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Abstract

Through the study of the Taylor-type mean value theorem, we prove correctness of the inverse
proposition of the Taylor-type mean value theorem under some certain conditions. Furthermore, the
inverse theorem of the Cauchy mean value is extended to the case of higher order.
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1. Introduction
G. Polya and G. Szego ™M first introduced the inverse question of Lagrange mean value

theorem, i.e., if a function f(x) is con%in)umzsl)y differential in the interval (a,b)’ for §e(a,b)’
fx,)—f(x ,

can we find % <E<X such that *—% A ). And at the same time they also gave a
counterexample to explain that this inverse proposition is usually incorrect. From then on,
there are many specialists who are interested in this field and did a lot of work. For example,
L. Zuo ™ studied sufficient conditions on the rightness of the inverse proposition of the
Lagrange mean value theorem. X. You B! researched the correctness of the inverse proposition
of high-order difffferential mean value theorem. Y. Chen and J. Cai ™ explored the inverse
proposition on the Cauchy mean value theorem and Y. Feng [ investigated the inverse
proposition of the differential mean theorem under the setting of sub-differentiation.

Since the Taylor-type mean value ® holds, it is natural to take into account its inverse
proposition. In this paper we are devoted to finding sufficient conditions to make the inverse
proposition established. The main result of this paper is Theorem 3.1 and Theorem 3.2.
Theorem 3.1 shows that the inverse proposition of the Taylor mean value holds under some
certain conditions. Theorem 3.2 generalizes the inverse theorem of the Cauchy mean value
theorem to high-order form. Our proof is fairly different from [71,

2. Preliminaries

We first give the Taylor-type mean value theorem and the inverse theorem of Cauchy mean
Project supported by National Natural Science Foundation of China (11961056).
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Value theorem.

Theorem 2.1 © Let T(X)9(X) have N-I.order continuous derivatives at [2P] and
FO(X).9" () exist in (&b) neN. gng 9V (x)£0 g0 any X€@D) Then there exists S
<(@b) gych that.

(k)
)= Zf .(a)( A o

(k) (n)

~116™


https://www.mathsjournal.com/

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com

Theorem 2.2 [7, Theorem 1] Let f(x).9(X) pe differential on [a,b] g'(X);tO and T ()9 (%) - 1'(x)9'(x) <0 (or

fl(xl)gl(XZ) N f'(x2)g'(xl) > 0) if X< X : X, X; € [a’ b] . Then there exists o € (a’ b) , such that

(1) if ce(@ax) , there exists pe (a’ b) such that

f(p)-f@) _f'()
9(p)-9@) 9.

) if & € (%p,0) , there exists 9 € (a,b) such that

fb)-f(a) _ ()
g)-g(@ g'(©)

3. Main results

According to Taylor-type mean value theorem, we can get the inverse proposition of it: Let f(X), g(x) have N =1 order
) ()

continous and derivatives at (201 and (x) 87 (%) exist

in (@, b), NeN Then for any ge(ab) , there exist asX <g<X, < b such that

= G
(k) (n) !
g(xz) Z g (Xl) (X )k g (5)

(3.1)

_yn+2 —y" _
But it is wrong. Indeed, take two functions at [-11]. FO)=x and g(x) =X . When 1=x <0<x, Sl,

(k)
(%) Zf (Xl)(x )"

n—

2-k
= _Z:szxln+ (Xz - Xl)k

= C:+2X12 (Xz - X1) Cr?:;xl(xz - )(1)n+1 Cr?:zz (Xz - X:L)n+2

2
n+n - 2
= [ 5 X"+ NXX, + X, }(x2 —x)"

2
> (%+x2j (X, —x%)" =0.

Let 520. Then right hand side of (3.1) is equal to zero, but the left hand side of (3.1) is not the case. Thus the inverse
proposition of the Taylor-type mean value theorem does not hold unless some certain conditions are added.

To prove the main results, we need some important lemmas.
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Lemma 3.1 Let f(x), g(x) have n_1-order continuous derivatives at [a,b] and f(n)(x)’ g(n)(x) exist in (a,b) , neN,
97 (X)#0 g FP0DIV06) = FP0)I () <0 o FPx)IV06) - FPx)g (%) >0, ¢

asX; <X <b re any 1€ (D) there exists Pr € QD) gich that

n-1 (k)
f(p)-3 2 (b, -a)

@

F™(&)
)k g(n) (&)

S |=x
[Nl
Ll (=]

g(pl) (pl_a

k=0

Then for any S € (@, gl) , there exists P, € (52’ pl) such that

~ Kl _ 1)
n-1 ~ (k) O
a(p)-> 9 D p,-ay 9
Proof. Construct a function
F()- nzl )t
! fO (&,
Gk)= g‘k)( a) g(“)g;' xela.bl
9(x)— Z (x—a)" 2
Then
n-1 (k)
(E)-2 (G- )
Culee) = EWOTEY RIS
g(fz)_ 4 kI (éz_a) ?
And
1) k
f(pl)_ (pl_a) (n)
a=—— R

-1 ~ (k) (n)
In the light of Theorem 2.1, there exists SZ <(a, 52) such that

F0E) _17(E)

Gl 2] =
(%)= 30 " 97
But
F0(E) 19
G _ _
(P =005 T g0 (e,
£ (x)

(n)
And 9 (x) is a strictly monotone function. Hence Gl(gZ)Gl( pl) <0 .
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According to the intermediate value theorem of one-variable continuous function, there exists P, € (52’ pl) such that

G1(P2) =0, which implies that Lemma 3.1 holds.

e(a,b)

Lemma 3.2 Let two functions f.g satisfy the conditions of Lemma 3.1. If for any S , there exists 6 € (a.%) such

that

n-1 ¢ (k)
f(b) Z f (ql)( _ql) f(n)(é)

n-1 (k) (n)

Then for any Ca € (953’b), there exists U2 € (0, S4) such that

n-1 £ (k)
f(b) Z f (qZ)( _qz) f(n)(f )
(k) (n)

Proof. Construct

n-1 (k)
f(b) - Zf -

&)
GZ(X)— = (k) =242, xe[a,b]
Then
n-1 £ (k)
S 2O g,
2\54/) — (k) (n)
g(b) Zg (§4) (b 954) g (54)
n (k)
G( ) f(b)_zf (ql)( _ql) f(n)(é)
2(Gh) = = (k) o
g(b)— > g k(lql) (b_ql)k g (54)

n
According to Theorem 2.1, there exists g'e (54 ,b) such that

(0@ 196

Gz 4) =
CI= 0 T 9m,)
But
(n) (n)
Gz(ql) — f (53) _ f (54)

9™ (&) 9™ (&)
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fm (X)

(n)
And 9 (x) is a strictly monotone function on [a,b] from assumptions. Thus

G,(£4)G, () <0

According to the intermediate value theorem of one-variable continuous function, there exists 9, E(ql’g“) such that

GZ (qZ) =0 which yields that Lemma 3.2 holds.

Next we give the main results of this paper.

(n) (n)
Theorem 3.1 Let f(x), g(X) have n_:L-order continuous derivatives at [a’b] and f ( )’ 9 (X) exist in (a’ b),n eN,
g7(x)£0 g UGV 0R) =PV () <0 FPX)IV (%)= U060V (%) >0)

ASX <X, S b . Then for any gelsrl=[an] , there exist 1, X; € [s, r], X <& <X such that

n-1 ¢ (k)
f (XZ Z f (Xl) (XZ - Xl) f (n) (g)

= o)
g(X2 Z g (Xl) (X2 Xl)k g (5)

Proof. In view of Theorem 2.1, there exist ‘fl € [S, ‘f] and 582 € [f, r] such that

n-1 £ (k)
(@206 g

n-1 (k) (n)
O gy 97

9($) -

= _ ()
n-1 (k) (n)

Construct a function on D= [S’ 5] X [5’ r]

n-1 .I:(k) .
o f(ﬂ)—Z D50
(n) (k)

H(a, B) =

Then

f2) (&)
9”& 9" (&)

H(s, &)=

fF™) 1)
9”& 9"(&)

H(. )=
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f(n)(X)

(n) .
Since 9 (x) is a strictly monotone function on [a,b] and $<G<6<g < r, we have that H(s,&)H(S,r) < 0.

Note that H(a, ) is continuous on rectangle D . Thus there exists a point (Xl’ XZ) on the segment AB where A~ C9} B=

(&, r), such that H (Xl' XZ) =0 by the intermediate value theorem of multi-variable functions. Obviously S<X <G <X <T
and
n-1 .I:(k) X
o T00-2 0 B 6y
() D k!
i) =g 549760 0
g(x;) - Z =06 —X)

i.e.

i (k)- (n
g(xz) Zg (1) (X2 Xl) g (5)

We complete the proof.

Remark 3.1 Theorem 3.1 indicates that the inverse proposition of the Taylor-type mean value sets up under the certain
assumptions. Thus Theorem 3.1 extends [7, Lemma 1] from first derivative to higher derivative situation.

[a,b] €(a,b)

Theorem 3.2 Let two functions f(x), g(X) on such

that
(1) When cela XO) , there exists pe(ab) ,such that

satisfy the conditions of Theorem 3.1. Then there eX|st

(2) When e (XO'b) , there exist qe(ab) such that

(k)
(k) (n)

Proof. Construct sets

n-1 f(k)(a)
f(p)- Z (p-a) .,
A=]Ze(ab)|dpe(abl, o K _ 1)

(k) (n) !
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According to Theorem 2.1, we know that

£e(ab)|3qelab), = g<kl><!(q) B ;()g;
90 -3 -0
a=supg pB= |nf§

AB e empty. Define ceh | ceB

We prove that azf by contradiction. If a< ﬂ suppose se(a p) . There exists ge (a,b) such that

n-1 k)
f(b)- Z _(a)( _a)"

_ ")

Clearly

n-1 (k)
(p")- Zf 2 (pr-a

(k) (n)

a<s,&<b " (a,b)

af s o=¢ , by Lemma 3.1 there exists P such that

- _ )

— (k) (n)
a(p) - 29 2 (pr-a) 970

Then 6< @ Which contradicts Se (a,ﬂ) in view of the definition of & . If §<o< b, from Lemma 3.2 there exists
q < (a’ b) such that

n-1 £ (k)"
fo)-3 P o-q

k= o f " (9)

n—.

(k) " (n)

Thus 5218. Which contradicts 5e(a,ﬂ) due to the definition of 'B. Therefore a<p is false. So aZ,B_ Take

X lp.a]lc(a, b). Combining Lemma 3.1 and Lemma 3.2 induces that *o satisfies the requirement of Theorem 3.2. The
proof is complete.

Remark 3.2 1f N = 1, then Theorem3.2 reduces to Theorem 2.2. Hence Theorem 3.2 generalizes the main result of '],
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