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Abstract 

Modeling the risk profile of a heterogeneous life from unreported risks is complex. Insurance firms 

routinely disregard unreported risk factors perhaps because of difficulties in modeling. The scientific 

interest of the study is to account for unreported heterogeneity factors using a compound process. For 

comparison reasons the gamma (mostly applied in literature) and non-central gamma compound process 

are suggested with the generalized exponential and generalized Weibull baselines to account for 

unreported heterogeneity. In this study, maximum likelihood estimation is used to calibrate the base force 

of mortality distributions using a large Kenyan insurer term insurance data. Subsequently, the 

performance of the candidate models described above is compared following the criteria information 

values. The findings show that the non-central gamma generalized Weibull is significant to model the 

insurers’ claims events. 

 

Keywords: Rating up, unreported heterogeneity, term insurance, non-central gamma, generalized 

Weibull, generalized exponential 

 

1. Introduction 

Rating up theory was first proposed by Beard (1959) [2] to account for age-pattern of mortality, 

where the term “longevity factor” was used instead of rating up. Homogeneity is presumed 

with respect of reported risk factors in standard models. The implication is that study subjects 

are pooled in the same risk profile at a given age. However, statistical evidence suggest a 

different model as indicated by several researchers, such as Su & Sherris (2012) [12]; Gatzert et 

al., (2012) [7]; Onchere (2013) [10]; Fong (2015) [6]; Olivieri & Pitacco (2016) [9] and Pitacco 

(2018) [11] with references therein. 

To adequately price and allocate reserves that represent the insurance contracts all relevant 

factors affecting mortality needs to be considered. Neglecting unreported heterogeneity could 

result in biased insurance products pricing and reserves allocation. This research outlines a 

heterogeneous model that will improve the underwriting process to ensure fair pricing and 

reserving of life products consistent with the insured risk. 

The mortality model selected in valuation determines how term insurance and annuity 

products are priced (Batty et al., (2010) [1]; Gildas et al., (2018) [8]. Life insurance-based rating 

up models measure population-level heterogeneity caused by unreported risks. On the other 

hand, heterogeneity caused by reported risk factors is determined during underwriting before 

issuing a policy to guarantee an optimal assignment of premium equivalent to insured risk for 

each contract. Excluding relevant factors or relying solely on age and sex may contribute to 

incorrectly priced assurance products. Term insurance contract is a policy in which a certain 

payment, say, KES A per annum, is provided if the insured passes on within a stated period, 

say m years. This benefit is determined from the EPV as 

 

𝐴 ∫ 𝑣𝑡𝑆𝑥(𝑡)ℎ(𝑥 + 𝑡)𝑑𝑡 
𝑚

0
               (1) 

 

Where: 𝑥 is the insured’s age, 𝑣𝑡 represents the present value interest factor, 𝑆𝑥(𝑡)represents 

the survivor function and ℎ(𝑥 + 𝑡) the intensity rate. The type of mortality model applied to 

ℎ(𝑥 + 𝑡) influences how the policy is priced. 
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2. Methodology 

For this study, we considered 732 term insurance contracts between calendar years 2010-2015 from a large Kenyan insurance 

company. Demographic information of policyholders includes; age, date of signing the contract and mortality date. This data-set 

will be used to compute the times-to-death and crude intensity rates experienced by the insured in the 22-64 age group. Our aims 

of study are firstly to show that when the gamma is applied as a rating up distribution the intensity rates are overestimated at all 

ages compared to the non-central gamma (NCG). Secondly, is to show the relevance of the NCG rating up mixture to graduate the 

insurance firm’s crude intensity rates. Here, force mortality is presumed to be a pair-wise constant, assuming a fixed value across 

all ages consistent with Brouhns et al., (2002) [3] and Dodd et al., (2018) [5] assumption. We further assumed our rating up model 

has no observed covariates as only survival data was obtained for this analysis also in life insurance due to the underwriting 

procedures groups should be homogeneous with respect to observed covariates. Finally, and as given in the actual dataset we 

presumed that policyholders purchase term assurance policy at the age of 22-64 years. 

 

2.1 The proposed model 

The generalized Weibull (GW) density function is represented as 

 

𝑓 (𝑡)  =  𝑏(1 −  𝑒𝑥𝑝 (−𝜆𝑡𝜌))𝑏−1  ·  𝜆𝜌𝑡𝜌−1  ·  𝑒𝑥𝑝 (−𝜆𝑡𝜌);  𝑡 >  0, 𝜌, 𝑏, 𝜆 >  0. 
 

We can express the survivor, baseline hazard and cumulative hazard rates as 

 

𝑆(𝑡) = ∫ 𝑏(1 − 𝑒𝑥𝑝(−𝜆𝑥𝜌))𝑏−1  ·  𝜆𝜌𝑥𝜌−1  · 𝑒𝑥𝑝(−𝜆𝑥𝜌)𝑑𝑥 .
∞

0
  

 

𝐿𝑒𝑡 𝑦 = 𝑒𝑥𝑝(−𝜆𝑥𝜌) 𝑎𝑛𝑑 
𝑑𝑦

𝑑𝑥
= −𝜆𝜌𝑥𝜌−1𝑒𝑥𝑝(−𝜆𝑥𝜌). 

 

∴ 𝑆(𝑡) = ∫ −𝑏(1 − 𝑦)𝑏−1 𝑑𝑦 =  1 −  [1 −  𝑒𝑥𝑝 (−𝜆𝑡)]𝑏0

𝑒𝑥𝑝(−𝜆𝑥𝜌)
. 

 

ℎ0(𝑡) =
𝑏(1 − 𝑒𝑥𝑝 (−𝜆𝑡𝜌))𝑏−1 · 𝜆𝜌𝑡𝜌−1 · 𝑒𝑥𝑝 (−𝜆𝑡𝜌)

1 − [1 − exp (−𝜆𝑡𝜌)]𝑏 .                   (2) 

 

𝐻0(𝑡)  =  − 𝑙𝑜𝑔 𝑆(𝑡)  =  − 𝑙𝑜𝑔(1 −  [1 −  𝑒𝑥𝑝 (−𝜆𝑡𝜌)]𝑏).                (3) 

 

The generalized exponential (GE) function is derived from the GW distribution when 𝜌 =  1. Putting 𝜌 =  1 in Equations (2, 3) 

leads to 

 

ℎ0(𝑡) =
𝑏(1 −  𝑒𝑥𝑝 (−𝜆𝑡))𝑏−1  · 𝜆 ·  𝑒𝑥𝑝 (−𝜆𝑡)

1 − [1 −  𝑒𝑥𝑝 (−𝜆𝑡)]𝑏
 

 

𝐻0(𝑡)  =  − log (1 − [1 − exp(−𝜆𝑡)]𝑏 

 

Firstly, using GE distribution as the baseline intensity for gamma rating up, we can generate an intensity rate for gamma-GE 

rating up mixture as follows 

 

ℎ(𝑡) =
𝑏(1 −exp(−𝜆𝑡))𝑏−1 ·𝜆 ·exp(−𝜆𝑡)

1 − [1 −exp(−𝜆𝑡)]𝑏 . (1 − 𝜎2log (1 −  [1 − exp(−𝜆𝑡)]𝑏)−1            (4) 

 

The NCG is further adapted as a rating up distribution resulting in the NCG-GE intensity rate given by 

 

ℎ(𝑡) =
𝑏(1 −exp(−𝜆𝑡))𝑏−1 ·𝜆 ·exp(−𝜆𝑡)

1 − [1 −exp(−𝜆𝑡)]𝑏 . (1 − 0.5𝜎2log (1 − [1 − exp(−𝜆𝑡)]𝑏)−2           (5) 

 

Where, 𝑏 <  1, 𝑏 >  1, 𝑎𝑛𝑑 𝑏 =  1 represent decreasing, increasing, and constant GE intensity rate, respectively. 

 

Secondly, the GW distribution is proposed as the base force of mortality with the gamma rating up giving the gamma-GW (G-

GW) intensity rate expressed as 

 

ℎ(𝑡) =
𝑏(1 −exp(−𝜆𝑡𝜌))𝑏−1 · 𝜆𝜌𝑡𝜌−1 ·exp(−𝜆𝑡𝜌)

1 − [1 −exp(−𝜆𝑡𝜌 )]𝑏
(1 − 𝜎2 log(1 −  [1 − exp(−𝜆𝑡𝜌)]𝑏))−1          (6) 

 

Similarly, the NCG-GW intensity rate is described as 

 

ℎ(𝑡) =
𝑏(1 −𝑒𝑥𝑝(−𝜆𝑡𝜌))𝑏−1 · 𝜆𝜌𝑡𝜌−1 ·𝑒𝑥𝑝(−𝜆𝑡𝜌)

1 − [1 −𝑒𝑥𝑝(−𝜆𝑡𝜌 )]𝑏
(1 − 0.5𝜎2 𝑙𝑜𝑔(1 − [1 − 𝑒𝑥𝑝(−𝜆𝑡𝜌)]𝑏))−2         (7) 

 

where (𝜌 ≤ 1) and (𝑏𝜌 ≤ 1) represent monotonically decreasing function and (𝜌 ≥ 1) and (𝑏𝜌 ≥ 1) represents monotonically 

increasing function; unimodal if (𝜌 < 1) and (𝑏𝜌 > 1) and bath-tub shaped if (𝜌 > 1) and (𝑏𝜌 < 1). 
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3. Data analysis, results and discussions 

3.1 Parameter Estimation 

Butt & Haberman (2004) [4] apply the rating up-based survival model to insurance. The authors first consider different choices of 

models and then apply them to two large life insurance mortality datasets. The results indicate a potential range 𝜎2 ≈
 (2.916, 14.444) in an insured population with 𝜎2  =  14% for the heterogeneous case. From the findings of the investigation by 

Butt & Haberman (2004) [4], in this study we consider 𝜎2  =  14% for the heterogeneous case. 

The MLE approach is concerned with obtaining parameter values say, (𝑏, 𝜆, 𝜌) that maximizes the probability of observing the 

data D given those parameters, 𝑝(𝐷| 𝑏, 𝜆, 𝜌). The likelihood function gives the probability of the observed sample generated by 

the model. Generally, maximization of the likelihood function to find the ML estimates is done algebraically, but can be 

computational intensive. In this study, the MLE algorithm is implemented using stats 4 package in R. 

For the Generalized Weibull with PDF 

 

𝑓 (𝑡)  =  𝑏(1 −  𝑒𝑥𝑝 (−𝜆𝑡𝜌))𝑏−1  ·  𝜆𝜌𝑡𝜌−1  ·  𝑒𝑥𝑝 (−𝜆𝑡𝜌);  𝑡 >  0, 𝜌, 𝑏, 𝜆 >  0. 
 

The log-likelihood function is derived as 

 

𝐿 = ∏ 𝑏(1 − exp(−𝜆𝑡𝜌))𝑏−1  ·  𝜆𝜌𝑡𝜌−1  · exp(−𝜆𝑡𝜌)

𝑛

𝑖=1

 

 

𝑙𝑜𝑔𝐿 = ∑ log(𝑏(1 − exp(−𝜆𝑡𝜌))𝑏−1 ) + log (𝜆𝜌𝑡𝜌−1) − 𝜆𝑡𝜌

𝑛

𝑖=1

 

 

For the Generalized Exponential with PDF 

 

𝑓 (𝑡)  =  𝑏(1 −  𝑒𝑥𝑝 (−𝜆𝑡))𝑏−1  ·  𝜆 ·  𝑒𝑥𝑝 (−𝜆𝑡);  𝑡 >  0, 𝑏, 𝜆 >  0. 
 

The log-likelihood function is derived as 

 

𝐿 = ∏ 𝑏(1 −  𝑒𝑥𝑝 (−𝜆𝑡𝑖))𝑏−1  ·  𝜆 ·  𝑒𝑥𝑝 (−𝜆𝑡𝑖)

𝑛

𝑖=1

 

 

𝑙𝑜𝑔𝐿 = ∑ log(𝑏(1 − exp(−𝜆𝑡𝑖))𝑏−1) + log(𝜆) − 𝜆𝑡𝑖

𝑛

𝑖=1

 

 

The parameter estimates and criteria values is shown in the table below;  

 
Table 1: Base Force of Mortality Parameter Estimates 

 

Baseline model Parameter estimates AIC BIC 

1. Generalized Exponential λ = 0.14537, b = 286.57 4995.128 5004.32 

2. Generalized Weibull λ = 0.031367, b = 80.3076, ρ = 1.3477 4960.588 4974.376 

 

Discussion 

Stats 4 provides the AIC and BIC measures that penalizes both excessive use of parameters and poor data fitting. From the above 

results, the least AIC and BIC suggests that the GW gives a better fit. The G-GW and NCG-GW rating up models given in 

Equations (6) and (7) respectively are as shown in Figure 1 where t is the time-to-death, σ2 = 0.14, λ = 0.031367, b = 80.3076, ρ = 

1.3477; h0(t)~GW (0.031367, 80.3076, 1.3477). 

In Figure 1 graduation is done using the G-GW and NCG-GW rating up model both calibrated on the real term assurance times-

to-death data. This is compared with the real term assurance intensity rates. As shown the G- GW overestimates the intensity rate 

at all ages compared to the NCG-GW model. The NCG-GW is observed to fit well to the actual claims experience hazards. The 

chi-square test Table 2 and Kolmogorov-Smirnov (KS) hypothesis test Table 3 for overall goodness of fit is significant for NCG-

GW. The chi-squared goodness-of-fit test has p-value greater than 0.01, indicating that the model fits well. Similarly, for KS 

goodness of fit test p-value > 0.01, indicating goodness of fit for the distribution. 

 
Table 2: Chi-squared Goodness-of-fit of NCG-GW to the Crude Intensity Rates 

 

Name Value 

Chi-squared statistic 1722 

Degree of freedom 1681 

Chi-squared p-value 0.2379 
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Fig 1: Construction of Crude Intensity Rates from Real Term Insurance Dataset 
 

Table 3: Goodness of fit using Kolmogorov-Smirnov test 
 

Name p-value test statistic 

Kolmogorov-Smirnov test 0.06448 0.28571 

 

4. Discussion 

Our goal in this paper is to model unreported heterogeneity by applying the gamma and NCG rating up distributions. We applied 

our model to real term insurance times-to-death data. Based on maximum likelihood, the GW baseline fits better as the AIC & 

BIC is lower than the GE baseline. As shown in Figure 1 the G-GW model overestimates the intensity rates at all ages compared 

to the NCG-GW model. According to chi-squared goodness of fit test Table 2 and KS hypothesis test Table 3, the NCG-GW 

shows better fitness to insurer’s claims experience.  

 

5. Conclusion 

Life Insurance-Based rating up models measure population-level heterogeneity caused by unreported risks. On the other hand, 

heterogeneity caused by reported risk factors is determined during underwriting before issuing a policy to guarantee an optimal 
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assignment of premium equivalent to insured risk for each contract. Excluding relevant factors or relying solely on age and sex 

may contribute to incorrectly priced assurance products. The scientific interest of the study is to account for unreported 

heterogeneity factors using a compound process. For comparison reasons the gamma (mostly applied in literature) and non-central 

gamma compound process are suggested with the generalized exponential and generalized Weibull baselines to account for 

unreported heterogeneity. The conclusion arrived at is that using the gamma as the rating up distribution may lead to inappropriate 

term assurance valuations resulting in high prices that negatively impacts marketability of term contracts. The gamma rating up 

index is time invariant and unreported heterogeneity effects remains constant throughout life. The NCG compound process 

represents time-varying unreported heterogeneity effects and is recommended for better term assurance valuations. 
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