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Abstract 

Life expectancy at birth reflects the overall mortality level of a population. Three important demographic 

indicators—Life Expectancy at Birth, Death Rate, and Infant Mortality Rate (IMR)—were examined for 

1971 to 2020 and projected in this study for the years 2021 to 2030. The projections that went along with 

the forecasts were created using statistical models. The Auto-regressive Integrated Moving Averages 

(ARIMA) is discussed in this article for the selected demographic variables. We also used the AIC and 

BIC to find the best-fitting ARIMA model for the data and provide the life expectancy at birth, Death 

rate and IMR forecasts for future years. The ARIMA (0, 2, 1), (3, 1, 0), and (3, 1, 0) models were also 

found to be the best-fitting models for India's Life expectancy at birth, Death rate and IMR respectively. 

The life expectancy at birth is best fits compared to other variables based on the MAPE values. 
 

Keywords: Life expectancy, Death rate, IMR, ARIMA, AIC, BIC, MAPE 
 

Introduction 

In 2019, the average life expectancy at birth was 72.8 years, an increase of about 9 years since 

1990. Current predictions indicate that additional advancements in survival will lead to an 

average life expectancy of around 77.2 years worldwide in 2050. According to World 

Population Prospects (2022), the number of fatalities worldwide is predicted to rise during the 

following decades, from 67 million in 2022 to 92 million in 2050, as a result of the world 

population's rapid growth and aging.  

Box and Jenkins (2015) [4] created the Autoregressive Integrated Moving Average (ARIMA) 

model for univariate forecasting. In this approach, a time series is defined in terms of its 

present and past lagged values of a white noise error term (the moving average component), as 

well as its previous lagged values (the autoregressive component). According to Peter 

Pflaumer (1992) [12], the Box-Jenkins technique is equivalent to a straightforward trend model 

for creating long-term population estimates in the United States, and it hasn't underperformed 

when compared to more intricate demographic models. There have been various time-series 

analyses of the German unemployment rate, according to Michael Funke (1992) [9]. In order to 

fit and predict the German unemployment rate, the multiple-impact ARIMA model 

outperforms the univariate ARIMA model. According to du Preez and Witt (2003) [6], ARIMA 

models perform better in forecasting than multivariate models. In the case of Pakistan, Zakria 

and Muhammad (2009) [14] used Box-Jenkins ARIMA models to study population dynamics 

using a data set spanning 1951 to 2007, coming to the conclusion that the ARIMA (1, 2, 0) 

model was the most accurate. 

 Ayele and Zewdie (2017) [1] used yearly data from 1961 to 2009 using Box-Jenkins ARIMA 

models to explore the size and distribution of the human population in Ethiopia. They came to 

the conclusion that the ARIMA (2, 1, 2) model was the most effective model for population 

prediction and forecasting in Ethiopia. In Nyoni. T (2019) [11], we model and estimate the total 

population for the next three decades using the Box-Jenkins ARIMA approach, utilizing yearly 

time series data on the total population in India from 1960 to 2017. According to Najla Salah 

Madlul et al.'s (2020) [10] statistical evaluations of the accuracy of prediction models, the 

findings of the model ARIMA (1.0.1) are the most practical for predicting the development of 

wheat output in Iraq until 2028.  

https://www.mathsjournal.com/
https://doi.org/10.22271/maths.2023.v8.i5Sn.1322


 

~1010~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

The best forecasting model is the NNAR (4, 4, 4, 4, 4, 4), (4, 

4), (4, 4), (11, 6), (10, 6, 10, 6, 10, 6), (5, 6, 10, 6), (6, 4) 

models by Bheemanna and Megeri M N (2023) [2]. This 

Neural Network Auto-regression (NNAR) model is used to 

predict demographic and economic factors for the next ten 

years. The study reveals that except for GDP all the selected 

variables were AM model fitted well and comparison shows 

rural population is best fitted as compared to the entire 

demographic and economic variable based on the MAPE by 

using Fuzzy time series model by Megeri M N and 

Bheemanna (2023) [2]. 

In this study, an attempt is made to study the model and 

forecast of important demographic variables using the 

ARIMA model. The first section contains the introduction, the 

second contains the methods and materials, the third contains 

a summary and discussion, and the final contains the 

conclusions. 

 

Methods and Materials 

The Sample Registration System (SRS) publication was used 

to obtain information on the life expectancy at birth, the death 

rate, and the infant mortality rate (IMR). In order to explore 

the forecasting of this variable, the autoregressive models 

were used to survey the sample and predict the variable's life 

expectancy at birth, death rate, and IMR from 1971 to 2020. 

Time series data are analyzed using the statistical models of 

autoregressive (AR), moving average (MA), autoregressive 

moving average (ARMA), and autoregressive integrated 

moving average (ARIMA), which combine the two. 

The Box-Jenkins approach has become more well-liked. This 

approach is based on the output of models like moving 

average (MA), integrated (I), and autoregressive (AR). 

Databases that are not stationary must be differentiated until 

they are. After that, we checked that our data was stationary 

using the ADF and PP tests before running Box-Jenkins on it. 

Models are found using AIC and BIC. After estimating the 

model's parameters using Maximum Likelihood Estimation, 

diagnostic tests should be carried out using R programming 

and the Box-Ljung test. Forecasts are produced if the model is 

acceptable; if not, it is important to look into other models. 

MAPE stands for Mean Absolute Percentage Error. 

 

Theoretical Background 

Time series analysis can produce a reasonably accurate short-

term forecast given a big enough amount of data, as Granger 

and Newbold (1986) [7] showed. The ARIMA model is 

versatile and popular in univariate time series analysis. The 

ARIMA model combines three processes: the moving 

average (MA), the autoregressive (AR), and the differencing 

process. 

 

Autoregressive (AR) model  

The Autoregressive model of order p, AR (p), can be 

expressed as: 

 

𝑌𝑡 = 𝛽0 + 𝛽1 𝑌𝑡−1 + 𝛽2 𝑌𝑡−2 + ⋯ + 𝛽𝑝 𝑌𝑡−𝑝 + ε𝑡  

 

Where 𝛽0 is constant and 𝛽1, 𝛽2,….., 𝛽𝑝 are the coefficients 

In this model, all previous values can have additive effects on 

this level  𝑋𝑡, soε𝑡 a random error process consisting of 

independently and identically distributed (iid) random 

variables with E (ε𝑡 ) = 0 and V (ε𝑡 ) =𝜎2 i.e. ε𝑡 ~N (0, 𝜎2). 

 

Moving Average (MA) model: The Moving Average model 

of order q, MA (q), can be expressed as: 

𝑌𝑡 = ε𝑡 + 𝜃1 ε𝑡−1 + 𝜃2 ε𝑡−2 + ⋯ + 𝜃𝑞 ε𝑡−𝑞 

 

Where 𝜃1 , 𝜃2 , … . . , 𝜃𝑞 are coefficients  

 

The independent variables in this model are the past errors 

asε𝑡 a random error process. 

 

Autoregressive Moving Average (ARMA) model  

A time series {𝑌𝑡} is said to follow an Autoregressive Moving 

Average model of order p and q, can be expressed as 

 
 𝑌𝑡 = 𝛽0 + 𝛽1 𝑌𝑡−1 + 𝛽2 𝑌𝑡−2 + ⋯ + 𝛽𝑝 𝑌𝑡−𝑝 + ε𝑡 + 𝜃1 ε𝑡−1 + 𝜃2 ε𝑡−2 + ⋯ + 𝜃𝑞 ε𝑡−𝑞 

 

Autoregressive Integrated Moving Average (ARIMA) 

model  

By allowing the data series to differ from one another, the 

ARIMA model can be extended to non-stationary series. The 

ARIMA (p, d, q) is the name of the generic non-seasonal 

model. In this model, p is the order of Autoregressive, d is the 

differencing, and q is the order Moving Average order. 

 

(1 − ∑ 𝛽𝑖𝐿
𝑖

𝑝′−𝑑

𝑖=1

) (1 − 𝐿)𝑑𝑌𝑡 = 𝛽0 + (1 + ∑ 𝜃𝑖𝐿
𝑖

𝑞

𝑖=1

) ε𝑡 

 

Where p =𝑝′ − 𝑑 

In addition to the fact that the time series literature provides a 

range of methods for model evaluation, we decided to employ 

autocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots in our example. This approach was 

created by Box and Jenkins (1976) in their pioneering study 

on the ARIMA model. The correlation between two 

successive observations in a time series can be used to define 

ACF. It determines the linear relationship between two 

observations—one made at time t and the other at, say, a 

distance of k—made at different points in space. The PACF 

varies from the ACF in that it ignores the impact of other 

intermediate data in between and solely assesses the 

correlation between the current and previous observations of a 

time series at a distance of k (say). 

 

Akaike Information Criterion (AIC) and Bayesian 

Information Criteria (BIC) 

The Akaike Information Criterion (AIC) and Bayesian 

Information Criteria (BIC), which are the two most widely 

used model selection criteria, are each defined as follows: 

 

𝐴𝐼𝐶 = 2𝑚 − 2ln (𝐿) 

 

𝐵𝐼𝐶 = ln (𝑛)𝑚 − 2ln (𝐿) 

 

Where L is the model's maximum likelihood function value, 

m is the number of parameters estimated by the model, and n 

is the number of observations (sample size).  

 

Box-Ljung test 

A diagnostic technique for evaluating the lack of fit in a time 

series model is the Box-Ljung test (1978) [5]. A time series' 

residuals are subjected to the test after an ARMA (p, q) model 

has been fitted to the data. The analysis determines if the 

residuals exhibit autocorrelation. If the autocorrelations are 

very modest, then the model does not show a substantial lack 

of fit, we find. 

In general, the Box-Ljung test is defined as follows: 

H0: The model does not exhibit a lack of fit. 

https://www.mathsjournal.com/
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H1: The model exhibits a lack of fit. 

Test Statistic: Given a time series Y of length n, the test 

statistic is defined as: 

 

𝑄 = 𝑛(𝑛 + 1) ∑
�̂�2

𝑛 − 𝑘

𝑚

𝑘=1

 

 

Where �̂�2 the series estimated auto correlation at lag k, and m 

denotes the number of lags being tested for desired level of 

significance 𝛼. 

 

Critical Region: The Box-Ljung test rejects the null 

hypothesis (indicating that the model has significant lack of 

fit)  

 

If 𝑄 > χ1−α,h
2  

 

Where χ1−α,h
2  is the chi-square distribution table value with h 

degrees of freedom and significance level α. Since the test is 

run on residuals, the degrees of freedom must take into 

account the estimated model parameters for h to equal m-p-q, 

where p and q represent the number of parameters from the 

ARMA (p, q) model that were used to fit the data. 

The Mean Absolute Percentage Error (MAPE) 

In the present study, the Mean Absolute Percentage Error 

(MAPE) between the predicted value and the actual value is 

also assessed. For calculating mean absolute percentage error 

(MAPE), use the equation  

 

𝑀𝐴𝑃𝐸 =
1

𝑛
(∑ |

𝐴𝑡−𝐹𝑡

𝐴𝑡
|𝑛

𝑡=1 )*100 

 

Where At denotes the actual value, Ft is the predicted value, 

and n denotes the number of fitted values.  

 

Results and Discussion 

The variables considered for analysis in this study include 

Life expectancy at birth, Death rate, and IMR variables from 

1971 to 2020. The below Fig. 1, demonstrates the life 

expectancy at birth, which has increased by 20 years in the 

last 50 years, initially from 48.8 years to the current 70 years. 

Additionally, the death rate and IMR have both declined 

during the past 50 years. 

 

Stationary of the series: One can refer to a statistical series 

as stationary if its mean, variance, and covariance do not 

fluctuate over time or are not time-dependent. 

 

 

 
 

Fig 1: The observed data for life expectancy at birth, Death rate and IMR variables from 1971 to 2020. 

 

When applying ARIMA modeling, the potential for stationary 

is visually assessed in Figure 1. The time series' upward 

trends in movement suggest that some of its features may be 

non-stationary. Particularly, the series displays distinctive 

average values and fluctuations in various sample sub-

periods. 

The above-mentioned intuitive conclusion is put to the test 

using a correlogram of the series that shows the 

https://www.mathsjournal.com/
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autocorrelation function (ACF) for 16 lags for these three 

variables (Fig. 2). The series has non-stationarity because the 

correlogram begins with a very high correlation coefficient of 

0.99, the ACF plot gradually declines, and the series has a 

well stated autocorrelation even for several lags. 

 

 
 

 
 

Fig 2: Autocorrelation Function for Life expectancy at birth, Death rate and IMR variables (Actual values) 

 

The study also examines the sample autocorrelation 

coefficients' statistical significance to determine whether or 

not they accurately depict the population's actual ACF plot. 

According to statistical theory, when dealing with a random 

process, the ACF can be generally characterized by the 

normal distribution, which has a zero mean and a variance of 

(1/n), where n is the sample size (Gujarati, D.N., 1995) [8]. 

The standard error of the ACF can then be calculated as 1/50 

= 0.1414. According to the tabular values for the normal 

distribution, the 95% confidence interval for the ACF is equal 

to 1.96*0.1414 = 0.277. 

If the computed ACF is inside the confidence interval, it 

cannot be ruled out that the population's true ACF is zero (H0: 

k = 0). For these three varaibles of the ACF, the first twelve 

lags are statistically significant (i.e., different from zero), the 

coefficients from lags 13 to 16 lie within the confidence 

interval, and then these coefficients are once more different 

from zero, as shown in Fig. 2. The high number of statistically 

significant coefficients serves as more evidence of the series' 

non-stationary character.

 
Table 1: Augmented Dickey Fuller (ADF)and Phillips-Perron(PP) test for stationarity (Actual values) 

 

Variables ADF P values PP P values 

Life expecatncy at Birth -0.72901 0.9619 -2.1263 0.9625 

Death rate -1.5786 0.7433 -9.4597 0.5472 

IMR -1.8833 0.6211 -15.119 0.2002 

  

The results of the ADF test for each variable are shown in the 

first column of Table 1, which shows that the null hypothesis 

that a unit root exists cannot be rejected. This test indicates 

that the series is non-stationary. The results are additionally 

tested using the Phillips Perron (PP) test because the ADF test 

is known to have a p value higher than the significance level 

of 0.05. 

In all of the variables of the PP test, the p values obtained is 

greater than the significance level of 0.05, which suggests that 

the null hypothesis of a unit root cannot be rejected, as shown 

in the third column of Table 1. As a result, this test also 

indicates that the series is non-stationary. As previously 

stated, the Box–Jenkins technique cannot be used if the time 

series is non-stationary. This means that the series must be 

transformed in order to become stationary, which is executed 

by differencing the originaseries (see Table 1). 
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Fig 3: The Second difference data for Life expectancy at birth and first difference data for Death rate and IMR variables. 
 

Fig. 3 illustrates that all the variables of the time series Xt are 

stationary by a second difference for life expectancy at birth, 

first difference for Death rate and IMR and do not have a 

trend, their movements are wave-like.  

When the series is second and first differenced, one cannot 

observe a regular movement of the autocorrelation 

coefficients, which begin with low values, decreasing quickly 

to zero, and then, up to lag 16, moving in a wave style. The 

preceding findings illustrate that stationary can be achieved 

by second-diffencing for life expectancy at birth and first 

diffencing for Death and IMR, the original time series. Next, 

we examine the appearance of the ACF and PACF in the 

differenced series and compare the two plots in Fig.4 to 

determine the value of the other two ARIMA model 

parameters, p and q. 
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Fig 4: Autocorrelation Function and Partial Autocorrelation Function for Life expectancy at birth (second difference), Death rate and IMR (first 

difference) 
 

The ADF test and the PP test are used to compare the results. 

Table 2 shows that the p values less than the significance 

level of 0.05, implying that the second-differenced series is 

stationary. d = 2 for life expectancy at birth, the first 

differenced series is stationary for Death rate and IMR in the 

ARIMA model. To determine the same the Box–Jenkins 

methodology can be used. 

 
Table 2: Augmented Dickey Fuller(ADF) and Phillips-Perron (PP) 

test for stationary (second difference for Life expectancy at birth and 

fourth difference for Death rate and IMR). 
 

Variables ADF P values PP P values 

Life expecatncy at Birth -4.2414 0.01 -57.812 0.01 

Death rate -5.0302 0.01 -56.249 0.01 

IMR -4.9184 0.01 -62.077 0.01 

 

Model selection: For model selection the study uses the AIC 

and BIC, the minimum values of these test gives the model 

which is best fitted to all selected variables. 

The AIC and BIC are then used to find the best ARIMA 

parameters (p, d, q). The study computed the AIC and BIC 

using various combinations of (p, d, q). Then, from all the 

models analyzed, choose the best-fitting ARIMA model with 

the lowest AIC and BIC. 

The ARIMA (0, 2, 1) is the best-fitted model for the life 

expectancy at birth and the ARIMA (3, 1, 0) is the best-fitted 

model for Death rate and IMR according to the AIC and BIC 

(see Table 3). Table 3 shows the ARIMA (0, 2, 1), (3, 1, 0) 

and (3, 1, 0) parameters estimates. Further, models estimated 

these coefficients and are presented in Table 4 below. 

 
Table 3: Evaluation of various ARIMA models (without a constant) 

 

Variables Model AIC BIC 

Life expectancy at Birth 

(0, 2, 1) -16.7777 -13.04 

(0, 2, 2) -14.95 -9.33603 

(0, 2, 3) -12.96 -5.47592 

Death rate 

(2, 1, 0) 89.59356 95.26902 

(3, 1, 0) 74.64524 82.21252 

(4, 1, 0) 76.59962 86.05872 

IMR 

(2, 1, 0) 288.6968 294.3722 

(3, 1, 0) 269.6528 277.22 

(4, 1, 0) 271.5975 281.0566 

 

Estimation of Coefficient for selected Model: The 

estimation of the coefficients from Maximum Likelihood 

Estimator for these three variables.  

The Maximum Likelihood Estimator estimated the modeling 

results of an ARIMA (0, 2, 1), (3, 1, 0) and (3, 1, 0) process, 

which are provided in Table 4. The estimated coefficient of 

MA (1), MA (2), MA (3), MA (4) and MA (5) components 

for these three are statistically significant at a 1% and 5% 

level of significance. 
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 Table 4: The parameters estimated by Maximum likelihood Estimator for these three variables 
 

Variables Model 
 

coefficients Standard Error Z value Pr(>|z|) 

Life expectancy at Birth (0, 2, 1) MA(1) -0.8293 0.10046 -8.2548 2.2e-16 *** 

Death rate 

(3, 1, 0) AR(1) -0.097531 0.129535 -0.7529 0.4515 

 
AR(2) -0.168646 0.135292 -1.2465 0.2126 

 
AR(3) 0.635398 0.128268 4.9537 7.282e-07*** 

IMR 

(3, 1, 0) AR(1) -0.23689 0.11866 -1.9964 0.04589 * 

 
AR(2) 0.22579 0.1148 1.9668 0.04920 * 

 
AR(3) 0.64757 0.11878 5.4518 4.987e-08 *** 

Note: - *** 1% and * 5% level significance 

 

Diagnostic check 

Diagnostic checking would be required once the models have 

been calculated to ensure that they are reasonably acceptable 

and statistically significant for predicting.  

The Box-Ljung test is a statistical analysis used to examine if 

serial correlation or independently spread distribution 

characterizes the residuals from a time series model. The Box-

Ljung test results for the three variables are explained as 

follows: The life expectancy at birth Box-Ljung test statistic 

is 17.799 with 15 degrees of freedom. 

 
Table 5: The Box-Ljung test for residuals are Independent 

 

Variables 
Statistic 

test 

D

F 

p 

value 

Chi-square table 

value 

Life expecatncy at Birth 17.799 15 0.2734 19.67514 

Death rate 13.585 13 0.4037 22.36203 

IMR 19.014 13 0.1227 22.36203 

 

The p-value for this is 0.2734. We cannot decide to reject the 

null hypothesis since the p-value is higher than the 

significance level of 0.05. This implies that the life 

expectancy residuals are probably independent. The death rate 

has a Box-Ljung test statistic of 13.585 with 13 degrees of 

freedom. The corresponding p-value is 0.4037. We are unable 

to reject the null hypothesis since the p-value exceeds the 0.05 

criterion of significance. This means that the death rate 

residuals are likely to be independent. With 13 degrees of 

freedom, the Infant Mortality Rate (IMR) Box-Ljung test 

statistic is 19.014. The corresponding p-value is 0.1227. We 

fail to reject the null hypothesis since the p-value exceeds the 

0.05 criterion of significance. As a result, it seems possible 

that the IMR residuals are independent(see Table 5). 

Box-Ljung test statistic for all the variables and the 

corresponding p values, which is much larger than 0.05 and 

the Box-Ljung test is less than the Chi-square critical values, 

Then, we fail to reject the null hypothesis of the test and 

conclude that our residuals are independent, which indicates 

that our fitted model is adequate.  

 
Table 6: Life expectancy at birth forecast for the next 30 years using ARIMA model. 

 

 
Life expectancy at Birth 

Year Forecasted Lower Upper 

2021 70.27 69.89 70.65 

2022 70.27 69.9 71.13 

2023 70.83 70.05 71.6 

2024 71.1 70.14 72.06 

2025 71.38 70.23 72.53 

2026 71.66 70.31 73 

2027 71.93 70.39 73.48 

2028 72.21 70.45 73.97 

2029 72.49 70.52 74.46 

2030 72.76 70.57 74.95 

 

Table 6 shows that India's life expectancy at birth was 70 

years in 2020, it is an increase to 71.38 years in 2025 with 

1.97 per cent increase from the last five years, and predicted 

to 72.76 years by 2030. 3.94 per cent increase from the last 

decade. Over the next 10 years, life expectancy in India has 

3.94% increases; the average life expectancy is 72.6 years. 

The projected increase in life expectancy at birth from 70.27 

years in 2021 to 72.76 years in 2030 usually indicates an 

upward trend. This predicts that over the following decade, 

health outcomes and living conditions will generally improve. 

The projected life expectancy steadily rises each year, which 

points to ongoing advancements in healthcare and medical 

conditions. For instance, life expectancy has increased by 

about 2.5 years in the last ten years. Given that more people 

would be living longer and needing healthcare and retirement 

benefits, the rising life expectancy suggests a potential strain 

on healthcare systems and pension schemes. Longer life 

expectancy creates a higher return on human capital, thereby 

encouraging more investment in education and health, thus 

stimulating economic growth and also lowering the mortality 

rate.  

Figure 5 shows that the life expectancy at birth will be slowly 

increasing due to the death rate and IMR variable slowly 

decreasing because of the better health care ad hygiene, 

healthier lifestyles, diet, and improved medical care. We have 

access to antibiotics and vaccines, clean water, plentiful and 

more nutritious food, and we know that exercise and smart 

life choices improve our quantity and quality of life. 

Table 7 shows that in 2020, the death rate in India was 6.0 per 

1,000 people; it is predicted to fall by 5 per 1,000 people in 

the last half decade, a 2.83% decrease, and 5 per 1,000 people 

by last decade, a 3.66% decrease from 2020. A broad 

decrease trend from 5.96 in 2021 to 5.78 in 2030 may be seen 

in the predicted death rate. This shows that a general 

improvement in living standards, healthcare, and public health 

will reduce mortality. The lower and upper bounds offer a 

range of potential death rates, reflecting the forecasts' inherent 

uncertainty.
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Fig 5: Life expectancy at birth forecast for the next 30 years using ARIMA model 

 
Table 7: Death rate forecast for the next 30 years using ARIMA model. 

 

 
Death rate 

Year Forecasted value Lower Upper 

2021 5.96 5.04 6.88 

2022 5.92 4.68 7.15 

2023 5.86 4.45 7.27 

2024 5.85 3.94 7.77 

2025 5.83 3.57 8.1 

2026 5.8 3.32 8.28 

2027 5.8 2.94 8.67 

2028 5.8 2.62 8.97 

2029 5.78 2.39 9.17 

2030 5.78 2.08 9.48 

 

As we get closer to 2030, this range gets smaller over time, 

indicating greater confidence in the projections. The width of 

the range (difference between upper and lower bounds), 

similar to the life expectancy analysis, diminishes over time, 

showing less uncertainty or unpredictability in estimating the 

death rate. The decreasing death rate suggests improvements 

in public health, illness prevention, and healthcare practices. 

 

 

 
 

Fig 6: Death rate forecast for the next 30 years using ARIMA model 
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It is anticipated that mortality reduction efforts will continue 

to be effective. For the next ten years, death rate will be 

slowing decreasing that is approximately 4 per cent due to the 

melioration medical care, female education, and economic 

growth. When the death rate will be decreases then life 

expectancy at birth will be increasing, which means there is a 

correlation between the two variables and there is a negative 

correlation between the life expectancy at birth and death rate. 

Figure 7 show that death rate will be slowly deceasing for 10 

years due to the improved healthcare and advances in 

medicine: There are several advances in healthcare and 

medicine that have increased life expectancy. One of the most 

important is the development of vaccines. Before the 

development of vaccines, diseases killed millions of people 

each year. Vaccines have eradicated these diseases in many 

parts of the world, drastically reducing mortality rates. Late 

marriage has helped in reducing the death rate of women and 

children. People are now getting more and more nutritive and 

balanced diet than before. Government is also paying more 

attention to it. This has helped in reducing death rate.  

 
Table 8: Infant Mortality rate forecast for the next 30 years using ARIMA model. 

 

 
Infant Mortality Rate (IMR) 

Year Forecasted Lower Upper 

2021 29.36 22.26 36.09 

2022 28.64 20.17 37.1 

2023 28.02 17.01 39.02 

2024 27.59 12.32 42.86 

2025 27.08 9.29 44.87 

2026 26.7 5.51 47.89 

2027 26.4 1.58 51.22 

2028 26.06 -1.58 53.71 

2029 25.83 -5.25 56.92 

2030 25.61 -8.68 59.9 

 

In India in 2020, the infant mortality rate was 30 deaths per 

1,000 children; it is projected to drop by 27 deaths per 1,000 

children in the last five years, a 16.6 per cent decrease from 

2020, and 25 deaths per 1,000 children by 2030, indicating 

33.3% decrease in the previous decade. For the next ten years, 

IMR will be a decline because of the improvement in IMR 

has coincided with an improvement in public health spending, 

female education, and economic growth. A general declining 

trend from 29.36 in 2021 to 25.61 in 2030 could be seen in 

the predicted IMR. This shows that public health programs 

aimed at lowering infant mortality and improving access to 

healthcare services have improved overall. The lower and 

upper bounds provide the IMR a range of potential values, 

reflecting the forecasts' inherent uncertainty. As we get closer 

to 2030, this range gets smaller over time, indicating greater 

confidence in the projections. In line with earlier findings, the 

range's width (the difference between upper and lower 

bounds) gets less over time, indicating less fluctuation or 

uncertainty in IMR prediction. The lowering IMR suggests 

improvements in maternal care, newborn healthcare, 

immunization campaigns, and public health initiatives 

focusing on baby health. 

 

 
 

Fig 7: IMR forecast for the next 30 years using ARIMA model 

 

Figure 7 show that the infant mortality rate will be slowly 

declining for the next ten year. When the IMR has decline 

then life expectancy at birth has increasing that indicating 

there is correlation between two variables and here negative 

correlation between the IMR and life expectancy at birth, 

which means the one variable is increases then other variable 

is decreases, that indicting the opposite direction. 

Literacy among woman is progressing rapidly. Educated 

women bring up their children with utmost care. This rapidly 

brings down the infant mortality rate. Working women enjoy 

better economic status and as such they are healthier.  

 

Forecast Accuracy  

The Mean Absolute Percentage Error (MAPE) is used for 

testing accuracy of the forecasting result.  
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Table 9 show that the value of MAPE is lower, which is that 

variable is best fit for ARIAM model. The ARIMA model is a 

better fit for three the variables. The Life expectancy at birth 

is best fits model than death rate and IMR. 

 
Table 9: Forecast of the Accuracy 

 

Variables MAPE 

Life expectancy at Birth 0.2159 

Death rate 3.059 

IMR 2.9278 

 

Among three variables, Life expectancy at birth is better than 

other variables based on the MAPE values. Except Life 

expectancy at birth, Infant mortality rate is better than death 

rate based on the MAPE value. 

 

Conclusion 

In this paper, the ARIMA model is applied to analyze and 

forecast of three important demographic variables such as 

Life expectancy at birth, Death rate and IMR in India, we are 

able to gain important knowledge about current trends until 

the year 2030. Here, we conclude that the ARIMA (0, 2, 1), 

(3, 1, 0), and (3, 1, 0) are the best-fitting model for the Life 

expectancy at birth, Death rate and IMR respectively. The 

ARIMA models are predicting an increase in life expectancy 

at birth and predict a decrease in Death rate and IMR for the 

next 30 years. This model appears to represent the data 

accurately. The value of MAPE of ARIMA model is lower, 

which shows that the ARIMA model is a better fit. For life 

expectancy at birth, which MAPE value is lower, this variable 

is best fit than other variables. The next 10 years life 

expectancy at birth will be increasing because of the 

corresponding the Death rate and IMR values are slowly 

decline, which indicates the health care facility improving and 

female education developed. For policymakers, healthcare 

workers, and researchers to plan and make educated decisions 

on public health programs, retirement planning, healthcare 

infrastructure, and social support systems for the population, 

they need the forecasts and their accompanying ranges. 

Understanding trends in life expectancy might assist in 

predicting healthcare requirements and societal changes 

brought on by an aging population. 
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