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Abstract 
World over Kenya and Uasin Gishu in particular, child mortality remains a challenge as children are 
expected to live up to adulthood. However, they often fail due to variety of diseases. This work 
considered child mortality as default and time default to be five years. The study analyses child mortality 
using survival regression models. Secondary data was obtained from Moi Teaching and Referral 
Hospital. Diseases (Risk Factors) that influenced under-five child mortality were considered as variables 
of the study. The study began by testing proportional hazard assumption on the data collected relating to 
child mortality data where it was found that proportional assumption is not violated. Cox Proportional 
Hazard model (CPHM) was fitted to determine the effects of risk factors on child mortality where factors 
such as gender, malformation, and dehydration increased child mortality risk while cancer decreased this 
risk. Factors such as tuberculosis, pneumonia and digestive system depicted an insignificant effect on 
child mortality when evaluated at 5% significance level. The overall goodness of the model was checked 
using concordance index and Wald test. Child mortality is a very important aspect of measuring health 
status of the current population and predicting the health of the future generation. The research project 
recommends modelling of child mortality using other survival models. The study is significant in higher 
institution of learning since it broadens the knowledge on the application of survival analysis in 
modelling child mortality. It provides the background for researchers in high institution of learning who 
are interested in doing studies on child mortality modelling. The study is also important to the health 
sector since by knowing the factors making an under-five child to be more prevalent to death will help 
the government achieve the MDG 4 goals faster by improving on these factors. 
 
Keywords: Wald test, child mortality, cox proportional hazard, survival analysis, concordance index 

 

Introduction 

Background of the Study 
Child mortality is defined as the risk that a child might not get to their 5th birthday. Globally, 
child mortality is a core indicator for child health and well-being. Both developed and 
developing nations considers child health as a central issue in the public agenda. There have 
been implementation of several policies over the years geared towards improving child health 
with different degrees of success. The Millennium Development Goal 4 (MDG 4) suggest that 
the rate of child mortality was reduced by two thirds in the years between 1990 and 2015. The 
SDGs proposed target for child mortality represent commitment renewed to the world's 
children to end child mortality by the year 2030. Hence, all countries aim to reduce neonatal 
deaths to as low as 12 deaths per 1000 live births and under-five deaths be reduced to as low as 
25 deaths per 1000 live births. However, the target risk has not been achieved globally. The 
child mortality report as per the UN Inter-agency group of 2013 estimated that the child 
mortality rate has reduced globally by 47% between the year 1990 and 2012, from 90 per 1000 
live births to 48 per 1000 live births respectively.  
Despite the global improvement, deaths of children less than five years are highly concentrated 
in sub-Saharan African countries, where the rate of child mortality is 98 deaths per 1000 live 
births which is 15 times more than the average for the developed region, while for other nation 
that are less developed the rate of child mortality is 71/1000 live births (Moise et al., 2017) [9]. 
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The findings by Frisbie et al. (2004) [4] show that over the years 2000s, the rate of child mortality in the sub-Saharan region 

remained the highest globally at 94 deaths per 1000 live births as compared to the rest of African countries at 88 deaths per 1000 

live births and less developed countries at 61/1000. Omariba and Boyle (2007) [13] found that both social-economic and social-

cultural factors have significant influence on the increasing rates of mortality in the sub-Saharan Africa. The (2008/2009) Kenya 

Demographic and Health Survey shows that the 74/1000 death rate is way above the national target of 32/1000 deaths. The 2012 

achieved mortality rate of 48/1000 is also higher than the national average. Since the developing countries are still at risk, it is 

prudent to analyse the trend and level of infant mortality in these countries.  

In addition, social cultural factors such as the vast ethnic, religious, beliefs and cultural practices that exist in the sub-Saharan 

Africa affect whether or not individual seek bio-medical forms of health care when their child is in ill health and during pregnancy 

(Omariba and Boyle, 2007) [13]. According to many cultures, the social status of women is increased by her ability to bear children 

and this also increases her marital chance. The sub-Saharan Africa women have high fertility hence have short birth intervals 

between pregnancies which compromised health outcome for both the child and the mother. Due to unemployment in the sub 

Saharan Africa region, parents are unable to seek medical assistance whenever their child is ill because of lack of finances. 

Therefore, the socio-economic and socio-cultural factors are important in understanding the high child mortality rate in the sub-

Saharan Africa as compared to other regions globally. In Kenya, the under-five child mortality is becoming key issue and has 

shown an increasing trend in the country over the years. Kenya faces many challenges with regard to decreasing child mortality 

within its borders. These may include economic insecurity, poor health services and the worsening effects of the HIV/AIDS 

pandemic within its borders. Over the past years, Kenya's economy has suffered a major blow. The economic hazards experienced 

here can be traced to various factors which majorly impacts on child mortality as it affects every sector of the country, 

employment and the health sectors, which directly are associated with child health outcomes. Uasin Gishu being one of the county 

in Kenya is not an exemption hence faces challenges of child mortality. 

 

Statement of the problem 

Under-five mortality remains a challenge as children are expected to live up to adulthood. However, they often fail due to various 

factors varying from one place to another depending on the accessibility of the health facilities and how well these health facilities 

are. The availability of health care services has been reported to have an inverse relationship with child mortality (Kayode et al., 

2016) [6]. Several studies' (Ezeh et al., 2015; Omolo, 2014; Murithii & Murithii, 2015) [16, 14, 10] on causes of child mortality in 

Kenya show the effects of environmental conditions and social characteristics. Researchers who have done research on child 

mortality using survival regression models have only used either of the models. Therefore, the interest is to test proportional 

hazard assumption on the child mortality data and assess the effect the risk factors have on child mortality using secondary data of 

all births and deaths of children for a five-year period (2015-2019) obtained from MTRH. This will help the government achieve 

the MDG 4 goals faster by improving on these factors to reduce child mortality. Time defaulting occurs within the five-year age 

period non-uniformly, meaning it varies from one child to the other. Age when death occurs is the event of interest while the 

analysis is based on the time from birth to age at death (of children below five years). 

Under-five mortality is important to note in order to know the significant risk factors of U5M. The Research Project applied a 

statistical technique in the analysis of child mortality data using CPHM. Specifically, the study examined the effects of several 

explanatory variables (risk factors) on the survival of children. The findings of this study is significant in high institution of 

learning since it broadens the knowledge on the application of survival analysis in modelling child's mortality and also provide the 

background for researchers in high institution of learning who are interested in doing studies on child mortality modelling. 

 

Objectives of the study 

General Objective 

To analyse child mortality using survival regression models.  

 

Specific Objectives 

 To test for the proportional hazard assumption on the data. 

 To fit the appropriate survival regression model on child mortality (AFT and CPHM). 

 To test the effect the risk factors have on child mortality. 

 To test for the overall goodness of fit of the fitted model. 

 

Chapter Two: Literature Review 

Introduction 

This chapter presents review of studies done in relation to child mortality. A relation of the topic is analysed to show what has 

been done. Survival analysis focuses on the distribution of survival times. There are various models used to estimate survival 

distributions, however, most survival analysis literature examine the relationship between survival rate and one or more 

covariates. 

 

Review on Survival Analysis Models 

The Cox proportional Hazard regression model is broadly applicable and the most used method of modelling survival analysis. 

The model simultaneously explores the effects of several variables on survival (Mani et al., 2012) [8]. The proportional hazard 

assumption refers to the hazard function to be multiplicatively related, that is, its ratio is assumed constant over survival time, 

thereby not allowing a temporal bias to become an influential player at the endpoint. In Cox's method the dependent variables are 

the risk function at any given time (Bradburn et al., 2003) [2].  

Earlier study in child mortality conducted by Kayode et al. (2013) [17] on the risk factor for child mortality came up with 

predictive model (multivariable logistics regression model) that associated the explanatory variables (risk factors) and dependent 
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variable mortality in the study. The risk factors were maternal including current age, education, occupation parity, marital status, 

age of first marriage, family planning, preceding birth interval, breastfeeding and health seeking behaviour. Also, childhood 

factors were considered including sex, birth order and birth weight. Additionally, household factors were considered including 

family size, sanitation, number of wives, wealth index, fuel and water sources, and paternal factors such as age and occupation, 

and other factors including place of residence, ethnicity and geopolitical region. They then used invariable logistic regression to 

examine the association between the explanatory variables and the dependent outcome. Their study revealed that maternal, 

childhood, family and other factors were important risk to deaths among children under the age of five years in Nigeria. 

Kembo and Van Ginneken (2009) [7] conducted a study to investigate the association between socio-economic, sanitation and 

maternal variables, and child mortality in Zimbabwe using multivariable proportional hazards regression model. Maternal and 

child health services were found to improve child survival rates. Hailemariam and Tesfaye (1997) [5] applied CPHM to examine 

factors impinging the survival of child’s and children 1-3 years of age. The findings show that there is higher risk of child 

mortality for births with short previous birth intervals than for births that are of higher order (more than 5), for young women 

births with under 20 years of age, and for those women who are older with more than 35 years of age.  

O'Leary et al. (2013) [12] carried out a study on maternal alcohol use, sudden child death syndrome and child mortality excluding 

SIDS. Analyses were conducted using CPHM and the results show that there is higher risk of SIDS when maternal alcohol 

diagnosis is recorded during pregnancy and the Research concluded that maternal alcohol-use disorder is a significant risk factor 

for SIDS and child mortality excluding SIDS. 

Kayode et al. (2013) [17] conducted a research in modelling long-term graft survival with-varying covariates effects: An 

application to a single kidney transplant centre in Johannesburg, South Africa and the conclusion made about predictors of graft 

survival is that AFT model over more flexibility in understanding covariates with non-constant effects on graft survival. 

Saroj et al. (2019) [15] examined factors affecting under-five child mortality using survival parametric models and the results show 

that various factors influenced child mortality. Ayele et al. (2019) [18] used Cox and frailty survival analysis model to determine 

mortality of children under the age of five years in Ethiopia. The findings show that children under the age of five years have less 

chances of dying if before the child attain five years of age the mother does not become pregnant for another child. Naz and Patel 

(2020) [11] concluded that birth spacing of 3 years and above is associated with reduced risk of child mortality contrasted with 

short birth interval. 

 

Research Gap 

Previous scholars have done Research on child mortality using survival regression models but none has specifically analyzed the 

child mortality data from MTRH in Uasin Gishu and tested it to ascertain if at all the proportional hazard assumption holds on the 

data. 

 

Chapter Three: Research Methodology 

Study Variables 

The research analyzes child mortality which refers to mortality of children from birth to the age of 5 years. In this case, under-five 

mortality is the dependent variable of the study and is defined as the time to death of a child before the age of five years. Diseases 

and conditions (risk factors) that cause most of the deaths among children before the age of five years in Uasin Gishu were used in 

this study as independent variable (covariates). Hence, the aim of this project was to determine the effects of these covariates on 

child mortality rates. The dependent variable is a function of a series of the mentioned covariates. 

 

Target Population 

The study was conducted at Moi Teaching and Referral Hospital (MTRH) in Eldoret town in Uasin Gishu. MTRH falls under 

highly densely area in Eldoret hence receives more patients; hence wise to take it as a case study. The research project used 

secondary data that targeted population of all births and deaths of children from the year 2015 to 2019 in Moi teaching and 

referral hospital. The unit of analysis of the Research Proposal were the risk factors (diseases) that mostly influence child 

mortality in Uasin Gishu. 

 

Sample Size 

The study assumed that the sample of the under-five child who die will be half of the sample taken from the whole population of 

children, if they do not exist then we assume 

 

P = 0:5 then 

 

N =
(zα

2
)

2

pq

d2                           (1) 

 

=
(1.96)2 ∗ 0.5 ∗ 0.5

0.0152
= 384.16 = 384 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 

 

Since the total population for the under-five children were less than 10,000 for the Hospital records, the finite correction factor 

was employed to determine the correct sample size that was used in this research. When the sample represents a significant 

proportion, then the finite population correction factor can be applied. This reduced the sample size as required. The formula for 

this is: 
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𝑛 =
𝑛𝛼𝑁

𝑛𝛼+(𝑁−1)
                          (2) 

 

The list of a sample frame that the Research Project considered in collected secondary data from MTRH of all birth and death of 

children for a five-year period (2015-2019) are; Name (serial number), gender, age at death, and the risk factor/disease that 

accounted for the death. 

 

Data Collection Procedures 

The researcher used secondary data of all births and deaths of all the children under-five years of age from the year 2015 to 2019 

obtained from MTRH hospital. 

 

Data Processing and Analysis 

Data processing and analysis was conducted using R statistical package where the collected secondary data in relation to all births 

and deaths of under-five-year child mortality from the year 2015-2019 were coded to assume numerical values to perform CPHM. 

This computer aided software for research assisted the researcher to carry out the analysis. This applied descriptive statistics with 

the mean, standard deviation and frequency tally. Analysis carried out by performing regression analysis using CPHM. Several 

curves are displayed for analysis purpose. Each variable is used for comparison on how they affect child mortality in Uasin Gishu. 

 

Survival Regression Models 

In this study, CPH or AFT model was fitted depending on the characteristics of the data. The CPH model is fitted if the 

assumption of proportional hazard is achieved, however, the AFT model does not take such assumptions into consideration.  

 

Accelerated Failure Time Model 

 
𝑆(𝑡 𝑥⁄ ) = 𝑆0(exp(𝛽′𝑥)𝑡) 𝑓𝑜𝑟 𝑡 ≥ 0                     (3) 

 

Where 𝑆(𝑡 𝑥⁄ ) refers to the survival function at time t, 𝑆0(exp (𝛽′𝑥)𝑡)is the survival function baseline at the time t and the 

factorexp(𝛽′𝑥), is the acceleration factor. 

Ifexp(𝛽′𝑥)>1, the effects of covariates are decelerated. 

Ifexp(𝛽′𝑥) < 1, the effects of covariates are accelerated. 

If exp(𝛽′𝑥)=0, the effects of covariates are constant. 

 

The hazard function of AFT model can be expressed by; 

 

𝜆(𝑡 𝑥⁄ ) = 𝑒𝑥𝑝(𝛽’𝑥 𝜆0(𝑒𝑥𝑝(𝛽’𝑥)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡                   (4) 

 

Log-normal AFT Model 

If εi has a standard normal distribution, then Ti has log-normal distribution. The density function of normal distribution is; 

 

𝑓𝜀𝑖(𝜀) =
1

√(2𝜋)
𝑒𝑥𝑝 − (

𝑙𝑜𝑔𝑡−𝜇−𝛽1𝑥1…….𝛽𝑝𝑥2𝑝

𝜎
) 2⁄                (5) 

 

The survival function of normal distribution is: 

 

𝑆𝜀𝑖(𝜀) = 1 − ∅(𝜀)                         (6) 

 

The distribution function of normal distribution is: 

 

∅(𝜀) =
(𝑙𝑜𝑔−𝜇−𝛽1𝛽1……𝛽𝑝𝛽𝑝 )

𝜎
                       (7) 

 

The cumulative hazard function is: 

 

𝐻𝜀𝑖(𝜀) = − log(1 − ∅(𝜀))                       (8) 

 

And the hazard function is: 

 

𝐻𝜀𝑖(𝜀) =
𝑓𝜀𝑖(𝜀)

𝑆𝜀𝑖(𝜀)
                           (9) 

 

In this way the log-normal AFT form can be derived. 

 

Cox Proportional Hazard Regression Model 

The cox proportional hazard model is given by: 
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ℎ(𝑡 𝑥⁄ ) = ℎ0(𝑡)𝑒𝑥𝑝(𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ 𝛽𝑝𝑥𝑝) = ℎ0(𝑡)exp(𝛽′𝑥)               (10) 

 

Where ℎ0(𝑡) is the baseline hazard function, 𝑥 = 𝑥1, 𝑥2 … … … 𝑥𝑝 is the vector of explanatory variables that represents a particular 

individual and 𝛽 = 𝛽1, 𝛽2 … … … . 𝛽𝑝 is a vector for regression coefficients. Hence, the resulting survival function is expressed as 

follows. 
 

𝑆(𝑡 𝑥⁄ ) = 𝑆0(𝑡)𝑒𝑥𝑝(∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 )                      (11) 

 

The model is semi-parametric and this vagueness creates no problem for estimation. Even though the baseline is not specified, 

good estimates for regression coefficients β hazard ratio and adjusted hazard curves can be estimated. The hazard ratio for two 

individuals with different covariates x and x* will be given by; 

 

HR =
ℎ0(𝑡)exp(𝛽𝑥)

ℎ0(𝑡)exp(𝛽𝑥∗)
= exp{∑ 𝛽′(𝑥 − 𝑥∗)}                    (12) 

 

This hazard ratio is time-independent, hence proportional hazard model. 

 

Estimate for Cox Proportional Hazards Model 

The Cox Proportional hazard model was fitted to estimate ho(t) and β. This approach maximizes the likelihood function 

simultaneously for the observed data with respect to ho(t) and β. Hence, the partial likelihood is a technique developed to make 

inferences about the regression parameters in the presence of nuisance parameters ho(t) in the Cox PH model 

 Pi refers to possible censored failure time random variables. 

 βi is the failure/censored indicators (1=fail,0=censor). 

 Xi represents a set of covariates. 

 

Let R(t)= {i: Xi>t} denote the set of individuals who are at risk of failure at time t, known as the risk set, then at each failure time 

XJ, the contribution to the likelihood is: 

 

𝐿𝑗(𝛽) = 𝑃{𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑗 𝑓𝑎𝑖𝑙𝑠 𝑜𝑛𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑟𝑜𝑚 𝑅⁄ (𝑋𝑗)} =
𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑗 𝑓𝑎𝑖𝑙𝑠 𝑜𝑛𝑒 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑟𝑜𝑚 𝑅⁄ (𝑋𝑗))

∑ (𝑋𝑗)𝐼𝜀𝑟 𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑗 𝑓𝑎𝑖𝑙𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑎𝑡 𝑋𝐽⁄ )
      (13) 

 

=
ℎ(𝑋𝑗 𝑍𝑗⁄ )

∑ (𝑋𝑗)ℎ(𝑋𝑗 𝑍𝑗⁄ )𝑖𝜀𝑟
                         (3.14) 

 

Under the PH assumption that h(t Z⁄ ) = h0(t)eβ′Z, then the partial likelihood function is given by; 

 

𝐿(𝛽) = ∏
ℎ0(𝑥𝑗)𝑒𝛽′𝑧𝑗

∑ (𝑥𝑗)ℎ0(𝑥𝑗)𝑒𝛽′𝑧𝑗𝑖𝜀𝑟

𝑘
𝑗=1                       (15) 

 

Where∏
eβ′zj

∑ (xj)eβ′zjiεr

k
j=1                         (16) 

 

Proportional Hazard Assumption Checking 

The Cox Proportional Hazard Model assumes that the hazard function of one individual is proportional to that of the other 

individual which is also constant over time.  

 

Graphical Method 

Graphical method to check proportional hazard assumption was performed based on the Arjas plot which shows the estimated 

cumulative hazard versus number of failures and comparison was made to the other procedures including non-proportional 

hazards such as crossing a non-monotonic hazards. The smoothed plot of the difference between log cumulative baseline hazard 

rates and time, and the smoothed plot of scaled Schoenfeld residuals versus time are compared for the increasing hazards. Hence, 

the survival function for the Cox PH is found y determining the relationship between survival function and hazard function as 

follows; 

 

𝑆(𝑡, 𝑥1) = 𝑆0(𝑡)𝑒𝑥𝑝(∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 )                      (17) 

 

Taking logarithm twice we get: 

 

𝑙𝑛[−𝑙𝑛𝑆(𝑡, 𝑥)] = ∑ 𝛽𝑖𝑥𝑖
𝑝
𝑖=1 + 𝑙𝑛[−𝑙𝑛𝑆0(𝑡)]                   (18) 

 

Therefore, the difference in the log-log curves that corresponds to two different individuals with variables, 𝑥1 =

(𝑥11, 𝑥12 … … … … 𝑥1𝑝) and 𝑥2 = (𝑥21, 𝑥22 … … … … 𝑥2𝑝) is given by;  

 

𝑙𝑛[−𝑙𝑛𝑆(𝑡, 𝑥1)] − 𝑙𝑛𝑆(𝑡, 𝑥2) = ∑ 𝛽𝑖(𝑥1𝑖 − 𝑥2𝑖)𝑝
𝑖=1                   (19) 
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Test based on the schoenfeld residuals 

If Schoenfeld Ho< 0.05, then the model or feature does not meet the PH assumption and when H1>0.05 the proportional hazard 

assumption is met. The test is accomplished by finding the relationship between the Schoenfeld residuals for a particular covariate 

and the ranking of individual survival time. The null hypothesis is that the relationship between the Schoenfeld residuals and the 

ranked survival time is zero. Rejection of null hypothesis concludes that PH assumption is violated. 

 

Cox proportional hazard model analysis using cox-snell and deviance residuals 

The Cox-Snell residuals for the ith individual with observed survival time ti is defined as; 

 

𝑟𝑒𝑖 = 𝑒𝑥𝑝(𝛽′𝑥𝑖)𝐻0(𝑡𝑖) = −𝑙𝑜𝑔𝑆0(𝑡𝑖)                    (20) 

 

Where 𝐻0(𝑡𝑖)is the estimate of the baseline cumulative hazard function at time ti. 

That the residual is based on the following findings. Let T have a continuous survival distribution S(t) with the cumulative hazard 

𝐻(𝑡) = −𝑙𝑜𝑔(𝑆(𝑡)). Then, 𝑆𝑇(𝑡) = 𝑒𝑥𝑝(−𝐻(𝑡)). Let H(T) be the transformation of T based on the cumulative hazard function, 

then, the survival function for Y is: 

 

𝑆𝑇(𝑦) = 𝑃(𝑌 > 𝑦)  = 𝑃(𝐻(𝑡) > 𝑦)                     (21) 

 

𝑃(𝑇 < 𝐻𝑇(𝑦))  = 𝑆𝑇(𝐻𝑇(𝑦))                      (22) 

 

𝑒𝑥𝑝(−𝐻𝑇(𝐻𝑇(𝑦))  = 𝑒𝑥𝑝(−𝑦)                      (23) 

 

Thus, regardless of the distribution of T, the new variable, Y=H (T), has an exponential distribution with unit mean. If the model 

is well fitted, the value 𝑆𝑖(𝑡𝑖) will have a similar property with that of 𝑆𝑇(𝑦) and 𝑟𝑐𝑖 = −𝑙𝑜𝑔𝑆𝑖(𝑡𝑖) will have a unit exponential 

distribution with 𝑅(𝑟) = 𝑒𝑥𝑝(−𝑟). 

 

Let SR(r) denote the survival function for Cox-Snell residual rci, then 

 

𝑆𝑅(𝑟) = ∫ 𝑓𝑅(𝑥)
∞

𝑟
𝑑𝑥 = ∫ 𝑒𝑥𝑝(−𝑥)

∞

𝑟
𝑑𝑥 = 𝑒𝑥𝑝(−𝑟)𝐻𝑅(𝑟)                (24) 

 

𝐻𝑅(𝑟) = −𝑙𝑜𝑔𝑆𝑅(𝑟) = −𝑙𝑜𝑔(𝑒𝑥𝑝(𝑒𝑥𝑝(−𝑟))  = 𝑟                  (25) 

 

And 

 

𝐻𝑅(𝑟) = −𝑙𝑜𝑔𝑆𝑅(𝑟) = −𝑙𝑜𝑔(𝑒𝑥𝑝(−𝑟))  = 𝑟                  (26) 

 

Schoenfeld Residuals 

Schoenfeld residuals was originally called partial residuals because for ith individual on the jth explanatory variable, Xj is an 

estimate of the ith component of the first derivative of the logarithm of the partial likelihood function with respect to βj. The partial 

likelihood function is given by; 

 
𝜎𝑙𝑜𝑔𝐿(𝛽)

𝜎𝛽𝑗
= ∑ 𝜎𝑖(𝑥𝑖𝑗 − 𝑎𝑖𝑗)

𝑝
𝑖=1                        (27) 

 

Where xij is the value of the jth explanatory variable j=1, 2., p for the ith individual and; 

 

𝑎𝑖𝑗 =
∑ (𝑡𝑗)𝑥𝑖𝑗𝑒𝑥𝑝(𝛽′𝑥1)𝑖𝜖𝑅

∑ (𝑡𝑗)𝑒𝑥𝑝(𝛽′𝑥𝑖)𝑖𝜖𝑅
                        (28) 

 

The Schoenfeld residual for ith individual on Xj is given by 𝑟𝑝𝑗𝑖 = 𝛿𝑖[𝑥𝑗𝑖 − 𝑎𝑗𝑖].  

 

Testing for Goodness of Fitted model 

Akaike information criterion (AIC) and Cox-Snell residual concept were applied in this research project to test the goodness of the 

fitted model. AIC trades off the complexity of an estimated model against how well the model fits the data. The AIC is given by;  

 

𝐴𝐼𝐶 =  −2 ∗ 𝑙𝑜𝑔(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)  +  2(𝑝 +  𝑘))                   (29) 

 

Where, the number of parameter/covariates is defined by p, exponential model denoted by k=1 and log-logistic and Weibull 

model denoted by k=2 (Klein et al., 1997) [19]. Better likelihood is indicated by lower AIC. The Cox-Snell residual for the ith 

individual with observed time t is defined as: 

 

𝑅𝑐𝑖 = 𝑆𝑖(𝑡) = (𝑆𝜀𝑖(𝑙𝑜𝑔𝑡 − 𝜇 − 𝛽1𝑥1 − ⋯ . 𝛽𝑝𝛽𝑝) 𝜎⁄ )                 (30) 
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With respect to distribution, competing models are judged by approximation of cumulative Cox-Snell residuals to (-log), Kaplan-

Meier estimates and AIC minimization. The researcher applied the optimal model identified in predicting child mortality. 

 

Testing for the statistical significant of the variables 

The Wald test (Wald Chi-Squared Test) is estimated by dividing the maximum likelihood estimate of the slope parameter by the 

estimates of its standard error as follows. 

 

𝑊 =
(𝜃̂−𝜃0)

2

𝑣𝑎𝑟(𝜃̂)
                           (31) 

 

The Null hypothesis is W0< 0.05 and the Alterative Hypothesis is W1>0.05. The null hypothesis is rejected when Wald test value 

is greater than 0.05 and made the conclusion that the particular independent variable is statistically insignificant and when W0 is 

less than 0.05 we conclude that the independent variable is statistically significant. 

 

Checking the effect of the Ratio factor 

The assumption of the Cox proportional hazards model suggests a multiplicative effect of the predictors on the hazard and that 

this effect is constant over time. This is given by; 

 

ℎ (
𝑡

𝑥
) = ℎ0(𝑡)𝑒𝛽1𝑥1 + ⋯ . +𝛽𝑝𝑥𝑝                      (32) 

 

Therefore, the interpretation of the Cox model is done using hazard ratios (HR). The HR has also been defined as the ratio of (risk 

of outcome in one group), (risk of outcome in another group), occurring at a given interval of time. 

 

ℎ =
𝑑𝐴 𝑒𝐴⁄

𝑑𝐵 𝑒𝐵⁄
                           (33) 

 

A hazard ratio greater than 1 means the event is more likely to occur, and a ratio less than one means an event is less likely to 

occur. A hazard ratio of 1 means the predictor has no effect on the hazard of the event.  

 

Test for overall statistically significant of the fitted model. 

When T1 and T2 are continuous independent random variables with cumulative distribution functions F1 and F2, then the 

concordance index is: 

 

𝐶 = 𝑃(𝑇1 > 𝑇2) = ∫{1 − 𝐹1(𝑢)}𝑑𝐹2(𝑢)                    (34) 

 

If T1 and T2 place positive mass at the same point, then we count half for ties and define C as;  

 

𝐶 =  ∫ {1 −  𝐹(𝑢)  +  ½𝑃(𝑇2  =  𝑢)}𝑑𝐹2(𝑢)                   (35) 

 

If the two distributions are the same or have ties, then C=0.5. The concordance index can be estimated from the normalized 

Wilcoxon rank sum (Mann–Whitney) statistic as follows. 

 

𝐶̂ = (𝑛𝑚) − 1∑𝑖 = 1𝑛∑𝑗 = 1𝑚𝐼(𝑇1𝑖 > 𝑇2𝑗) + 12𝐼(𝑇1𝑖 = 𝑇2𝑗)              (36) 

 

Where T1i (i = 1,…, n) and T2j (j = 1, …, m) are independent samples from F1 and F2 respectively, and I denotes the indicator 

function. The hypothesis will be;  

Ho: Concordance index is less than 0.05  

H1: Concordance index is greater than 0.05 

 

This can also be tested using the Wald statistics. Confidence interval tells the actual coefficient value can lie within that range. If 

that interval includes 0, that means the actual coefficient value can be zero and that means that the predictor has no relationship 

with the response variable or it is insignificant in terms of its influence on response variable. 

The likelihood ratio test statistic (−2 Log L) to test nested GLM models is;  

 

−2𝑙𝑜𝑔𝑙0𝑙1 = −2𝑙𝑜𝑔𝑙0 − 𝑙𝑜𝑔𝑙1 = −2𝑙0 − 𝑙1                   (37) 

 

Where l0 is the maximized value of the likelihood function for the simpler model and l1 is the maximized likelihood function for 

the full model. L0 and L1 represent the maximized log-likelihood functions and are the transformations of l0 and l1. This 

transformation yields a chi-squared statistic with degrees of freedom (df) equal to the number of parameters in the null hypothesis. 

If the likelihood ratio test is less than 0.05 then we conclude that the overall goodness of the model is met and if it is less than 0.05 

then we conclude that the overall goodness of the model is not met. 
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Chapter four: Data analysis, presentation and interpretation 

Descriptive statistics 

This study involved a sample of 3979 at Moi Teaching and Referral Hospital over five years’ period between the year 2015 and 

2019. The findings suggest that majority of the children who died during this period had an average age of 2.252 (mean=2.252) 

with maximum age being five years and minimum age of one year. Majority of the deaths occurred in the year 2016 with a total 

number of 1055 of children (F=1055). In addition, the child mortality ratio of males is higher compared to that of female. 

Furthermore, the findings show that most of the deaths were caused by birth asphyxia followed by congenital malformations. 

Tuberculosis was found to be the least possible cause of child mortality.  

 
Table 1: Causes of child mortality 

 

Variables Frequency (censored) Frequency (death) 

Gender 

Female 1099 862 

Male 1123 895 

Year 

2015 290 235 

2016 1437 1055 

2017 273 259 

2018 155 149 

2019 57 69 

Cause 

Birth Asphyxia 1459 833 

Cancer 80 68 

Congenital Malformations 145 151 

Dehydration 21 42 36 

Diarrhea 39 74 

Digestive system 26 39 

Heart 17 34 

Kidney 21 23 

HIV 9 22 

Malaria 38 10 

Malnutrition 35 50 

Meningitis 120 51 

Neonatal Sepsis 44 112 

Pneumonia 35 47 

Poisoning 60 59 

Respiratory 4 99 

Tuberculosis 27 8 

Others  43 

 

Testing for the proportional hazard assumption  

Schoenfeld Residuals 

The Schoenfeld residuals plots depict a random pattern that is fairly flat hence showing that there is no violations of the 

proportional hazard assumption for the variables (gender and cause) including the global variable thus suggesting that proportion 

hazard assumption holds for this model (Figure 1).  

 

 
 

Fig 1: Schoenfeld Residuals 
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Test based on stitatistical test 
In addition, test of assumption for proportional hazard was also performed with statistical test and graphical diagnostics using 
Schoenfeld residuals. The results as depicted in Table 2 below show statistical tests that suggest that both the two variables 
(gender and cause) were not statistically significant. Also, it was found out that the global test was also not statistically significant, 
hence, implying that the proportional hazards assumption was not violated in this study datasets. 
 

Table 2: Test of proportional hazard assumptions 
 

 Chisq DF P 

Gender 1.23 1 0.27 

Cause 24.64 17 0.10 

Global 25.72 18 0.11 

 

Comparison between the log-normal AFT and CPH Models 
Cox-Snell residual and Akaike information criterion (AIC) were used to compare the results of Cox PH model with AFT model. 
Cox-Snell residuals were plotted for both the Log-Normal AFT and CPH models and they are as shown in Figure 2 below. Basing 
on the analysis of the Cox-Snell residual plots as shown in Figure 4.2 below, the results suggest that Cox PH model and 
Accelerated Failure Time Model had approximately equal fitness.  
 

 
 

Fig 2: Cox-snell residual plots 
 

According to AIC results appearing in Table 3 below, it can be seen that Cox PH model outperforms Accelerated Failure Time 
model in the analyzing child mortality for MTRH hospital located in Uasin Gishu County. Therefore, in this study Cox PH model 
was found to be optimal as compared to Accelerated Failure Time Model based on Log-normal model.  
 

Table 3: AIC Results of Lognormal AFT and CPH Models 
 

Model AIC Value 

Cox PHM 6364.75 

Lognormal 6908.157 

 

Cox Proportional hazard model results 
Cox Proportional Hazard Model was fitted in order to predict the child mortality hazard. The results are presented in Table 4 
below. 
 

Table 4: Cox Proportional Hazard Model 
 

Variables COEF EXP (COEF) Z PR(>|z|) 

Gender 0.06144 1.06337 1.279 0.201 

Cancer -0.3662 0.69336 -2.83 0.0034 ** 

Malformations 0.29412 1.34194 3.316 0.001 *** 

Dehydration 0.61654 1.85251 3.615 0.000 *** 

Diarrhea 0.61045 1.84127 5.014 5.3e-07 ** 

Digestive 0.14731 1.15871 0.890 0.373 

System 

Heart 0.53958 1.71529 3.081 0.002 ** 

Kidney 0.25425 1.28949 1.201 0.230 

HIV 0.04267 1.04360 0.197 0.844 

Malaria 0.01206 1.01214 0.038 0.970 

Malnutrition 0.49907 1.64718 3.417 0.001 *** 

Meningitis 0.39234 1.48044 2.700 0.007 ** 

Neonatal 0.32838 1.38871 3.259 0.001 ** 

Sepsis 

Pneumonia 0.71293 2.03996 4.751 2e-06 *** 

Poisoning 0.33313 1.39533 2.464 0.0137 * 

Respiratory 0.87403 2.39656 8.212 < 2e-16 ** 

Tuberculosis 0.27841 1.32103 0.782 0.434 

Others 0.21787 1.24343 1.388 0.165 

https://www.mathsjournal.com/


 

~10~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

Test of statistical significance of the variables 

Ho: If p-value for Wald test is less than.05, then the variable is statistically significant.  

H1: If p-value for Wald test is greater than.05, then the variable is statistically significant. 

 

From Table 5 below, it can be seen that the gender coefficient is positive but not significant. This implies that the male child 

mortality hazard is seen to increase with respect to the female child though the difference is not significant. Cancer with a 

negative beta coefficient indicates that Child mortality hazard for Children suffering from cancer is decreased as compared to 

those suffering from Birth Asphyxia though highly statistically significant. For the children suffering from Malformation, 

Dehydration, Diarrhea, Heart problem, Malnutrition, Meningitis, Neonatal Sepsis, Pneumonia, Poisoning and Respiratory problem 

has a positive beta coefficients which indicates that children mortality hazard is increased as compared to those suffering from 

Birth Asphyxia and are statistically significant. Moreover, the table further indicates that those Children suffering from Digestive 

problem, Kidney problem, HIV, Malaria, Tuberculosis, and Other factors not examined has positive beta coefficients which 

indicates that child mortality hazard is increased as compared to those suffering from Birth Asphyxia though not statistically 

significant. 

 
Table 5: Statistical Tests as per the Fitted CPHM on the child mortality data 

 

Concordance 0.6 (se = 0.009)  

Likelihood ratio test 138.2 with 18 df, p=<2e-16 

Wald test 147.5 with 18 df, p=<2e-16 

Score (log rank) test 153.6 with 18 df, p=<2e-16 

 

The Hazard Ratio 

Ho: HR=1 

H1: HR ≠1 

 

We can see that the variable Gender, Malformation, Dehydration. Diarrhea, Digestive system, Heart, Kidney, Malaria, HIV, 

Malnutrition, Meningitis, Neonatal Sepsis, Poisoning, Tuberculosis, pneumonia, Respiratory and other factors have Hazard ratio 

greater than 1. This show that these variables increases Mortality Hazard while variable Cancer with Hazard Ratio less than 1 

shows that the effect of cancer in mortality hazard is reduced. As shown in Table 6 below. 

 
Table 6: Hazard Ratio 

 

Variables HR 

Gender 1.06337 

Cancer 0.69336 

Malformations 1.34194 

Dehydration 1.85251 

Diarrhea 1.84127 

Digestive system 1.15871 

Heart 1.71529 

Kidney 1.28949 

HIV 1.04360 

Malaria 1.01214 

Malnutrition 1.64718 

Meningitis 1.48044 

Neonatal Sepsis 1.38871 

Pneumonia 2.03996 

Poisoning 1.39533 

Respiratory 2.39656 

Tuberculosis 1.32103 

Others 1.24343 

 

The Hazard Ratio Graph 

The findings as shown in Figure 3 below show that the hazard ratios were all greater than one over the 2015-2019 period which 

increased mortality hazard. This clearly show that there is higher probability of deaths caused by these risk factors on the child 

except for cancer as a risk factor that had Hazard ratio less than 1. This implies that children suffering from cancer, there mortality 

hazard was decreased as compared to other children suffering from other risk factors which had their Hazard Ratio greater than 1. 
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Fig 3: Hazard Ratio Graph 
 

Test for statistically significant of the overall statistics 

Ho: WO<0.05 

H1: W1>0.05 

 

The three alternative tests including Wald test, the likelihood-ratio test and Score log-rank statistic for the overall significant of 

the model indicates that the model is statistically significant (P-Values<0.05).  

The confidence interval was 95% (0.95) which is less than 1, this shows that parameters are good. However, if the confidence 

interval crosses 1, then the parameter is not good and this implies that there is no difference between arms of the study. Also, the 

likelihood ratio test shows that overall, the model is good since the likelihood ratio test is less than 0.05. 

 

Predictions of child mortality  

The findings as shown in Table 2 above indicates that the Wald Statistic value for gender variable is equal to 1.279(z=1.279) and 

is not statistically significant (P-Value=0.200879). Therefore, the gender variable does not have statistically significant 

coefficients. Also, the beta coefficient for gender=0.06144 (positive). This indicates that male child has higher risk of death than 

female child. The hazard ratio given by the exponential coefficients exp (coef) = 1.06337 suggest that being male increases the 

hazard of child mortality by a factor of 1.06337 times (6.3%) than female counterparts.  

In addition, the results also show that the variable of cause has some factors that have statistically significant Wald Statistic values 

(p-values<0.05). Therefore, suggesting that cause has some factors with highly statistically significant coefficients. These factors 

included those with Cancer, Congenital Malformations, Dehydration, Diarrhea, Heart problems, Malnutrition, Meningitis, 

Neonatal Sepsis, Pneumonia, Poisoning and Respiratory problems. The findings further indicate that children with cancer had 

negative beta coefficients. This implies that children with cancer as the causative factor of child mortality were at lower risk of 

death as compared to children with Birth Asphyxia. Furthermore, the hazard ratio for children with Cancer was less than 1. This 

indicates that children with Cancer disease reduces the hazard of child mortality by a factor of 0.69 (31%) times respectively as 

compared to those having Birth Asphyxia. However, the beta coefficients for children with Congenital Malformations, 

Dehydration, Diarrhea, Heart problems, Malnutrition, Meningitis, Neonatal Sepsis, Pneumonia, Poisoning and Respiratory 

problems were positive. This indicates that children with these conditions as the causative factors of child mortality were at higher 

risk of death as compared to children with Birth Asphyxia. Moreover, the hazard ratio for children with Congenital 

Malformations, Dehydration, and Diarrhea, Heart problems, Malnutrition, Meningitis, Neonatal Sepsis, Pneumonia, Poisoning 

and Respiratory problems were greater than 1. This shows that children with these diseases increases the hazard of child mortality 

by a factor of 1.34, 1.85, 1.84, 1.71, 1.65, 1.48, 1.39, 2.04, 1.40 and 2.40 times respectively as compared to children with Birth 

Asphyxia. 

On the other hand, the results also show that the variable of cause has some factors that were found to have insignificant Wald 

Statistic values (P-Values > 0.05). This shows that the variable of cause does not have highly statistically significant coefficients 

based on these factors including Digestive system problems, HIV, Kidney problems, Malaria, Tuberculosis and other factors not 

examined. The beta coefficients for those with these conditions as the causative factors of child mortality were found to be 

positive (β=0.14731, 0.25425, 0.04267, 0.01206, 0.27841 and 0.21787 respectively) though not statistically significant. This 

https://www.mathsjournal.com/


 

~12~ 

International Journal of Statistics and Applied Mathematics https://www.mathsjournal.com 
 

indicates that children with Digestive system problems, HIV, Kidney problems, Malaria, Tuberculosis and other factors not 

examined are at higher risk of death than children with Birth Asphyxia. Moreover, the hazard ratio for children with Digestive 

system problems, HIV, Kidney problems, Malaria, Tuberculosis and other factors not examined were found to be 1.16, 1.04, 1.29, 

1.01, 1.32 and 1.24 respectively. This suggests that children with Digestive system problems, HIV, Kidney problems, Malaria, 

Tuberculosis and other factors not examined increases the hazard of child mortality by a factor of 1.16 (16%), 1.29 (29%), 1.04 

(4%), 1.01 (1%), 1.24 (24%) and 1.32 (32%) times respectively as compared to those having Birth Asphyxia though not 

statistically significant.  

 

Chapter Five: Summary, Conclusion and Recommendations 

Summary of the findings  

In this study, data analysis was performed using the Cox PH model. The results suggest that majority of the children deaths 

occurred in the year 2016 with average age of 2 years. A large number of children deaths were of male gender and Birth Asphyxia 

was identified as the main causative factor of under-five child mortality. Others main causes that were identified included 

Congenital Malformations, Neonatal Sepsis, Respiratory problems, Diarrhea and Cancer. Tuberculosis, Malaria, kidney problems, 

Heart problems and HIV were among the least factors causing child mortality.  

Children suffering from congenital malformation were at higher risk of death, this support the finding of Collen et al. (2013) who 

did a research on child mortality and their finding suggest that SIDS was the risk factor for child mortality. Male children were at 

higher risk of death than female children. This supports the findings by Kayode et al. (2013) [17] who examined the risk factors for 

child mortality in Nigeria using multivariate logistic regression analysis.  

 

Conclusion  

Child mortality has become a very important aspect of measuring the health status of the current population and predicting the 

health of the future generation. This study aimed at testing the proportional hazard assumption on child mortality data based on 

children under the age of five years that was from secondary data at Moi Teaching and Referral Hospital. Data was performed 

using Cox PH model since the proportionality assumption was met. Therefore, the analysis of Cox PH model suggests that gender 

was not statistically significant in this study for predicting child mortality. On the other hand, the variable of cause was found to 

influence child mortality though some of its factors were found to be statistically insignificant. Among the factors that were found 

to be significant included those children suffering from Cancer, Congenital Malformations, Dehydration, Diarrhea, Heart 

problems, Malnutrition, Meningitis, Neonatal Sepsis, Pneumonia, Poisoning and Respiratory problems. Hence, these factors were 

the most important significant causative factors influencing child mortality in this study.  

 

Recommendations 

This study concluded that Cox PH model was considered appropriated for predicting child mortality. However, one disadvantage 

of using Cox PH model is that it requires assumption of proportional hazard to hold where in some cases this is impossible. 

Further Research based on this study should be conducted using Cox Proportional Time Dependent Hazard model which does not 

requires the assumption of proportional hazard. Also, further studies should be conducted to include other aspects of practical 

cases including larger censoring.  
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