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Abstract 
Groundwater is a significant source of water in India, with approximately 65-70% of irrigation and 85-
90% of the rural domestic water supply dependent on groundwater. India is one of the world's largest 
groundwater users, with an estimated annual groundwater extraction of over 230 cubic kilometers (km³). 
This high rate of extraction raises concerns about over-exploitation in many regions. For the effective 
management of groundwater, it is important to model and predict fluctuations in groundwater levels. The 
most widely used technique for time series analysis is, the Box Jenkins’ Autoregressive Integrated 
Moving Average (ARIMA) model is adopted for the study. Results showed that the groundwater levels 
had significantly declined from January 1999 to March 2017. The results indicated that seasonal decline 
in groundwater level for the observation well was 0.034 m/year and average annual decline was 0.7424 
m/yr. The ARIMA candidate model [3, 0, 2] was identified as the best fit model for groundwater level 
time series modelling and forecasting in Devasuguru nala watershed region. 
 
Keywords: ARIMA, ARMA, Groundwater level, time series 

 
Introduction 
In arid and semi-arid environments, groundwater plays a significant role in the ecosystem and 
also plays an important role in irrigated agriculture in India. It has made significant 
contribution in increasing agricultural production and productivity, and has played the vital 
role in achieving the food security in India (Sharma, 2009) [19]. Its contribution in net irrigated 
area is about 61% (CGWB, 2010) [3]. In the last decades, groundwater levels have decreased 
due to the increasing demand for water, weak irrigation management and soil damage. For the 
effective management of groundwater, it is important to model and predict fluctuations in 
groundwater levels. A number of conceptual and physically based groundwater level 
forecasting models have been developed to depict hydrological parameters (precipitation, 
temperature, groundwater level etc) and to characterize the complex structures of aquifers. 
However, one of the disadvantages of these models is that, they require large and consistent 
quality data with detailed understanding of the underlying aquifer system. Time series 
forecasting model are suitable alternatives for limited data environment. They provide a 
powerful method for accurate and reliable results without a costly calibration time (Narayanam 
et al., 2013) [12]. In recent fast, several authors have proved that, time series analysis are very 
effective in planning management strategies for development and utilization of groundwater 
resources (Mack et al. 2013; Patle et al. 2013; Abdulahi et al. 2015) [8, 14, 1]. 
The most widely used technique for time series analysis is, the Box Jenkins’ Autoregressive 
Integrated Moving Average (ARIMA) model. The ARIMA model is statistical based 
stochastic process model. The ARIMA model is popular because of its simplicity and robust 
statistical properties. The ARIMA is a linear prediction model which assumes that, the current 
data has a direct relationship with the past data and its errors (Yurekli et al., 2007, Narayanam 
et al., 2013) [12, 21]. ARIMA has received wide application for forecasting of future trends in 
engineering and hydrological problems (Shahwan and Odening, 2007; Mitosek, 2000) [17, 10]. In 
hydrological studies. 
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ARIMA model was used for forecasting monthly temperature, 

humidity and precipitation (Jahanbakhsh and Babapour, 2003; 

Shamsnia et al., 2011) [5, 18], stream flow data (Karamouz and 

Zahraie, 2004; Samsudin et al., 2011) [6, 15] and groundwater 

level (Panda and Kumar, 2011; Mack et al., 2013; Patle et al., 

2013 and Abdulahi et al., 2015) [8, 14, 1, 13]. 

Panda and Kumar (2011) [13] analysed the groundwater levels 

using seasonal auto regressive integrated moving average 

(SARIMA) for an over exploited aquifer of north-eastern 

districts in Orissa (India). They reported that groundwater 

exploitation vary from 25 to 60 m below surface. They 

showed that SARIMA model was suitable for forecasting the 

temporal behavior of groundwater tables. The above review 

support that non-parametric approaches can be used for 

detecting trend in groundwater levels and Auto Regressive 

Integrated Moving Average (ARIMA) models for forecasting 

groundwater levels were applied several time series models to 

predict groundwater level forecasting in Kashan plain, Isfahan 

province, Iran. The five time series models of autoregressive 

(AR), moving-average (MA), auto-regressive moving-average 

(ARMA), autoregressive integrated moving-average 

(ARIMA) and seasonal auto-regressive integrated moving-

average (SARIMA) were applied. The results showed that the 

AR model with a two-times lag (AR(2)), shows the best 

forecasting of groundwater level for 60 months ahead with a 

high accuracy of R2. According to the results, the average 

groundwater level fluctuation in 2010 and 2016 was 74.58 

and 80.71 m, respectively. With these conditions, the 

groundwater depletion rate would be 1.02 m per year in 2016. 

G. T. Patle et al., (2013) [14] carried out a study for time series 

modelling of groundwater levels for forecasting the pre and 

post-monsoon water levels in Karnal district of Haryana. 

Results showed that the ARIMA (0, 1, 2) was identified as the 

appropriate model for time series modeling and forecasting. 

The forecasted results showed that the pre and post monsoon 

groundwater level in 2050 would decline by 12.97 m and 

12.00 m over the observed water level in 2010, and reach to a 

level of 29.95 m and 28.14 m below ground surface. The 

average rate of decline of pre and post-monsoon groundwater 

level in the district during this period would be 0.32 and 0.30 

m/year, respectively used non parametric tool to study trends 

in rainfall, temperature and groundwater levels from 2005 to 

2014 using Mann-Kendall test, Sen’s slope estimator and 

ARIMA models in the Upper East Region of Ghana. The 

results showed on the seasonal scale, both the Mann-Kendall 

and Sen’s slope estimator have shown rising seasonal trends 

in all the wells except Kabingo which showed a declining 

seasonal trend of 0.312 to 0.097 m/year. Forecast for rainfall 

and groundwater levels using ARIMA models indicates that 

there will be a significant decline in rainfall at a rate of 4.779 

mm/year by 2020 and an average rate of decline of 1.008 m/yr 

at Kabingo where the groundwater level expected to decline 

to about 12 m by 2020.  

 

Study Area 

Study area Devasugur nala watershed covers part of Raichur 

taluk of Raichur district and is located at northern part of 

middle Krishna river basin of Karnataka, India (Fig. 1). 

Raichur district is situated in north-eastern part of Karnataka 

state which is drought prone and falls in the arid tract of the 

country. It falls in the northern maidan region, between 15º 

33’ to 16º 34’ N latitudes and 76º 14’ to 77º 36’ E longitudes. 

The two important rivers in the district are the Krishna and 

the Tungabhadra. The drainage pattern is highly dendritic in 

nature.  

The climate of the district can be termed as mild to severe, 

with mild winters and hot summers. December is the coldest 

month with mean daily minimum of 17.7 °C, while May is the 

hottest month with mean daily maximum temperature of 39.8 

°C. Relative humidity of over 75 per cent is common during 

monsoon period. Wind speeds exceeding 15 km. h-1 are 

common during the months of June and July. The recorded 

annual potential evaporation is around 1950 mm with May 

registering over 220 mm and December around 120 mm. The 

normal annual rainfall of the district is 621 mm. The annual 

number of the rainy days is about 49 days. Nearly 67 per cent 

of the rain is received during the southwest monsoon period 

(June to September) and the northeast monsoon contributes 

about 24 per cent, during the post monsoon period. The 

general slope of the terrain is towards the Krishna River in the 

northern part of the district and towards the Tungabhadra 

River in the southern part. 

The stage of groundwater development in the district, as per 

the norms is only 20 per cent. Except for small pockets in 

Lingsugur and Raichur taluks, which are categorized as 

overexploited, the rest of the district is safe from groundwater 

point of view. The available groundwater resources for 

irrigation are to be utilized by construction of abstraction 

structures of suitable designs based on the hydrogeological 

conditions prevailing in the area. The annual replenishable 

groundwater resources of the district are 673.66 MCM and the 

net annual groundwater draft is 131.77 MCM. As already 

some parts of the district are canal irrigated, conjunctive use 

of surface and groundwater is to be practiced for sustained 

development, and adequate surface water availability to tail 

end users. 

 

Data used  

The observation well located in Raichur of Devasuguru nala 

watershed was selected for the study. The monthly 

groundwater level (Below ground level) of Raichur station for 

19 years i.e., from January 1999 to March 2017 were 

collected from Department of Mines and Geology, Raichur, 

and used for analysis. The location map of the study area and 

observation well is presented in Fig. 1. The time series plot of 

monthly groundwater level for 19 years data is presented in 

Fig. 2. 

 

Methodology  

The Mann-Kendall (Mann, 1945; Kendall, 1975) [9, 7] and 

Sen’s slope estimator (Sen, 1968) [16] were used for trend 

analysis and detection of slope of the trends. Auto Regressive 

Integrated Moving Average (ARIMA) model (Box and 

Jenkins, 1976) [1] was used for groundwater levels modeling 

and forecasting. GIS was used to visualize the spatial 

distribution of the groundwater levels. 

 

Mann-Kendall Test 

The Mann-Kendall test is a non-parametric statistical test for 

trend analysis of time series data. The Mann-Kendall statistic 

provides an indication of whether a trend exists and whether 

the trend is positive or negative. Major advantage of this test 

is that it is free from statistical distributions which are 

required for parametric method (Kendall, 1975) [7]. 

Considering X1, X2........Xn as a time series data, the null 

hypothesis (H0) for the Mann-Kendall test is that there is no 

trend or serial correlation among the analyzed population 

against the alternative hypothesis (H1), which assumes 

increasing or decreasing monotonic trend. 

The Mann-Kendall statistic S is given as 
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 S=∑ ∑ 𝑠𝑔𝑛(𝑋𝑗 − 𝑋𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1        …(1) 

 

Where, S is Mann-Kendall statistics, n is number of data 

points, Xj and Xi are the data values of the time series i and j 

respectively such that i>j, sign is the signum function. The 

application of trend test is done to a time series Xi that is 

ranked from i = 1, 2,………n-1 and Xj, which is ranked from j 

= i+1, 2,……….n. Each of the data point Xi is taken as a 

reference point which is compared with the rest of the data 

points Xj so that, 

 

 Sgn(𝑋𝑗 − 𝑋𝑖) =

{
 
 

 
 1 𝑖𝑓(𝑋𝑗 − 𝑋𝑖) > 0

0 𝑖𝑓(𝑋𝑗 − 𝑋𝑖) = 0

−1 𝑖𝑓(𝑋𝑗 − 𝑋𝑖) < 0
 }

 
 

 
 

    …(2)  

 

A positive value of S indicates an upward trend and negative 

value indicates downward trend (Salmi et al. 2002; Luo et al. 

2008) [6]. For n = 10, the statistic S is approximately normally 

distributed with the mean E(s) = 0 and variance (Var (s)). 

The variance statistic is given as 

 

 Var(S) = 
𝑛(𝑛−1)(2𝑛+5)−∑ 𝑡𝑖(𝑖)(𝑖−1)(2𝑖+5)

𝑚
𝑖=1

18
    …(3)  

 

Where, 𝑡𝑖 is considered as the number of ties up to sample i. 

In this method, the presence of a statistically significant trend 

is evaluated using the 𝑍𝑐 value. 

 

 𝑍𝑐 =

{
 
 

 
 

𝑆−1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 > 0

 0 𝑖𝑓 𝑆 = 0
𝑆−1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 > 0

}
 
 

 
 

       …(4) 

 

It follows that the null hypothesis (No trend) is rejected when 

the Zc value calculated from the above equations is greater 

than in absolute value than the critical value Zα, at a chosen 

level of significance α. In this study, Zα and α were taken as 

±1.96 and 5% respectively as widely used by several authors 

(Patle et al. 2013; Vousoughi et al. 2013) [14, 20]. Positive 

values of Zs indicate increasing trends while negative Zs 

values show decreasing trends. 

 

Sen’s Slope Estimator Test 

True slope in time series data (change per unit time) is 

estimated by procedure described by Sen (1968) [16] in case 

the trend is linear. The magnitude of trend is predicted by the 

Sen’s slope estimator (𝑄𝑖). 
 

 𝑄𝑖 = 
𝑋𝑗−𝑋𝑘

𝑗−𝑘
 𝑓𝑜𝑟 𝑖 = 1,2, … . . . , 𝑁      …(5) 

 

Where, 𝑋𝑗 and 𝑋𝑘 are data values at times 𝑗 and 𝑘 (𝑗 > 𝑘) 

respectively. The median of these 𝑁 values of 𝑄𝑖 is 

represented as Sen’s estimator. 𝑄𝑚𝑒𝑑 = 𝑄(𝑁+1)/2 if 𝑁 is odd, 

and 𝑄𝑚𝑒𝑑 = [𝑄𝑁/2 + 𝑄(𝑁+2)/2 ]/2 if 𝑁 is even. Positive 

value of 𝑄𝑖 indicates an increasing trend and a negative value 

of 𝑄𝑖 shows decreasing trend in the time series. 

 

Auto Regressive Integrated Moving Average (ARIMA) 

Model 
ARIMA model (Box and Jenkins, 1976) [1] is one of the most 

popular tools for modeling of time series data and forecasting. 

It contains autoregressive (AR), integrated (I) and moving 

average (MA) parts which are expressed as ARIMA (p, d, q). 

Where, p is autoregressive part, d is integrated part and q is 

moving average part. In present study, time series of 

groundwater levels represented by Yt were used for modeling 

and forecasting as a function of time. A time series was 

represented by Yt as 

 

 Yt = Y1, Y2, Y3 ….Yt        …(6) 

 

where, Y1, Y2, Y3….. are observation at time t1, t2, t3…. 

The autoregressive part explains the relationship between 

present and previous p observations. If p = 1, then each 

observation is a function of only one previous observation i.e. 

 

 Yt = c + f1Yt-1 + et         …(7) 

 

where, Yt is the observed value at time t, Yt-1 is the previous 

observed value at time t-1, et is random error and c and f1 are 

constants.  

Other observed values of the series can be included in the 

right hand side of the equation if p > 1 

 

 Yt = c + f1Yt-1 + f2Yt-2 + · · · + fpYt-p + et    …(8) 

 

The integrate part of the model determines whether the 

observed values are modelled directly, or differentiated. 

When the series is modelled directly, then d=0. However, in 

practice, d can be 1 or 2. The need for differencing to make 

the series stationary has been thoroughly explained by Dickey 

and Fuller (1979) [4].  

The moving average part of the model identifies the 

relationship between observation and previous q errors, if 

q=1, each observation is a function of only one previous error 

i.e. 

 

 Yt = c + q1et-1 + et         …(9) 

 

where, c is a constant term; et represents the random error at 

time t and et-1 represents the previous random error at time t - 

1. Other errors can be included in the right hand side of the 

equation if q > 1. 

The ARIMA modeling consists of four steps viz., model 

identification, parameter estimation, diagnostic testing and 

forecasting (Patle et al., 2013 and Abass et al., 2017) [14]. In 

model identification, the stationarity and normality of the time 

series data is tested by looking into the behavior of the 

autocorrelation function (ACF) and partial autocorrelation 

function (PACF) after which the tentative model is chosen by 

matching ACF and PACF of stationary series. In parameter 

estimation step, the parameters estimates (p, d, q) are usually 

obtained by the method of maximum likelihood. In the 

diagnostic testing stage, the model adequacy is examined to 

check if the model assumptions about the errors are 

satisfactory. If the selected model is unsatisfactory, the above 

procedure is repeated with a new model until the new model 

fits the assumptions around the errors. Finally best fit model 

will be used for predicting the future trend of the time series. 

The R software was used for building and testing the ARIMA 

model. The groundwater level data were divided into two set 

in the ratio 70:30. The first part was used for model 

identification while the second part was used for validation of 

the model. The goodness fit criteria used to evaluate the 

performance of the models are Root Mean Square Error 

(RMSE), MAPE, MAE, MASE and AIC. The observed and 
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forecasted results were compared in order to select the best 

model. 

 

Results and Discussions 

Water table fluctuation trends 

The monthly groundwater level (below ground level) of 

Raichur station for 19 years i.e., from January 1999 to March 

2017 were collected from Department of Mines and Geology, 

Raichur, and used for analysis. To determine the trend in time 

series data of groundwater level in study area the Mann-

Kendal test (Zc) and Sen’s slope (Q med) estimates were 

applied. Earlier than the application of both Mann-Kendal and 

Sen’s slope estimates, autocorrelation test were carried out on 

groundwater time series data in order to check for randomness 

in the data. The lag-1 serial correlation coefficients of the 

observation well were statistically not significant, hence, no 

need to pre-white the data. Therefore, the statistical tests 

described above were applied to the original time series data. 

The results of the statistical test on the seasonal Zc and Qmed 

of the Mann-Kendall and Sen’s slope of the groundwater 

levels in the study are presented in Table 1. 

Values of Zc recorded for the groundwater data was 0.7424 

which is greater than the P value which was 0.458 at 5% 

significance level. This indicated that there was a significant 

trend in time series data of groundwater level. The positive 

sign suggests that the groundwater level is declining with 

respect to ground surface. Sen’s slope estimator was used to 

find out the slope of trend line (i.e. rate of water level decline, 

m/yr). The positive value of slope indicated the declining 

trend (i.e. depth of water level with respect to ground surface 

is increasing) of ground water level during the period of 19 

years. The results indicated that seasonal decline in 

groundwater level for the observation well was 0.034 m/year 

and average annual decline was 0.7424 m/yr.  

 

Model selection and forecasting of groundwater levels 

Autocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots for groundwater level time series for 

study area was presented in Fig.3 and 4. The plot of ACF 

(Fig. 3) without differencing indicates there are many spikes 

above the confidence limits and ACF coefficient is decaying 

slowly. Fig. 4 shows the plot of PACF drop off sharply after 

the first lag indicates that the time series is more volatile. 

Based on the plots of ACF and PACF the order of p and q 

were decided for developing tentative ARIMA models for 

time series of groundwater levels.  

Eight tentative ARIMA models were selected with different 

values of p, d, q which were within the reasonable range. To 

examine if the selected four models contained any systematic 

pattern which could be removed to improve the predictability 

of selected models, autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of residuals were further 

examined. The ACF and PACF of residuals of selected model 

groundwater level time series are plotted in Fig. 5 and 6. It is 

observed from this figure that ACF and PACF of residuals are 

within the confidence limit and were not significantly 

different from zero except first lag in ACF. This indicated that 

the models were appropriately selected. 

Out of the eight selected models best model for groundwater 

levels time series was selected on the basis of root mean 

squared error (RMSE), mean absolute percentage error 

(MAPE), mean absolute error (MAE) and Akaike's 

Information Criterion (AIC) as indicated in Table 2. The 

model which had lowest value of these parameters was 

selected for validation. The ARIMA candidate model [3, 0, 2] 

is having lowest RMSE (0.8510), MAPE (6.5500), MAE 

(0.5980), MASE (0.8544), AIC (590.75) and Log Likehood (-

288.38). Therefore, ARIMA [3, 0, 2] was identified as the 

best fitted model for groundwater levels time series. 

 

Model validation  

The selected candidate model (ARIMA [3, 0, 2]) was further 

validated by comparing the forecasted and observed 

groundwater levels for the period 2007 to 2017. The model 

validation parameters are presented in Table 3. It is observed 

that RSME, MAPE, MAE, MASE were within the 

permissible limit. Comparison of observed and forecasted 

groundwater levels are presented in Fig. 7. It is observed that 

observed and forecasted groundwater levels are in close 

agreement with R2 values of 0.934. Therefore, ARIMA 

candidate model [3, 0, 2] was selected as best fit model 

groundwater level forecasting in the Devasuguru nala 

Watershed, Raichur District region.  

 

 
 

Fig 1: Location map indicating the study area in Devasugur Nala Watershed 
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Fig 2: Time series plot of monthly groundwater level 

 

 
 

Fig 3: ACF of groundwater level Fig 4: PACF of groundwater level 

 

 
 

Fig 5: Residual ACF of groundwater level Fig 6: Residual PACF of groundwater level 
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Fig 7: Observed and forecasted groundwater levels 
 

Table 1: Mann-Kendall’s statistic’s and sen’s slope for monthly groundwater level 
 

Parameter Zc P value Q med Trend (m/yr) Seasonal Trend (m/yr) Remarks 

Groundwater level 0.7424 0.458 0.034 0.7424 0.034 ** 

Zc: Mann-Kendall test, Qmed: Sen’s slope estimator, m: meter, yr: years,  

**Statistically insignificant trend at 5% significant level 

 
Table 2: ARIMA candidate models 

 

ARIMA Candidate model RMSE MAPE MAE MASE AIC Log Likehood 

ARIMA [1, 0, 1] 0.9317 7.1334 0.6518 0.9313 624.6 -308.3 

ARIMA [1, 0, 2] 0.9184 7.0150 0.6428 0.9184 620.08 -305.04 

ARIMA [2, 0, 1] 0.8994 6.8243 0.6245 0.8923 610.69 -300.34 

ARIMA [2, 0, 2] 0.8986 6.8075 0.6232 0.8905 612.31 -300.16 

ARIMA [3, 0, 1] 0.8990 6.8142 0.6238 0.8913 612.48 -300.24 

ARIMA [3, 0, 2] 0.8510 6.5500 0.5980 0.8544 590.75 -288.38 

ARIMA [4, 0, 1] 0.8958 6.8061 0.6231 0.8902 612.92 -299.46 

ARIMA [4, 0, 2] 0.8952 6.8021 0.6237 0.8906 619.62 -299.31 

 
Table 3: Validation of Selected ARIMA candidate models 

 

ARIMA Candidate model R2 RMSE MAPE MAE MASE 

ARIMA [3, 0, 2] 0.934 0.8711 6.8200 0.6238 0.8654 

 
Conclusion 
Long term groundwater fluctuation trends indicate the effect 
of groundwater withdrawal and recharge on changes in water 
stored in aquifer, which is required for assessing the 
groundwater potential available for utilization. The most 
widely used technique for time series analysis is, the Box 
Jenkins’ Autoregressive Integrated Moving Average 
(ARIMA) model is adopted for the study. The Mann-Kendall 
and Sen’s slope estimator were used for trend analysis and 
detection of slope of the trends. Results showed that the 
groundwater levels had significantly declined from January 
1999 to March 2017. The results indicated that seasonal 
decline in groundwater level for the observation well was 
0.034 m/year and average annual decline was 0.7424 m/yr. 
The ARIMA candidate model [3, 0, 2] was identified as the 
best fit model for groundwater level time series modelling and 
forecasting in Devasuguru nala watershed region. 
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