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The inverse proposition of Taylor-type mean value 

theorem 

 
Quanfeng Xu and Hongliang Li 

 
Abstract 

Through the study of the Taylor-type mean value theorem, we prove correctness of the inverse 

proposition of the Taylor-type mean value theorem under some certain conditions. Furthermore, the 

inverse theorem of the Cauchy mean value is extended to the case of higher order. 

 

Keywords: The theorem of Taylor-type mean value, inverse question, monotonicity, the theorem of 

intermediate value  

 

1. Introduction 

G. Polyá and G. Szegö [1] first introduced the inverse question of Lagrange mean value 

theorem, i.e., if a function f(x) is continuously differential in the interval  ba, , for  ba, , 

can we find 21 xx 
 such that 

   
 f

xx

xfxf






12

12

. And at the same time they also gave a 

counterexample to explain that this inverse proposition is usually incorrect. From then on, 

there are many specialists who are interested in this field and did a lot of work. For example, 

L. Zuo [2] studied sufficient conditions on the rightness of the inverse proposition of the 

Lagrange mean value theorem. X. You [3] researched the correctness of the inverse proposition 

of high-order difffferential mean value theorem. Y. Chen and J. Cai [4] explored the inverse 

proposition on the Cauchy mean value theorem and Y. Feng [5] investigated the inverse 

proposition of the differential mean theorem under the setting of sub-differentiation.  

Since the Taylor-type mean value [6] holds, it is natural to take into account its inverse 

proposition. In this paper we are devoted to finding sufficient conditions to make the inverse 

proposition established. The main result of this paper is Theorem 3.1 and Theorem 3.2. 

Theorem 3.1 shows that the inverse proposition of the Taylor mean value holds under some 

certain conditions. Theorem 3.2 generalizes the inverse theorem of the Cauchy mean value 

theorem to high-order form. Our proof is fairly different from [7]. 

 

2. Preliminaries 

We first give the Taylor-type mean value theorem and the inverse theorem of Cauchy mean 
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Value theorem. 

Theorem 2.1 [6] Let    xgxf ,  have 1n -order continuous derivatives at ],[ ba  and 

   xgxf nn )()( ,  exist in ),( ba , ,Nn  and   0)( xg n

 for any ),( bax . Then there exists 


),( ba  such that. 
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Theorem 2.2 [7, Theorem 1] Let    xgxf ,  be differential on ],[ ba , 
  0' xg

 and 
0)(')(')(')(' 1221  xgxfxgxf

 (or 

0)(')(')(')(' 1221  xgxfxgxf
) if 21 xx 

,
],[, 21 baxx 

. Then there exists 
),(0 bax 

, such that  

 

(1) if 
),( 0xa

, there exists 
),( bap

 such that 
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; 

 

(2) if 
),( 0 bx

, there exists 
),( baq

 such that 
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. 

 

3. Main results 

According to Taylor-type mean value theorem, we can get the inverse proposition of it: Let 
   xgxf ,

 have 1n -order 

continous and derivatives at 
],[ ba

 and    xgxf nn )()( ,  exist 

in 
),( ba

, Nn . Then for any 
),( ba

, there exist 
bxxa  21 

 such that  
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But it is wrong. Indeed, take two functions at ]1,1[ : 
2)(  nxxf  and 

nxxg )(
. When 

101- 21  xx
, 
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Let 
0

. Then right hand side of (3.1) is equal to zero, but the left hand side of (3.1) is not the case. Thus the inverse 

proposition of the Taylor-type mean value theorem does not hold unless some certain conditions are added. 

 

To prove the main results, we need some important lemmas.  

 

https://www.mathsjournal.com/


 

~118~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

Lemma 3.1 Let 
   xgxf ,

 have 1n -order continuous derivatives at 
],[ ba

 and 
   xgxf nn )()( ,

 exist in 
),( ba

,
,Nn
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 and 
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Then for any 
),( 12  a

, there exists 
),( 122 pp 

 such that  
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Proof. Construct a function 
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In the light of Theorem 2.1, there exists 
),( 2 a

 such that  
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 is a strictly monotone function. Hence 
0)()( 1121 pGG 

. 
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According to the intermediate value theorem of one-variable continuous function, there exists 
),( 122 pp 

 such that 

 

,0)( 21 pG
Which implies that Lemma 3.1 holds. 

 

Lemma 3.2 Let two functions 
gf ,

satisfy the conditions of Lemma 3.1. If for any 
),(3 ba

, there exists 
),( 31 aq 

 such 

that 
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Then for any 
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, there exists 
),( 412 qq 

 such that 
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Proof. Construct  
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According to Theorem 2.1, there exists 
),( 4 b 

 such that 
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And 
)(

)(
)(

)(

xg

xf
n

n

 is a strictly monotone function on 
],[ ba

 from assumptions. Thus  

 

0)()( 1242 qGG 
. 

 

According to the intermediate value theorem of one-variable continuous function, there exists 
),( 412 qq 

 such that 

0)( 22 qG
 which yields that Lemma 3.2 holds.  

 

Next we give the main results of this paper. 

 

Theorem 3.1 Let 
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Proof. In view of Theorem 2.1, there exist 
],[1  s

 and 
],[2 r 
 such that 
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Construct a function on 
],[],[ rsD  
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Since 
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We complete the proof. 

 

Remark 3.1 Theorem 3.1 indicates that the inverse proposition of the Taylor-type mean value sets up under the certain 

assumptions. Thus Theorem 3.1 extends [7, Lemma 1] from first derivative to higher derivative situation.  

 

Theorem 3.2 Let two functions 
   xgxf ,

 on 
],[ ba

 satisfy the conditions of Theorem 3.1. Then there exist 
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（2）When 
),( 0 bx

, there exist 
),( baq

 such that 
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Proof. Construct sets 
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According to Theorem 2.1, we know that 
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 are empty. Define 
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Thus 
 

. Which contradicts 
),(  

 due to the definition of 


. Therefore 
 

 is false. So 
 

. Take 

),(],[0 bax  
. Combining Lemma 3.1 and Lemma 3.2 induces that 0x

 satisfies the requirement of Theorem 3.2. The 

proof is complete. 

 

Remark 3.2 If 1n , then Theorem3.2 reduces to Theorem 2.2. Hence Theorem 3.2 generalizes the main result of [7]. 
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