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Abstract 

In this paper, we propose the estimation of Location (θ) and Scale (λ) parameters using the Least Square 

Regression Method. We also computed Average Estimate (AE), Variance (VAR), Standard Deviation 

(STD), Mean Absolute Deviation (MAD), Mean Square Error (MSE), Simulated Error (SE) and Relative 

Absolute Bias (RAB) for both the parameters under complete sample based on 1000 simulations to assess 

the performance of the estimators. 
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1. Introduction 

Generally in many of the situations, we face some type of situations of non monotonic failure 

rates to supervise the reliability analysis of the data. In order to model such data, proposed by 

Aarset et al (1987) [1] and Venkataraman et al (1988) [12] proposed Least squares estimators 

and Weighted Least squares estimators of a Beta distribution present an extension of the 

Weibull family that not only contains unimodel distribution with bath tub failure rates but also 

allows for a broader class of monotone hazard rates and is computationally convenient for 

censored data. They named their extended version as “Exponentiated Weibull Family”. On 

similar lines Gupta and Kundu (2001b) [8] proposed a new model called generalized 

exponential distribution. A generalized (type – II) version of logistic distribution was 

considered and some interesting properties of the distribution were derived by Balakrishnan 

and Hassain (2007) [5]. Ramakrishna (2008) [7] studied the Type I generalized half logistic 

distribution scale (σ) and shape (θ) parameters estimation using the least square method in two 

step estimation methods. Torabi and Bagheri (2010) [13] considered different parameter 

estimation methods in extended generalized half logistic distribution for censored as well as 

complete sample. Rama Mohan and Anjaneyulu (2011) [10] studied how the least square 

method be good for estimating the parameters in two parameter Weibull distribution from an 

optimally constructed grouped sample.  

 In Section - 2, we discuss the procedure for estimating the Location (θ) and Scale (λ) 

parameters of the HLRD using the least squares regression method. We therefore employ these 

approximations as the least squares method. 

In Section - 3 we present the observations and the conclusions are based on the simulation 

results with the numerical example.   

Let x1, x2,..., xn be a random sample of size n from HLRD  ( , ) , its Probability Density 

Density Function (PDF), cumulative distribution function(CDF) and Hazard Function (HF) are 

given by 
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h(x) = H(  ; ,x ) = 
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2. Estimation of Location ( ) and Scale ( ) parameters 

of two parameter HLRD  

A. HLRD using Least Square Regression Method 

Let x(1)< x(2)< x(3)………..< x(N) be an ordered sample of size 

‘N’ from Half Logistic Rayleigh Distribution with the 

parameters Location (θ) and Scale ( ). Then the cdf is given 

in equation (1.2), can be written as 
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Taking Logarithm on both side of equation (2.3), we get  

 

 𝑥 = 

 



1
2

1
logY

       ... (2.4) 

 

Where 𝑌 = (
1+𝐹(𝑋)

1−𝐹(𝑋)
)  

 

From the least square parameter estimation method (also 

known as regression analysis), let us consider 

 

A = θ, �̂� = �̂� , 𝐵 =
1

√𝜆 
 , 𝜆 ̂ =  

1

√𝐵
.      ...(2.5) 
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B. Simulation study 

In order to obtain the Least Square Regression method 

estimators of Location (θ)and Scale (λ) is used to obtain 

estimators and to study their predictive properties by Average 

Estimate (AE), Variance (VAR), Mean Square Error (MSE), 

Relative Absolute Bias (RAB) and Relative Error (RE). If ξ̂lm 

is Median Ranks Method estimate of ξ̂m, m=1, 2 where ξmis a 

general notation that can be replaced by ξ1 = λ, ξ2 = θ based 

on sample l, (l=1,2,…,r), then the Average Estimate (AE), 

Variance (VAR), Mean Absolute Deviation (MAD), Mean 

Square Error (MSE) and Relative Absolute Bias (RAB) and 

Relative Error (RE) are given respectively by  

  

Average Estimate (�̂�𝑚) = 
∑ �̂�𝑙𝑚

𝑟
𝑖=1

𝑟
  

  

Variance(�̂�𝑚) = 
∑ (𝑟

𝑖=1  �̂�𝑙𝑚− �̂�𝑙𝑚
̅̅ ̅̅ ̅̅ ̅)2

𝑟
 

  

Mean Absolute Deviation = 
∑ 𝑀𝑒𝑑(|�̂�𝑙𝑚− �̂�𝑙𝑚

̅̅ ̅̅ ̅̅ ̅|)𝑟
𝑖=1

𝑟
 

  

Mean Square Error (�̂�𝑚) = 
∑ (�̂�𝑙𝑚−𝜓𝑚)2𝑟

𝑖=1

𝑟
 

  

Relative Absolute Bias(�̂�𝑚) =
∑ |(�̂�𝑙𝑚−𝜓𝑚)|𝑟

𝑖=1

𝑟𝜓𝑚
 

  

Relative Error(�̂�𝑚) = 
1

𝑟
(

∑ 𝑀𝑆𝐸√(�̂�𝑙𝑚)𝑟
𝑖=1
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3. Observations from simulation results and conclusions 

1. The Average Estimate (AE), Variance (VAR), Standard 

deviation (STD), Mean Square Error (MSE) and Relative 

Absolute Bias (RAB) are independent of true values of 

the parameters of Location (θ) and Scale (λ) by observing 

simulated data sets. 

2. Average Estimate (AE) of Location parameter (θ̃) and 

Scale parameter (λ̃) in Least Square Regression Method 

are decreasing when sample size (N) is increasing. 

3. Variance (VAR) of Location parameter (�̃�) and Scale 

parameter (�̃�) in Least Square Regression Method are 

increasing when sample size (N) is increasing. 

4. Mean Absolute Deviation (MAD) of Location parameter 

(�̃�) and Scale parameter (�̃�) in Least Square Regression 

Method and increasing when sample size (N) is 

increasing. 

5. Mean Square Error (MSE) of Location parameter (�̃� ) 

and Scale paramete (�̃�) in Least Square Regression 

Method are decreasing when sample size (N) is 

increasing. 

6. Relative Absolute Bias (RAB) of Location parameter (�̃� ) 

and Scale parameter (�̃�) Least Square Regression Method 

were increasing when sample size (N) is increasing. 

  

Simulated datasets: We evaluate the performance of the 

Least Square Regression (LSR) method for estimating the 
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HLRD (θ, λ), Newton-Raphson simulation for a two 

parameter combinations and the process is repeated 10,000 

times for different sample sizes n=50(50)500 are considered. 

The MRRs and their Average Estimate (AE), Variance 

(VAR), Mean Absolute Deviation (MAD), Mean Square 

Error (MSE), Relative Absolute Bias (RAB) and Relative 

Error (RE) of Least Square method to estimators of scale and 

Location parameters. Population parameters Scale = 2.5 and 

location = 3 in Table-3.4. 

Table- 3.4 

 
Least Square Regression-HLRD 

Sample size Parameters Average estimation Variance MAD MSE RAB RE 

50 �̃� 2.416037 0.163181 0.28466 0.3410125 0.0973271 0.2919814 

 �̃� 3.87926 0.07679 0.294104 0.9023585 0.275852 0.6896301 

100 �̃� 2.353751 0.041262 0.142383 0.4176373 0.2154162 0.3231243 

 �̃� 3.743336 0.070899 0.338597 0.545884 0.4973343 0.6216679 

150 �̃� 2.9431 0.520277 0.862913 0.0032376 0.02845 0.02845 

 �̃� 3.587492 0.218549 0.607039 0.1826398 0.6524955 0.5437462 

200 �̃� 3.050192 0.794151 0.162325 0.0025193 0.0334616 0.0250962 

 �̃� 3.02951 0.923774 0.232616 0.280381 0.4236081 0.2647551 

250 �̃� 3.556159 0.462213 0.942249 0.3093123 0.4634654 0.2780793 

 �̃� 3.127421 0.955334 0.305475 0.393657 0.6274209 0.3137105 

300 �̃� 3.653171 0.458196 0.88823 0.426633 0.6531715 0.3265857 

 �̃� 3.167273 0.909474 0.263539 0.445253 0.8007274 0.3336364 

350 �̃� 3.612437 0.430732 0.846908 0.3750793 0.71451 0.3062186 

 �̃� 3.036132 0.89958 0.129998 0.2874373 0.7505846 0.2680659 

400 �̃� 3.814314 0.24649 0.640808 0.663108 0.0857526 0.4071572 

 �̃� 3.348839 0.690315 0.070497 0.7205277 0.3581425 0.4244195 

450 �̃� 3.442474 0.569817 0.915029 0.195783 0.6637107 0.2212369 

 �̃� 2.635621 0.873551 0.220174 0.0183931 0.01 0.0678105 

500 �̃� 3.34759 0.58741 0.959337 0.1208191 0.5793175 0.1737952 

 �̃� 2.851896 0.186118 0.412921 0.1238311 0.7037928 0.1759482 
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