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Abstract 
Biochemical process optimization is now a crucial topic for research and development. Statistical 
approaches are currently being used by researchers to more effectively optimize the process, reduce 
waste and unpredictability, improve product quality, and increase process effectiveness. Current 
advancements in this field include the use of machine learning techniques and the Design of Experiments 
(DoE). The significance of statistical approaches as useful instruments for process optimization in 
biochemical research is highlighted in this work. The Taguchi Method, Response Surface Methodology 
(RSM), and Artificial Neural Networks (ANN) combined with Genetic Algorithm (GA) are three popular 
approaches that are focused for further comparison. The study presents an overview of each technique, 
investigates how it might be applied to optimization, examines its benefits and drawbacks, and identifies 
its main distinctions. 
 
Keywords: Process optimization, design of experiment, response surface methodology, ANN-GA 

 
1. Introduction 
Pharmaceuticals, biotechnology, and environmental engineering are just a few fields where 
biochemical processes are essential. These procedures modify biomolecules, their production, 
and their breakdown in order to give the raw ingredients for new biomolecules. They achieve 
this by utilizing living organisms or biological components [1]. Examples include enzymatic 
processes for waste treatment and biocatalysis, as well as fermentation processes for the 
manufacture of medicines, biofuels, and enzymes [2-4]. However, in order to maximize product 
yield, improve process efficacy, and reduce costs, the biochemical processes must be 
optimized. 
In recent years, statistical approaches have become effective instruments for enhancing 
biological processes. In addition, statistical methods, which provide a systematic approach to 
experiment design, response surface modeling, and optimization algorithms, enable 
researchers to efficiently investigate and enhance complex biochemical systems [5]. These 
methods make it possible to identify process variables that have a major impact on the entire 
process, build mathematical models that represent the behaviour of the process, and determine 
the ideal process parameters [6]. 
The review paper provides a summary of the statistical techniques now employed to improve 
the efficiency of biochemical processes, such as design of experiments (DoE), response 
surface methodology (RSM), and optimization algorithms. The goal of this work is to optimize 
biological processes using statistical methods in a variety of ways. It also analyses case studies 
from diverse research works, identifies new trends and developments in the field, and 
investigates the concepts and uses of critical statistical techniques.  
 
2. Process Optimization 
The performance of the systems must be enhanced, and the yield must be increased without the 
cost. The method used for this purpose is called optimization [7]. There is a parameter change 
in the general practice of determining the optimal operating conditions while keeping the 
others constant. This is called the one-variable-at-a-time technique. The main drawback of this 
method is that it does not account for interactions between the variables, and it ultimately  
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has to show all of the parameters' effects on the process. 

Process modification to maximize a collection of parameters 

while adhering to specific limitations is called process 

optimization [8]. The most common goals are minimizing cost, 

maximizing throughout, and/or efficiency. This is one of the 

primary quantitative tools in industrial decision-making [9]. 

Process optimization aims to increase one or more process 

specifications while maintaining all others within their bounds 
[10]. Process optimization tools often use statistical techniques 

to find the best solution. However, this notion is only partially 

accurate. While statistical techniques are essential, it is crucial 

to deeply understand the process before investing time in 

optimization [11]. Throughout time, various methodologies 

have been devised for process optimization. 

 

3. Importance of statistical approach in the optimization 

process 

Optimization involves finding the best conditions for a 

procedure to achieve optimal results [12]. Traditionally, it was 

done by changing one factor at a time while keeping others 

constant, known as the one-variable-at-a-time (OVAT) 

approach. However, OVAT needs to consider the interactive 

effects among variables, leading to an incomplete 

understanding of their impact on the desired outcome [13]. 

Moreover, conducting multiple experiments using OVAT can 

be time-consuming and labor-intensive when studying the 

effects of different independent variables. To overcome these 

limitations, multivariate statistical techniques, such as 

response surface methodology (RSM), have been used to 

optimize analytical procedures [14]. Statistical approaches are 

essential in optimizing chemical experiments for several 

reasons, including identifying critical factors, optimizing 

process parameters, reducing the number of experimental 

runs, predicting process performance, and understanding 

process variability. By employing statistical methods, the 

number of experimental runs can be reduced [15]. Optimization 

techniques aim to find the optimal values of a set of 

parameters that maximize or minimize an objective function. 

These are crucial in statistics for estimation and model fitting, 

allowing for comparing different choices to determine the 

"best" option. 

 

4. Trends in Statistical methods used for process 

optimization 

Several statistical methods are employed for the process 

designing and optimization. Figure.1 illustrates a schematic 

representation of the diverse techniques utilized in process 

optimization. 

 

 
 

Fig 1: Trends in Statistical Methods for Process Optimization 

 

4.1 Design of Experiment (DOE) 
Experimental design is a systematic approach used to achieve 

specific goals or objectives of the proposed work. Design of 

experiments (DOE) is a powerful tool for optimization, 

surpassing the limitations of the classical one-factor-at-a-time 

(OFAT) method. DOE allows for changing multiple 

components simultaneously, making the process more 

efficient [16]. DOE involves strategically planning and 

executing a series of experiments to gather extensive 

information about the effects of multiple parameters on the 

desired output or response. By comparing several factors 

simultaneously and observing their effects, responses can be 

determined, ranked, and statistically analyzed [17]. Compared 

to OFAT, DOE requires fewer experiments, less time, and 

fewer resources while providing the same amount of 

information [18]. Properly planned experiments with sufficient 

sample sizes are crucial to answer research objectives 

efficiently. These techniques, commonly called as DOE, 

involve predicting mathematical models and optimizing the 

process variables based on experimental data [19]. All factor 

combinations are tested in a complete factorial design, while 

in a partial factorial analysis, selected combinations are tested 

based on existing literature or prior knowledge. 

 

4.1.1 Plakett Burman design 

Plackett-Burman Design (PBD) is a two-level experimental 

design that efficiently identifies significant factors in a 

process while assuming negligible interactions. It allows for 

screening multiple variables using minimal experiments [20]. 

The PBD involves actual variables that change concentration 

and dummy variables that remain constant for error 

estimation. A trial matrix represents each variable at high (H) 

and low (L) levels. The effect of each variable is determined 

using a specific equation [4]. Further, it helps eliminate non-
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contributing factors early on and focuses on the significant 

effects more precisely. The following equation determines the 

Effect of each variable. 

 

𝐸𝑋1 =
2(∑ 𝑌𝑋1𝐻− ∑ 𝑌𝑋1𝐿)

𝑁
        (1) 

 

Whereas, EX1 = Effect of variable; YX1-H = yield from the 

trials having a high concentration of variable; YX1−L = yield 

from the trials having a low concentration of variable and N = 

total trials conducted. The student's t-test determines the 

significance level of the Effect of each variable: PBD is a 

reliable method to assess the importance of variables for a 

specific output, reducing the number of experiments 

significantly. It focuses on screening variables directly 

affecting the desired outcome, disregarding interaction effects 
[21]. However, PBD's efficiency is limited as it assumes no 

interactions or only additive effects, potentially enhancing or 

masking the results of analyzed factors. Nonetheless, PBD 

serves as a starting point in experimental design, helping to 

identify non-contributing factors and creating a list for further 

investigation [22]. It is commonly referred to as a "screening 

design" due to its ability to distinguish contributing factors for 

higher yield and has been widely used for screening the 

variables in many biochemical experiments (Table1) 

 
Table 1: Plakett Burman Screening Design approaches for Biochemical experiments 

 

SI. No Name of Process Dependent variable Screened Independent variables References 

1 Hydro distillation process Essential oil yield (%) 

a) Processing time (min) 

b) Ratio Plant material /water 

c) Division of the plant material 

d) Moisture 

e) Individuality 

[17] 

2 Protease production Protease activity (u/ml) 

a) Glucose(g/L) 

b) Corn starch(g/L) 

c) Yeast extract(g/L) 

d) Corn steep liquor(g/L) 

e) Ammonium phosphate(g/L) 

f) Magnesium sulfate(g/L) 

g) Inoculum size(% (v/v) 

h) Incubation period(hours) 

[15] 

3 Laccase Production Laccase yield (U/mL) 

a) Incubation temperature(oC) 

b) Incubation period(hour) 

c) Agitation rate(rpm) 

d) Yeast extract (g/L) 

e) MgSO4.7H2O(mM) 

f) (NH4)2SO4(mM) 

g) CuSO4(mM) 

h) Trace elements (mL/L) 

[20] 

4 lipase production Lipase production (U mL−1) 

a) Glucose (g/L) 

b) Sesame oil (mL/L) 

c) Peptone (g/L) 

d) NaCl (g/L) 

e) MnSO4.H2O (g/L) 

[23] 

5 Ethanol Production Ethanol conc. (g/L) 

a) FeSO4·7H2O (g/L) 

b) CaCl2·2H2O (g/L) 

c) MnCl2·4H2O (g/L) 

d) ZnSO4·7H2O (g/L) 

e) MgSO4·7H2O(g/L) 

f) CoCl2 (g/L) 

g) Fermentation time (h) 

h) KH2PO4 (g/L) 

i) Inoculum level (%) 

j) (NH4)2SO4 (g/L) 

k) NaCl (g/L) 

l) pH 

m) Temperature (◦C) 

n) CuSO4 (g/L) 

o) TRS (%) 

[24] 

 

4.1.2 Taguchi Method 

Dr. Genichi Taguchi developed the Taguchi method, which 

focuses on adjusting control factors to optimize system 

response in the presence of uncontrollable noise factors. It 

utilizes orthogonal arrays to explore the parameter space with 

minimal experiments, reducing time and cost [25]. The Taguchi 

method involves system strategy, parameter designing, and 

tolerance design. It helps identify significant factors with 

fewer experiments, saving time and resources [7]. ANOVA is 

used to analyze data from the Taguchi DOE and optimize 

performance characteristics [26]. Unlike PBD, the Taguchi 

method analyzes main effects and two-factor interactions 

while assuming higher-order interactions to be negligible. It 

focuses on addressing noise factors, which can affect quality. 

The Taguchi method has the advantages of saving 

experimental time, reducing costs, and improving quality. It 

has been successfully applied in optimizing various processes, 

and some recent examples are listed in the table.2 
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Table 2: Taguchi optimization approaches for Biochemical experiments 
 

SI. No Name of Process Dependent variable Independent variable Design References 

1 

Downstream Processes 

for Prodigiosin 

Extraction 

Prodigiosin (mg/L) 

a. The ratio of solid to liquid(g/mL) 

b. Sonication of duty cycle (%) 

c. Acoustic intensity (w/cm2) 

d. Media pH 

Taguchi OA design of L9 

(34) 
[27] 

2 
Bioremediation of crude 

oil-contaminated water 

Degraded crude oil & fish 

growth 

a. Temperature, 

b. Inoculums conc. 

c. Crude oil conc. 

d. Time, 

e. NH4Cl conc. 

f. K3PO4 conc. 

L25Taguchi orthogonal 

array 
[28] 

3 
Acetoin production in a 

bioreactor 
Acetoin conc. (g/L) 

a. Agitation(rpm) 

b. Aeration(slpm) 

c. pH 

d. Fermentation time(days) 

Taguchi L9 orthogonal 

array (OA) design 
[16] 

4 

Extraction yield of 

phycobiliproteins (PBPs) 

from Oscillatoria sp. 

PC extraction (mg/g) a. Solid-to-liquid ratio (g/ml) 

b. Duty cycle (%) 

c. Electrical acoustic intensity 

(w/cm2) 

d. pH 

Taguchi L9 (34)orthogonal 

array (OA) design 
[29] 

PE extraction (mg/g) 

APC extraction (mg/ g) 

5 

Production of 

Astaxanthin by using 

Fruit Waste Extract 

Astaxanthin 

production(mg/g) 

a. Temperature (oC) 

b. Agitation (rpm) 

c. pH 

Taguchi orthogonal array 

L9 
[30] 

6 
Biodegradation of crude 

oil using bacteria 
Crude oil biodegradation % 

a. Temperature, 

b. Salinity 

c. pH 

d. NH4Cl conc. 

e. FeSO4.7H2Oconc 

Taguchi experimental 

design L16 (45) 
[31] 

7 
Inulinase production 

from low-cost substrates 

Inulinase enzyme Activity 

(U/gds) 

a. Incubation Temp(◦C) 

b. Initial consent of KH2PO4 (%) 

c. Initial concent. of Ca2+ (mM) 

d. Initial pH 

Orthogonal array of L9 

(34) design 
[32] 

8 

Production of biogas 

from raw vegetable 

wastes 

Biogas generation (m3 /ton 

of RVW) 

a) Plastic content (%) 

b) h/D ratio 

c) Water content (ml) 

d) Digestion period (Week 

Taguchi L16 (44)orthogonal 

array (OA) design 
[26] 

9 

Production of proteolytic 

enzymes using agro-

industrial by-products 

Proteolytic enzyme activity 

in a submerged medium (U) 

a. Inorganic nitrogen source (0.5%) 

b. Metal ions 

c. Agitation speed (rpm) 

d. Initial pH 

Taguchi L16orthogonal 

array (OA) design 
[33] 

10 
α-Amylaseproduction by 

Bacillus subtilis 
Amylase-smf (U/mg) 

a. Time (hr) 

b. Carbon source (1%) 

c. Nitrogen source (1%) 

d. Amino acid (0.01%) 

orthogonal array L16(45) [34] 

 

4.1.3 Central composite design 

In order to address the limitations of PBD that only considers 

main effects and ignores interactions among factors, the 

Central Composite Design (CCD) was introduced. CCD is 

widely used in Response Surface Methodology (RSM) to 

build quadratic models for the response variable without 

requiring a complete three-level factorial experiment [35]. 

CCD involves a combination of factorial design (two levels), 

center points, and star points. There are three types of CCD: 

Circumcentered CCD (CCC), Inscribed CCD (CCI), and 

Face-centered CCD (CCF) [4]. The design requires a full 

factorial or fractional factorial design, additional points at a 

distance α from the center (often in a star configuration), and 

a central point. The total number of experiments follows a 

specific formula, and the α-values are calculated based on the 

number of variables [36]. All factors are studied at five levels: -

α, -1, 0, +1, and +α. CCD allows for studying both main 

effects and interactions while optimizing the response 

variable in a structured and efficient manner and so widely 

used for designing many biochemical experiments (Table.3) 

 

4.1.4 Box-Behnken design  

Box-Behnken design is an alternative to CCD and does not 

require a quadratic design or an embedded factorial or 

fractional factorial design. In this design, treatment 

combinations are located at the midpoints of the edges of the 

process space and the center. The rotatable design uses three 

levels for each factor [37]. However, it has limited capability 

for orthogonal blocking compared to central composite 

designs. Box-Behnken designs have experimental points on a 

hypersphere equidistant from the center point [35]. Key 

characteristics include a specific formula for the number of 

experiments and adjustment of factor levels at three levels (-1, 

0, +1) with equal spacing [4] and also widely used for many 

Biochemical experiments (Table.3). 

 

4.1.5 Three-level factorial 

A full three-level factorial design is not commonly used in 

response surface methodology (RSM) when the number of 

factors exceeds 2. This is because the number of experiments 

required for this design (calculated as N = 3k, where N is the 

number of experiments and k is the number of factors) 

becomes very large, resulting in decreased efficiency for 

modeling quadratic functions [6]. 
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4.1.6 Doehlert designs 

This design utilizes circular, spherical, or hyper-spherical 

domains based on the number of variables, ensuring 

uniformity within the experimental domain. The design 

requires specific experiments based on factors and central 

point replication. Each variable can be studied at different 

levels, accommodating restrictions or preferences [6]. The 

intervals between levels exhibit a uniform distribution. The 

design allows the matrix to be shifted to another experimental 

region using adjacent points. 

 
Table 3: Design of Experiments (DoE) in Biochemical Research: A Table of Key Examples. 

 

SI. No Name of Process Dependent variable Independent variable Design of Experiment References 

1 Bioethanol production Bioethanol yield (g/L) 

a. HCl concentration (%v/ v) 

b. Sonication time (min) 

c. Yeast inoculum size (g/ L) 

Box-Behnken rotatable design [38] 

2 
Phytoremediation of 

arsenic 

Total arsenic removal 

from soil (%) 

a. Arsenic Conc. in soil (mg 

/kg) 

b. Sampling days(days) 

c. Aeration rate(L/min) 

Box-Behnken rotatable design [39] 

3 Tannase production Tannase activity (U/ml) 

a. Tannic acid conc. (%) 

b. Fermentation period (h) 

c. Temperature (oC) 

d. pH 

Central composite design (CCD) [40] 

4 Ethanol production Ethanol conc. (g/L) 

a. Temperature (◦ C) 

b. Inoculum level (%) 

c. TRS (%) 

d. pH 

Box–Behnken design [24] 

5 Lipase production 
Lipase production 

 

a. Olive oil 

b. Tween 80 

c. KH2PO4 

Central composite rotatable 

design 
[41] 

6 Production of vanillic acid Vanillic acid yield (mg /g) 

a. L-asparagine concentration 

(mmol /L) 

b. pH of solid medium 

c. Moisture content (%) 

Box–Behnken experimental 

design 
[42] 

7 Lipase production Lipase Activity (IU/ml) 

a. Aeration (vvm) 

b. Agitator speed (rpm) 

c. Medium volume (l) 

Face-centered central composite 

design (FCCCD) 
[43] 

8 
Enzymatic Hydrolysis of 

Recycled Paper 

CES (%) 

(conversion efficiency of 

the substrate) 

a. Enzyme concentration 

(FPU) 

b. Temperature (°C) 

c. Stirring rate (rpm) 

Central composite design (CCD [44] 

9 
Production of Metarhizium 

anisopliae conidiospores 

M. anisopliae conidial 

yield 

a. Moisture content (%) 

b. Yeast extract (g) 

c. pH 

23 full factorial central composite 

design 
[13] 

10 Lipase production Lipase activity (U /mL) 

a. Glucose (g/L) 

b. Sesame oil (Ml/L) 

c. Peptone (g/L) 

d. NaCl (g/L) 

e. MnSO4.H2O (g/L) 

25 Central Composite 

Design(CCD) 
[23] 

 

4.2 Optimization Techniques 

4.2.1 Response surface methodologies (RSM) 

RSM (Response Surface Methodology) is a collection of 

statistical techniques for optimizing processes influenced by 

multiple variables. It involves performing designed 

experiments, estimating model coefficients, and predicting 

and validating the response [45]. The RSM is commonly 

employed in biotechnology to optimize culture conditions and 

processing parameters. It generates mathematical models to 

describe the underlying processes and is often visualized 

through response surface graphs [46] 

The relationship between the response and the input is given 

in Eq. (2) 

 

η=f(x1, x2, x3… xn) +ε          (2) 

 

Whereas, η is the response, f is the unknown response 

function, x1,x2,.xn denote the independent variables, n is the 

number of the independent variables, and ε is the statistical 

error. The model used in RSM is generally a full quadratic 

equation or the diminished form of this equation. The second-

order model can be written as follows 

𝑦 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
𝑘
𝑗=1 + ∑ 𝛽𝑖𝑗

𝑘
𝑗=1 𝑋𝑗

2 + ∑ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗𝑖<1    (3) 

 

Whereas β0, βi, βii, and βij are regression coefficients for 

intercept, linear, quadratic, and interaction coefficients, 

respectively, and Xi and Xj are coded independent variables. 

The matrix notation of the model is given in Eq. (4): 

 

y= Xβ + ε            (4) 

 

The above equations can be solved by the least squares 

method (MLS). In MLS, it is assumed that random errors are 

identically distributed with a zero mean and a common 

unknown variance and are independent of each other. 

 

εi = yi − yî            (5) 

 

Our criterion for choosing the estimates is that they should 

minimize the sum of the squares of the residuals, which is 

often called the sum of squares of the errors and is denoted by 

SSE.  

 

SSE = ∑ 𝜀𝑖
2𝑛

𝑖=1            (6) 
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The overall predictive capability of the model is commonly 

explained by the coefficient of determination (R2) and 

Absolute average deviation𝐴𝐴𝐷. 
 

𝐴𝐴𝐷 =  {[∑ (|𝑦𝑖,𝑒𝑥𝑝 − 𝑦𝑖,𝑒𝑥𝑝|)
𝑝
𝑖=1 ] 𝑝}  ×⁄ 100    (7) 

 

The response surface plot and contour plot can visualize the 

predicted model equation. The response surface plot is the 

theoretical three-dimensional plot showing the relationship 

between the response and the independent variables. The two-

dimensional display of the surface plot is called a contour 

plot, and in the contour plot, lines of constant response are 

drawn in the plane of the independent variables [47]. RSM has 

been successfully applied in various Biochemical studies, 

including medium formulation and improving microbial 

processes (Table.4). However, RSM has limitations in 

predicting optimal formulations for complex systems and 

studying interactions involving multiple variables. 

Researchers have increasingly turned to Artificial Neural 

Networks (ANN) to address these limitations as an alternative 

technique. 

 

4.2.2 Artificial Neural Network (ANN)  

An artificial neural network (ANN) is a computational model 

inspired by biological neural networks. It can be used to 

estimate, predict, control, and adjust process parameters [48]. 

ANN learns from data without the need for prior knowledge 

or equations and can handle large amounts of data, excel at 

pattern recognition, and work with complex systems [49]. The 

architecture of ANN includes input, hidden, and output layers 

of neurons. ANN can be trained in supervised, unsupervised, 

or reinforcement learning conditions [50]. It has been 

successfully applied in system design, modeling, 

optimization, and control. ANN's ability to filter noisy signals 

and generalize information through training makes it valuable. 

However, proper training is crucial for efficient operation, and 

input data quality determines output data quality. 

 

4.2.2.1 Genetic algorithm (GA)  

In the optimization process using Genetic Algorithm (GA), a 

trained mathematical model is used as a fitness function to 

determine the optimal concentration of medium components 
[4]. GA simulates the mutation process and is based on the 

principle of "survival of the fittest." It modifies a population 

of individual solutions by selecting parents, combining them 

through crossover, and applying random changes through 

mutation [51]. This iterative process allows the population to 

evolve towards the most favorable solution and is widely used 

for optimization in Biochemical experiments (Table.4). GA is 

particularly useful for solving optimization problems that 

involve non-differentiable, discontinuous, stochastic or highly 

nonlinear objective functions [52] 

 
Table 4: A summary of designs and optimization techniques used for Biochemical studies 

 

S. N. Name of Process Design Optimization technique References 

1 Biocoagulation-flocculation of municipal solid waste CCD ANN, GA [52] 

2 Bioethanol production from food industry waste BBD ANN, GA [38] 

3 ε-polylysine production CCD ANN, GA [48] 

4 Biogas production CCD ANN, GA [53] 

5 Bioethanol production from sunflower stalk CCD RSM [54] 

6 Hydrogen production BBD RSM [55] 

7 Hydrogen production BBD RSM [56] 

8 Lipase production FCCCD RSM [43] 

9 lipase production CCD RSM [23] 

10 Ethanol production from wheat straw BBD RSM [24] 

11 Enzyme production CCD ANN, GA [57] 

12 Ethanol production from breadfruit BBD ANN, GA [58] 

 

5. Comparison of different optimization techniques 

The Taguchi Method assumes that the input factors 

significantly impact the output response and that the factors 

can be studied independently [59]. RSM assumes that the 

relationship between input factors and output response is 

continuous and can be modeled using polynomial equations 
[60]. Conversely, ANN does not make strong assumptions 

about the relationship between inputs and outputs, allowing 

for more flexibility in modeling complex and nonlinear 

relationships [48]. The Taguchi Method employs orthogonal 

arrays to design a limited number of experiments that 

efficiently cover the entire parameter space [61]. RSM typically 

uses factorial designs or central composite designs to explore 

the response surface and estimate model coefficients. ANN 

does not require a specific experimental design as it can learn 

from existing data, but it may benefit from a well-designed 

dataset for training. The Taguchi Method focuses on 

determining the optimal parameter settings that minimize the 

effects of uncontrollable factors and maximize the signal-to-

noise ratio [7]. RSM aims to model and predict the response 

surface using regression analysis, enabling optimization based 

on the estimated model. ANN is a versatile modeling 

technique that can capture complex relationships between 

inputs and outputs without requiring explicit functional forms, 

making it suitable for nonlinear and high-dimensional 

problems. The Taguchi Method employs an objective function 

based on the signal-to-noise ratio to evaluate and optimize the 

process. It uses methods like parameter design and tolerance 

design to find the optimal parameter settings [62]. RSM utilizes 

statistical techniques such as gradient-based optimization or 

desirability functions to find the optimal response values. 

ANN employs optimization algorithms such as back 

propagation or genetic algorithms to adjust network weights 

and biases iteratively, aiming to minimize specific loss or 

error functions. 

 

6. Conclusion 

Due to its many benefits over the more conventional one-

variable-at-a-time optimization approach, statistical 

approaches have been widely accepted for optimizing 

analytical processes. These advantages include deriving 

useful knowledge from constrained experiments and figuring 

out how various variables interact to influence results. In this 

method, the experimental optimization can be selected by 

selecting an adequate experimental design, fitting an 

appropriate mathematical function, and assessing how well 

the model predicts experimental data. By analyzing the effects 

of the experimental conditions and their statistical 
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significance, experimental design is essential in discovering 

important factors. Based on the fitted model, it also aids in 

determining the location and characteristics of prospective 

local optima. The review illustrated examples of factorial and 

optimization experimental design applications.In addition to 

helping to assess model performance and spot potential outlier 

experiments, using statistically significant model coefficients 

helps to prevent over fitting. Both newcomers and 

experienced practitioners must understand the basic ideas of 

linear algebra and statistics that underlie experimental design 

because specialized experimental design software is 

anticipated to become increasingly common in the future. 
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