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Prediction of wheat yield by using UAV RGB drone 
imagery and advanced machine learning techniques 

 
Samuel Naik B, Harish Nayak GH and Dr. S Govinda Rao 
 
Abstract 
Yield prediction before harvest is one of the important issues in terms of managing agricultural policies 
and making the right decisions for the future. The aim of this study is to predict wheat yield using field 
phenotypic data obtained from unmanned aerial vehicle (UAV) images and advanced machine learning 
techniques. A UAV platform carrying RGB cameras was employed to collect images of wheat crop. 
These images (402 images) were combined to form ortho-mosaic image through image processing 
software Pix4D mapper and were used to extract the vegetation indices (VIs), canopy volume, canopy 
area by quantum geographic information system (QGIS) open-source software. The yield prediction was 
done with the help of green leaf area index (GLA), the excess red index (ExR), the excess green index 
(ExG), the excess green minus excess red index (ExGR), water index (WI), the normalised green-red 
difference index (NGRDI), the red green blue VI (RGBVI), and the visible atmospherically resistant 
index (VARI) obtained from UAV RGB images. In addition, some digital variables were also used to 
reflect the growth trend of wheat, including G/R, G/B, and R/B. The results show that the models can 
accurately predict yield before the harvest. Support vector machine (SVM) (RMSE=1.025, R2=0.93) and 
least absolute shrinkage and selection operator (LASSO) regression (RMSE=1.022, R2=0.93) represent 
the top two best methods for predicting yields among the five typical machine learning models tested in 
this study. Our findings highlight a potentially powerful tool to predict yield using UAV drone data and 
advanced machine learning techniques fin other regions and for crops. 
 
Keywords: UAV, drone, RGB cameras, QGIS, PiX4D mapper, machine learning 
 
1. Introduction 
Wheat (Triticum aestivum L.), as one of the three top grains (wheat, rice, and corn) and one of 
the most productive cereals in the 21st century, provides the most calories and protein for the 
global food supply (Ramadas et al., 2019) [18]. India is a leading producer of wheat in the 
world, with a large area of land devoted to the crop. The accurate prediction of crop yields in 
advance plays an important role in the grain circulation market, famine prevention, and food 
security. The prediction of crop yield using phenotypic characteristics were significantly 
improves the accuracy. 
The use of Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, has seen a 
significant increase in recent years, particularly in the field of agriculture. UAVs provide a 
cost-effective and flexible alternative to traditional remote-sensing platforms such as satellites 
and manned aircraft. By equipping UAVs with various sensors, including RGB, multispectral, 
hyperspectral, thermal, and light detection and ranging (LiDAR), farmers and researchers can 
obtain a wide range of data on crops, including vegetation indices, plant number, plant height, 
canopy area, and more. Additionally, agricultural statisticians can use data obtained from 
UAVs to generate accurate and up-to-date statistics on crop yields, crop acreage, and other 
important agricultural metrics. UAVs with multiple advantages, such as flexibility, non-
destructive monitoring, low costs, and high amount of output, has been increasingly used in 
the field of precision agriculture in recent years (Bending et al., 2012; Bending et al., 2014). 
UAVs can carry different kinds of sensors, such as a RGB, multispectral, hyperspectral, 
thermal, LiDAR. The cost of these sensors is very high, thus the using of these sensors in 
agriculture is very less. But in these sensors RGB is a cheap sensing device, and it is becoming 
a promising tool for continuous observation (Fu et al., 2021) [8]. 
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So that, by using UAV-RGB remote sensing some advances 
have been made in crop phenotypic characteristic monitoring 
like Leaf Area Index (Hasan et al., 2019) [12], plant growth 
(Jamil et al., 2022) [13], plant density (Jin et al., 2017) [14], crop 
canopy area (Fu et al., 2021) [8], etc. Vegetation indices (VI) 
are generally used to estimate biophysical parameters that can 
be incorporated in models to predict crop yield (Myneni et al., 
1995) [15]. Some sample vegetation indices (VIs) such as 
visible atmospherically resistant index (VARI) (Gitelson et 
al., 2002) [9], normalised green-red difference index (NGRDI) 
(Elazab et al., 2015) [15], red green blue VI (RGBVI) (Bending 
et al., 2015), green leaf area (GLA) (Guijarro et al., 2011) [10], 
excess red (ExR), excess green (ExG), and excess green red 
(ExGR) (Woebbecke et al., 1995) [17] were calculated based 
on images acquired from the visible wavelengths. In addition, 
some digital variables were also used to reflect the growth 
trend of ramie, including g/r, g/b, and r/b. The images were 
processed to extract information on the vegetation indices, 
plant heights, canopy volume and crop canopy area etc. 
In recent decades, many researchers have been increasingly 
focused on improving crop yield prediction by different 
methods, including empirical statistical models and process-
oriented crop growth models (Lobell et al., 2010) [19]. 
Conventional statistical models predict yields by developing 
regression equations between weather variables (temperature, 
precipitation, solar radiation, etc.) and measured yields at 
different temporal and spatial scales (Shi et al., 2013; Zhang 
et al., 2016) [20, 21]. Such regression results did show distinctly 
how climatic factors affected yield, however their relative 
lower explanation ability was commonly debated, and the 
dominant factors controlling yields often varied by 
geographical location, crop variety, and growing season 
(Filippi et al., 2019) [22]. Machine learning has demonstrated 
its powerful performance in data mining (Witten et al., 2002) 
[23] and agricultural analyses, including crop type 
classification and yield prediction (Cai et al., 2019) [24]. Crop 
yield is a function of the interaction between spatial and 

temporal changes of variables. Considering the strong ability 
in treating multi-dimensional datasets mining (Witten et al., 
2002) [23]. Accordingly, machine learning techniques could 
provide powerful supports for improving yield prediction 
models. Several publications conducted recently in the world 
have substantiated this viewpoint. 
In this study, we integrated 13 indicators derived from UAV 
RGB images, to build machine learning models for predicting 
wheat yield. We adopted five machine learning algorithms for 
predicting wheat yield, including K-nearest neighbor (KNN), 
decision tree (DT), support vector machine (SVM), random 
forest (RF), least absolute shrinkage and selection operator 
(LASSO) regression. The main objective of this study is to 
apply UAV-based spectral and structural information for the 
prediction of wheat yield. This study will propose to select the 
better machine learning algorithms for yield prediction. 
 
2. Materials and Methods 
2.1 Study area 
In this study, the data of RGB sensors data has been captured 
from wheat fields located at the Indian Agricultural Research 
Institute (IARI), (28.6331° N, 77.1525° E). The wheat crop 
was growing in 0.012 𝑘𝑘𝑘𝑘2 / 1.2 ha / 2.9652 acres, with 9 X 
9rc. The data was processed using PiX4D mapper software, 
which generated a quality report and a single TIFF image 
(obtained by mosaicking of 402 images). The quality report 
provided information on the hardware of the drone and 
assessed the quality of the processed data. If the quality check 
was satisfactory, the TIFF image was imported as a raster 
layer in QGIS. 
The study area was divided into two parts, designated as Area 
1 and Area 2, to obtain the exact canopy area from each 
experimental block. Various crop parameters, such as canopy 
area, were extracted using QGIS software. These spectral 
parameters were subsequently used for data analysis. 

 

   
(A)          (B)         (C) 

 

Fig 1: Study area and arrangement of the experimental sites: (a) Geographic map of Delhi, (b) IARI, Pusa, New Delhi, (c) Wheat crop area 
 
2.2 Image Acquisition  
The data was captured by drone named DJI Phantom 4 with 
its impressive flight range of 7 kilometres, 1.3 kg payload 
capacity, state of the art 4K camera and 30-minute flight time 
in a windless environment. The field images were acquired at 
12:00–14:00 local time under clear and sunny weather 
conditions. 402 images with pixels of 5472 x 3648 were 

obtained, and these images were saved in 8-bit unsigned 
integer data in tag image file format (TIFF). The UAV 
platform was used to implement a predefined flight plan that 
was created in advance by a ground control station. During 
the flight, the flight speed was 6 m/s, with average ground 
sampling distance (GSD) is 0.79 cm / 0.31 in. 
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Fig 2: UAV data acquisition methodology 
 

 
 

Fig 3: DJI Phantom 4 drone image 
 

   
(A)          (B)         (C) 

 

Fig 4: UAV image acquisition: a) Image captured points, b) Individual images 
 

2.3 Image mosaicking and processing  
Image mosaic is a technique that combines several images 
with overlapping parts (the images may be obtained at 
different times, different viewing angles or by different 
sensors) into a large-scale seamless high-resolution image. 
The captured 402 images, were mosaicked using 
Pix4Dmapper. The basic operation process includes:  
1. Verifying the POS data extracted from the UAV images 

to ensure the correct geographical location of the images.  

2. Extracting the spatial position and altitude information of 
a certain point X from all the images, creating a point 
cloud map of the study area.  

3. Adding the 3D spatial information of control points to the 
empty ray editor to align the images captured at different 
times to the same coordinate system. The final output is 
an ortho photo image of the wheat crop area. 
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Flow chart 1: Image processing in Pix4D mapper 
 

 
 

Fig 5: Ortho-mosaic image of wheat field 
 

The mosaicked image was used as a raster layer in QGIS, where various crop parameters were extracted. 
 

 
 

Flow chart 2: Image processing in QGIS software 
 

2.4 Vegetation Index Calculation 
Table 1 presents the VIs selected in this study, their 
calculations, and the corresponding sources. The VIs included 
GLA, the excess red index (ExR), the excess green index 
(ExG), the excess green minus excess red index (ExGR), 
water index (WI), the normalised green-red difference index 

(NGRDI), the red green blue VI (RGBVI), and VARI. In 
addition, some digital variables were also used to reflect the 
growth trend of ramie, including g/r, g/b, and r/b. 
Along with the VIs structural features like canopy volume and 
canopy height were used in this study. 
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Table 1: Indices calculated based on the unmanned aerial vehicle 
(UAV) images in this study 

 

Vegetation Indices Reference 

GLA= (2 × G – R − B) / (2 × G + R + B) 
WI = (G – B) / (R − G) 

NGRDI = (G – R) / (G + R) 
RGBVI = (G × G – R × B) / (G × G + R × 

B) 
VARI = (G – R) / (G + R − B) 

ExR = 1.4R − G 
ExG = 2×G−R−B 

ExGR = ExG − 1.4R − G 
G/R 
G/B 
R/B 

Xiaoqin et al., 2015 [25] 
Penuelas et al., 1997 [26] 

Hunt et al., 2005 [27] 
Bendig et al., 2015 [3] 

Gitelson et al., 2002 [9] 
Woebbecke et al., 1995 

[17] 
Woebbecke et al., 1995 

[17] 
Woebbecke et al., 1995 

[17] 
Fu et al., 2021 [8] 
Fu et al., 2021 [8] 
Fu et al., 2021[8] 

 
2.5 Plant Height Estimation  
The calculation of the plant height was carried out in QGIS 
open software. Firstly, the digital surface model (DSM) and 
the digital terrain model (DTM) were constructed based on 
the acquired images. DSM represented the absolute height of 
the crop canopy, while DTM represented the absolute height 
of the ground. Secondly, crop surface models (CSMs) were 
obtained by subtracting DTM from DSM with a raster 
calculator tool in QGIS open software. Subsequently, the 
average plant height of each plot was calculated. Finally, the 
plant height calculated according to the UAV images was 
validated based on the field-measured plant heights. 
 
2.6 Field Date Collection  
Measured field data at the maturity period, including plant 
height and yield. We took the average of 15 measured values 
as the field-measured plant height in the plot.  
 
2.7 Machine-Learning Methods for Estimating Crop Yield 
Five advanced machine learning algorithms were applied 
here. They are explained below: 
 
2.7.1 K-Nearest Neighbor Regression  
The K-nearest neighbor (KNN) approach is a type of 
instance-based learning, which is based on the distance of the 
predictor variables to the nearest training group known to the 
model (Bebie et al., 2022 and Appelhans et al., 2015) [28, 30]. 
Aha et al. firstly proposed the new framework and 
methodology for KNN. KNN can tolerate noise and unrelated 
properties and has a relatively relaxed concept bias. 
 
2.7.2 Decision Tree (DT)  
The decision tree is an effective tool for solving classification 
and regression problems and has been widely used in remote 
sensing application (Xu et al., 2005) [31]. The tree consists of a 
root node (containing all data), internal nodes, and several 
leaves. Each node makes a binary decision to separate 
different categories until the leaf node is reached. The 
algorithm is non-parametric and can deal with large and 
complex datasets effectively without complex parameter 
structure (Song et al., 2015) [32]. C4.5 decision tree is a 
method of approximating discrete value function, which is 
robust to noisy data (Polat et al., 2009) [33]. The confidence 
factor used for pruning is 0.25 and the minimum number of 
instances per leaf is 2. 
 

2.7.3 Support Vector Machine (SVM)  
SVM is a supervised non-parametric algorithm, which is 
characterized by using the kernels and acting on the margins 
(Gunn et al., 1998) [34]. During SVM regression, the input is 
mapped to a high-dimensional feature space using a kernel 
function, and then a linear regression model is constructed in 
the new feature space to balance between minimizing errors 
and overfitting (Cai et al., 2019 and Hearst et al., 1998) [24, 35]. 
Kernel functions (linear, polynomial, Gaussian, etc.) are one 
of the important hyper-parameters that need tuning. By 
comparing different kernel functions, the Gaussian kernel 
function performed the best in this study. 
 
2.7.4 Random Forest (RF)  
Random forests are a combination of tree predictors and are 
more robust with respect to noise (Breiman et al., 2001) [36]. 
Each tree is built by selecting random variable sets and 
dataset samples, and all the trees in the forest have the same 
distribution characteristic. After generating a large number of 
individual trees, they will vote for the most popular classes. 
Therefore, RF shows the efficiency to handle high-
dimensional datasets and avoids overfitting during the past 
decade (Rhee et al., 2017; Vincenzi et al., 2011) [37, 38]. 
Additionally, RF can quantify the relative importance of 
measured variables and is a reasonable method for variable 
selection (Breiman et al., 2001 and Strobl et al., 2007) [36, 39]. 
 
2.7.5 Least Absolute Shrinkage and Selection Operator 
(LASSO) Regression 
Lasso is a regularization technique which reduces the number 
of predictors in a regression model and identifies important 
predictors. Lasso is a shrinkage estimator with potentially 
lower predictive errors than ordinary least squares and it also 
includes a penalty term that constrains the size of the 
estimated coefficients. Therefore, it resembles ridge 
regression. It generates coefficient estimates that are biased to 
be small. Nevertheless, a lasso estimator can have smaller 
mean squared error than an ordinary least-squares estimator 
when you apply it to new data. Unlike ridge regression, as the 
penalty term increases, lasso sets more coefficients to zero. 
This means that the lasso estimator is a smaller model, with 
fewer predictors. As such, lasso is an alternative to stepwise 
regression and other model selection and dimensionality 
reduction techniques (Singh et al., 2019) [29]. 
 
2.8 Model Evaluation  
In order to evaluate the five ML techniques, we adopted the 
root-mean-square error (RMSE), the coefficient of 
determination (R2), and the mean absolute error (MAE) to 
evaluate the performance of the machine learning model, 
which can be calculated as follows: 
 
𝑅𝑅2 = (∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)(𝑓𝑓𝑖𝑖−�̅�𝑓𝑖𝑖))2𝑛𝑛

𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 ∑ (𝑦𝑦𝑖𝑖−�̅�𝑓𝑖𝑖)2𝑛𝑛

𝑖𝑖=1
        (1) 

 

RMSE =  �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑛𝑛
         (2) 

 
MSE =  1

𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1          (3) 

 
where n (i = 1, 2, . . ., n) is the number of samples used for 
machine learning model, 𝑦𝑦𝑖𝑖is the observed winter wheat yield, 
𝑦𝑦�𝑖𝑖 is the corresponding mean value, 𝑓𝑓𝑖𝑖is the predict winter
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wheat yield, 𝑓𝑓�̅�𝑖 is the corresponding mean value. The closer 
𝑅𝑅2 is to 1, the higher the prediction performance of the model 
is small RMSE and MAE values indicate less discrepancy 
within the observed yield and predicted yield. 
 
3. Results 
3.1 Comparison of Training Accuracy of Wheat Yield 
Prediction Models: In this study, five machine learning 

models were trained with the observed yields and 13 variables 
of wheat taken from UAV imagery. The evaluated results, 
based on R2, RMSE and MAE. Comprehensively SVM and 
LASSO models showed the higher accuracy, with higher R2 
(0.93) and lower RMSE (1.025 and 1.022) and MAE (0.807 
and 0.826). Although, R2 of other models are above 0.8, all 
their RMSEs were > 1.0. Figure 6 shows the evaluated results, 
based on R2, RMSE and MAE. 

 

   
(A)          (B) 

 
 (C) 

 

Fig 6: a) R2, b) RMSE, c) MAE of five different machine learning models 
 

3.2 Wheat Yield Prediction using UAV-based image data 
Wheat yield prediction based on UAV image data has been 
done using the all five machine learning techniques. The 
scatter diagrams of predicted and actual yields of the models 

are shown in figure 7. We found that the two machine 
learning models can predict the yield of wheat with high 
accuracy, in the order is LASSO>SVM>DT>RF>KNN. 
Although all predicted yields were much closer to the line 

 

    
(A)          (B)        (C) 
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(D)          (E) 

 

Fig 7: Scatter plots of observed yield and predicted yield of a) KNN, b) DT, c) SVM, d) RF, e) LASSO 
 

Table 2: Correlation analysis of the UAV-based spectral features and yield 
 

 
Yield 

(kg/plot) 
Canopy 

area sq m 
Mean canopy 

height (m) GLA WI RGBVI VARI NGRDI ExG ExR ExGR G/R G/B R/
B 

Yield(kg/plot) 1              Canopy area sq 
m 0.931*** 1             

Mean canopy 
height (m) 0.388*** 0.203*** 1            

GLA 0.210*** 0.360*** 0.356*** 1           

WI -0.169*** -0.240** 0.206*** 
-

0.248*
** 

1          

RGBVI 0.364*** 0.189*** 0.798*** 0.533*
** 0.033** 1         

VARI 0.416*** 0.289*** 0.832*** 0.615*
** 0.118*** 0.914*** 1        

NGRDI 0.355*** 0.069*** 0.806*** 0.078*
** 0.260*** 0.858*** 0.808*** 1       

ExG -0.007*** -0.302** 0.111*** 
-

0.830*
** 

0.318*** 0.029*** -
0.124*** 0.475*** 1      

ExR -0.073*** 0.244*** -0.255*** 0.717*
** -0.309** -

0.205*** 
-

0.058*** 
-

0.626*** 
-

0.981*** 1     

ExGR 0.119*** -0.205** 0.392*** 
-

0.534*
** 

0.241*** 0.403*** 0.255*** 0.757*** 0.896*** -
0.957*** 1    

G/R 0.378*** 0.168*** 0.878*** 0.405*
** 0.181*** 0.944*** 0.945*** 0.933*** 0.148*** -

0.318*** 0.495*** 1   

G/B 0.164** 0.249** 0.376*** 0.909*
** 

-
0.311*** 0.651*** 0.562*** 0.178*** -

0.643*** 0.533*** -
0.347*** 0.457*** 1  

R/B -0.401*** -0.294*** -0.722*** 
-

0.594*
** 

-
0.316*** 

-
0.596*** 

-
0.854*** 

-
0.794*** 

-
0.412*** 0.758*** -

0.616*** 
-

0.776*** 
-

0.142*** 1 

Note: 
** means significant at 0.01 and 
*** means significant at 0.05 

 
3.3 Relationship between VIs and wheat Yield 
Table 2 shows the results of the correlation analysis between 
the UAV-based spectral features and wheat yield. Our results 
indicated that the correlation relationship between the wheat 
yield and all of the visible spectrum indices calculated based 
on the UAV images was weak, of which WI, ExR, and R/B 
were negatively correlated with the wheat yield, while canopy 
area, canopy height, NGRDI, GLA, ExG, ExGR, G/R, G/B, 
and RGBVI were positively correlated with the whaet yield. 
Among all the VIs, VARI was the most significantly 

correlated with the WHEAT yield, and the correlation 
coefficient was 0.391.  
 
3.4 Prediction variable and the order of relative 
importance 
To investigate the importance of different variables for the 
wheat yield prediction, we calculated the decreased accuracy 
(mean square error) from RF model. Figure 3 represents the 
predictor variable importance based on the RF model. 
 

 

https://www.mathsjournal.com/


 

~968~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

 
 

Fig 8: Predictor variable importance based on the RF model 
4. Discussion 
4.1 Model Performance for Estimating Yields 
Some studies have shown that the spectral information 
obtained from UAV-based images has a certain potential for 
crop yield prediction. In this study, we proposed a framework 
for yield prediction through structural and spectral features of 
UAV imagery and using advanced machine learning 
techniques. The differences in various machine learning 
algorithms have been discussed above. Among all the 
machine learning algorithms SVM and LASSO are 
performing better. 
 
4.2 Relationship between UAV-Based Image Data and 
wheat Yield  
Many studies have demonstrated that there is a significant 
correlation between spectral and structural features obtained 
by UAV-based images and crop yields (Tilly et al., 2015) [16]. 
Our study confirmed that the canopy volume, canopy height, 
GLA, RGBVI, VARI, NGRDI, ExG, ExGR G/R, G/B 
obtained by UAV-based images could provide a good 
characterization of the wheat yield, but they possessed 
different potentials. Not every vegetation index can accurately 
reflect the crop yield. If the correlation between the VIs and 
yield are unacceptable, the fusion of the VIs will result in a 
saturation of the spectral information and reduce the accuracy 
of the yield estimation model. In general, wheat yield 
prediction by both spectral and structural features improved 
the accuracy. In future research, other information can be 
considered to improve the reliability and accuracy of the 
model. 
 
5. Conclusions 
In this study, a UAV platform carrying RGB cameras was 
employed to collect several images of wheat crop. These 
images were combined to form single orthophoto image using 
Pix4D mapper software and were used to extract fifteen field 
parameters like vegetation indices (VIs), canopy volume, 
canopy height etc., by QGIS open-source software. These 
variables were incorporated in the predicted wheat yield based 
multiple advanced machine learning models. It was found that 
the models can accurately predict yield before the harvest. 
SVM (RMSE=1.025, R2=0.93) and LASSO regression  

 
(RMSE=1.022, R2=0.93) represent the top two best methods 
for predicting yields among the five typical machine learning 
models tested in this study. Our findings highlight a 
potentially powerful tool to predict yield using UAV drone 
data and advanced machine learning techniques fin other 
regions and for crops. The study reveals that it is feasible to 
monitor crop growth and development based on UAV images 
and that the combination of phenotypic data with it can 
further improve its accuracy. The study reveals that Drone 
images may be used for obtaining various crop parameters 
like VIs and crop canopy area etc., which can be used for 
obtaining more efficient and reliable parameters of 
agricultural statistics like crop area, crop yield and 
production.  
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