTM
 can be regarded as good statistics for testing normality of datasets. 

 

It is expected from statistical theory that as the sample sizes increase, the powers of the tests considered in this study will increase. 

However, it is recommended to carry out this comparison at different sample sizes to ascertain if the behaviour of the various 

statistics will maintain the same pattern as seen in this study. 
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