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Abstract 

This article provides a new series of non-proper partially balanced incomplete block (PBIB) designs 

using star-polygon graph with minimal replications. Constructed PBIB designs are of resolvable design 

category which can be successfully employed in sequential experimentations. A catalogue of PBIB 

designs for 𝑣 (number of treatments) ≤ 100 along with computed efficiencies and average variances is 

also presented. 
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1. Introduction 

The concept of PBIB designs was initially developed by Bose and Nair (1951) [21]. Later, 2-

associate class PBIB designs have been extensively studied in the literature [see e.g., 

Clatworthy (1973)] [4]. Further, 3- or higher-class PBIB designs such as rectangular designs are 

an important class of block designs with factorial structure for experiments with two factors 

[see e.g., Vartak (1955) [41], Sharma and Das (1985) [32], Suen (1989) [36], Srivastava et al. 

(2000) [35], Parsad et al. (2007a, 2007b) [22-23] and references cited therein]. The nested group 

divisible designs, a class of PBIB (3) designs, useful for 3-factor experiments was studied by 

Roy (1953) [30]; Raghavarao (1960) [27]; Miao et al. (1996) [18]; and Kageyama and Singh 

(2002) [9]. More generalized association scheme called extended group divisible (EGD) 

association scheme and related designs are known as extended group divisible (EGD) designs 

[Hinkelmann (1964)] [13]. Many practical applications of these designs were fostered by Parsad 

et al. (2007a, 2007b) [22-23]. circular lattice designs was introduced by Rao (1956) which were 

essentially PBIB(3) designs for 𝑣 =  2𝑛2 treatments, where 𝑛 ≥ 2 and these were further 

generalized by Varghese and Sharma (2004) [39] to accommodate 2𝑠𝑛2 treatments; 𝑛, 𝑠 ≥ 2. 

Varghese et al. (2004) [39] gave a list of PBIB (3) designs and their applications to partial 

diallel crosses. Sharma et al. (2010) [32] introduced 3-associate-class tetrahedral and cubical 

association schemes and related PBIB(3) designs. Some light on investigations of 4-associate 

class PBIB designs was thrown by several authors such as Nair (1951)  [21]; Tharthare (1963, 

1965) [37-38]; Garg et al. (2011) [9]; Vinayaka and Vinaykumar (2021) [42], etc. Further, 

investigations on 2-replicate PBIB designs are limited to only Varghese and Sharma (2004) 

[39]; Sharma et al. (2010) [33]; Kipkemoi et al. (2013, 2015) [16-17] gave concept of affine 

resolvability including relationships between affine resolvability and variance balance using 

parametric relationships. Subsequently, described two methods for constructing affine 

resolvable block designs with different block sizes. Affine α-resolvable PBIB(2) designs has 

been investigated by Kadowaki and Kageyama (2092) [2]. For distinct block sizes, obtained 

some construction methods for affine resolvable rectangular type PBIB designs. Recently, a 

series of affine resolvable 2-replicate PBIB(4) designs with unequal blocks have been obtained 

by Jha et al. (2011) [10] and Vinaykumar et al. (2023) [43]. Apart from being used as block 

designs for multi-environmental trials, PBIB designs can find profound application in 

designing breeding trials i.e., in obtaining mating-environmental designs involving a 

representative sample of crosses and partially replicated (p-rep) designs. 

Here, we extend the work on 3-associate class non-proper PBIB designs further by proposing 

construction of PBIB (3) designs using star-polygon graph.  

https://www.mathsjournal.com/


 

~221~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

These designs fall under the category of resolvable designs 

which is used in information theory i.e., constructing 𝐴2-

codes and low-density parity-check (LDPC) codes [Pei 

(2006); and Xu et al. (2015, 2020)] [46-47, 26] and in sequential 

experimentation over space and time [John and Williams 

(1995) [15]; and Morgan and Reck (2007)] [20]. However, many 

authors, among others, Harshbarger (1949) [12]; Bose and Nair 

(1962) [3]; David (1967) [5]; Patterson and Williams (1976) [45]; 

Williams et al. (1976, 1977) [44-45]; Jarrett and Hall (1978) [14]; 

Varghese and Sharma (2004) [39]; and Sharma et al. (2010) [33] 

were discussed on problems of construction and analysis of 

resolvable incomplete block designs. 

The article is organized as follows: In Section 2, the star-

polygon association scheme is defined along with numerical 

illustration. Section 3 deals with the construction of non-

proper PBIB(3) designs using star polygon graph along with 

example. Section 4 reveals a brief discussion. At last, a table 

of efficient PBIB designs for 𝑣 ≤ 100 has also been obtained. 

 

3. Star Polygon Association scheme 

Let 𝑣 = 10𝑠 (𝑠 ≥ 2) be the number of treatments. Arrange 

these treatments on the vertices of a Star Polygon graph such 

that each vertex contains exactly 𝑚 distinct treatments. Now 

we define the association scheme on these 𝑣 treatments as 

follows: Treatment 𝛽 is the first associate of 𝛼, if 𝛽 lies on the 

same vertex of 𝛼; the second associate, if 𝛽 lies on any of the 

quadruplets (where each quadruplet has precisely four equi-

distant vertices) that intersect the vertex of 𝛼 and third 

associates, otherwise [Vinayaka and Vinaykumar (2021)] [42]. 

The parameters of first kind and association matrices (called 

as parameters of second of kind) of the association scheme are 

given respectively: 𝑣 = 10𝑠, 𝑛1 = 𝑠 − 1, 𝑛2 = 6𝑠, 𝑛3 = 3𝑠, 

and 

 

𝑃1 = [
𝑠 − 2 0 0

0 6𝑠 0
0 0 3𝑠

], 𝑃2 = [
0 𝑠 − 1 0

𝑠 − 1 3𝑠 2𝑠
0 2𝑠 𝑠

] and 𝑃3 =

[
0 0 𝑠 − 1
0 4𝑠 2𝑠

𝑠 − 1 2𝑠 0
]. 

 

 
 

Fig 1: Arrangement of 30 treatments on vertices of a Star Polygon 

 

Illustration 1: Let 𝑣 = 30 (= 10 × 3) treatments are 

arranged on the vertices of a Star Polygon graph such that 

each vertex contains exactly three distinct treatments as 

shown in Figure 1. Here, 𝑛1 = 2, 𝑛2 = 18, 𝑛3 = 9 and the 

three associates of treatments, say, 1, 2, 7 and 22 are as given 

in Table 1. Association matrices of this illustration are as 

follows: 

𝑃1 = [
1 0 0
0 18 0
0 0 9

], 𝑃2 = [
0 2 0
2 9 6
0 6 3

] and 𝑃3 = [
0 0 2
0 12 6
2 6 0

]. 

 
Table 1: Different associates of some treatments 1, 2, 7 and 13 

. 

Treatment 1st associates 2nd associates 3rd associates 

1 2, 3 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30 4, 5, 6, 13, 14, 15, 22, 23, 24 

2 1, 3 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30 4, 5, 6, 13, 14, 15, 22, 23, 24 

7 8, 9 1, 2, 3, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 4, 5, 6, 10, 11, 12, 28, 29, 30 

13 14, 15 4, 5, 6, 7, 8, 9, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 30 1, 2, 3, 10, 11, 12, 19, 20, 21 

 

Method of construction 

Let 𝑣 = 10𝑠 (𝑠 ≥ 2) treatments are arranged on the vertices 

of a Star Polygon graph as indicated in the association 

scheme. By taking all possible triangles as blocks such that 

treatments situated on the three vertices of each triangle taken 

together as a block and also form another set of blocks of the 

design each one corresponding to a quadruplets by taking 

together the treatments that lie on the four vertices (points) of 

each quadruplet as a block, then combine all these blocks 

implies a non-proper PBIB(3) design based on Star Polygon 

association scheme with parameters 𝑣 = 10𝑠, 𝑏1 = 10, 𝑏2 =
5, 𝑟 = 5, 𝑘1 = 3𝑠, 𝑘2 = 4𝑠, 𝜆1 = 5, 𝜆2 = 2, 𝜆3 = 0. 

 

Illustration 2: Let 𝑣 = 30 treatments for 𝑠 = 3 are arranged 

on the vertices of a Star Polygon graph as given in Figure 1. 

By following the procedure of above method, we can get a 

PBIB(3) design based on Star Polygon association scheme 

with block contents as 

 

(1, 2, 3, 16, 17, 18, 28, 29, 30) 

(4, 5, 6, 16, 17, 18, 19, 20, 21) 

(7, 8, 9, 19, 20, 21, 22, 23, 24) 

(10, 11, 12, 22, 23, 24, 25, 26, 27) 

(13, 14, 15, 25, 26, 27, 28, 29, 30) 

(1, 2, 3, 7, 8, 9, 25, 26, 27) 

(1, 2, 3, 10, 11, 12, 19, 20, 21) 

(4, 5, 6, 13, 14, 15, 22, 23, 24) 

(4, 5, 6, 10, 11, 12, 28, 29, 30) 

(7, 8, 9, 13, 14, 15, 16, 17, 18) 

(1, 2, 3, 10, 11, 12, 25, 26, 27, 28, 29, 30) 

(1, 2, 3, 7, 8, 9, 16, 17, 18, 19, 20, 21) 

(4, 5, 6, 10, 11, 12, 19, 20, 21, 22, 23, 24) 

(4, 5, 6, 13, 14, 15, 16, 17, 18, 28, 29, 30) 

(7, 8, 9, 13, 14, 15, 22, 23, 24, 25, 26, 27) 

 

The parameters of this design are: 𝑣 = 30, 𝑏1 = 10, 𝑏2 = 5, 

𝑟 = 5, 𝑘1 = 9, 𝑘2 = 12, 𝜆1 = 5, 𝜆2 = 2, 𝜆3 = 0. 

 

A total of nine PBIB(3) designs for 𝑣 ≤ 100 generated by this 

method are listed in Table 2 along with their average variance 

(�̅�) and canonical efficiency factors (CEFs) as compared to a 
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randomized complete block design. Details on canonical 

efficiency factors is available in Dey (2008). All the designs 

have good efficiency that is within the range of 0.8000 to 

0.9628. 

 
Table 2: PBIB(3) designs based on Star-polygon association scheme 

for 𝑣 ≤ 100 
 

SI. No. s v b1 b2 r k1 k2 λ1 λ2 λ3 �̅� CEFs 

1 2 20 10 5 5 6 8 5 2 0 0.4677 0.8553 

2 3 30 10 5 5 9 12 5 2 0 0.4443 0.9002 

3 4 40 10 5 5 12 16 5 2 0 0.4330 0.9239 

4 5 50 10 5 5 15 20 5 2 0 0.4262 0.9384 

5 6 60 10 5 5 18 24 5 2 0 0.4218 0.9483 

6 7 70 10 5 5 21 28 5 2 0 0.4186 0.9555 

7 8 80 10 5 5 24 32 5 2 0 0.4163 0.9609 

8 9 90 10 5 5 27 36 5 2 0 0.4144 0.9651 

9 10 100 10 5 5 30 40 5 2 0 0.4130 0.9686 

 

Remark 1: For 𝑠 = 1, this scheme also reduced to 2-associate 

class G1 association scheme of Garg and Farooq (2014) [9]. 

Thus obtained design is non-proper PBIB(2) design with 

parameters 𝑣 = 10, 𝑏1 = 10, 𝑏2 = 5, 𝑟 = 5, 𝑘1 = 3, 𝑘2 = 4, 

𝜆1 = 0, 𝜆2 = 2, 𝑛1 = 3, 𝑛2 = 6. 

 

Discussion 

The PBIB(3) designs with unequal block sizes obtained from 

the star polygon association scheme fall into the resolvable 

group of designs with minimal replications (i.e., 𝑟 = 5). The 

benefit of resolvable design is that its replications can be 

applied over different locations or over distinct time periods. 

Further, these are applicable when the experimenter’s facing 

problem of constraint of resources. Moreover, efficiencies of 

these designs are quite high. Hence, these designs can be used 

to test a large number of cultivars in agricultural varietal 

trials. Also, the association schemes of these designs can be 

utilized in plant/animal breeding experiments to construct 

efficient partial diallel cross plans. 
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