# International Journal of Statistics and Applied Mathematics

ISSN: 2456-1452 Maths 2023; 8(6): 1283-1285 © 2023 Stats & Maths https://www.mathsjournal.com Received: 24-09-2023 Accepted: 02-11-2023

#### Janika V Bhadaraka

Department of Floriculture and Landscape Architecture, College of Horticulture, S. D. A. U., Jagudan, Gujarat, India

#### Dr. Vishal R Wankhade

Assistant Professor, Department of Horticulture, C. P. College of Agriculture, S.D.A.U., Sardarkrushinagar, Gujarat, India

#### Mayuri Nandania

Department of Floriculture and Landscape Architecture, College of Horticulture, S. D. A. U., Jagudan, Gujarat, India

#### DK Vasoya

Department of Floriculture and Landscape Architecture, College of Horticulture, S. D. A. U., Jagudan, Gujarat, India

Corresponding Author: Janika V Bhadaraka

Department of Floriculture and Landscape Architecture, College of Horticulture, S. D. A. U., Jagudan, Gujarat, India

# Economic analysis on different varieties of tuberose as affected by different spacing on growth, yield and quality

# Janika V Bhadaraka, Dr. Vishal R Wankhade, Mayuri Nandania and DK Vasoya

# DOI: https://doi.org/10.22271/maths.2023.v8.i6Sq.1551

#### Abstract

The present investigation was carried out to ascertain performance of tuberose (*Polianthes tuberosa* L.) with different spacing during March, 2021 to January, 2022 at College Farm, College of Horticulture, S. D. Agricultural University, Jagudan, Dist. Mehsana, Gujarat. Experiment was comprised of two factors *viz.* three spacings i.e. 30 cm x 30 cm (s<sub>1</sub>), 45 cm x 20 cm (s<sub>2</sub>) and 45 cm x 30 cm (s<sub>3</sub>) and five varieties Arka Prajwal (v<sub>1</sub>), Phule Rajani (v<sub>2</sub>), Shringar (v<sub>3</sub>), Mexican Single (v<sub>4</sub>) and Arka Nirantara (v<sub>5</sub>). Total 15 treatments were evaluated in present investigation *viz.*, T<sub>1</sub>: 30 cm x 30 cm + Arka Prajwal, T<sub>2</sub>: 30 cm x 30 cm + Phule Rajani, T<sub>3</sub>: 30 cm x 30 cm + Shringar, T<sub>4</sub>: 30 cm x 30 cm + Mexican Single, T<sub>5</sub>: 30 cm x 30 cm + Arka Nirantara, T<sub>6</sub>: 45 cm x 20 cm + Arka Prajwal, T<sub>7</sub>: 45 cm x 20 cm + Arka Nirantara, T<sub>11</sub>: 45 cm x 30 cm + Arka Prajwal, T<sub>12</sub>: 45 cm x 30 cm + Phule Rajani, T<sub>13</sub>: 45 cm x 30 cm + Shringar, T<sub>14</sub>: 45 cm x 30 cm + Mexican Single and T<sub>15</sub>: 45 cm x 30 cm + Arka Nirantara. Treatments were evaluated with respect to growth, yield and quality parameters of tuberose. Among various treatments, the highest benefit cost ration and net realization obtained with treatment T<sub>6</sub>: 45 cm x 20 cm + Arka Prajwal.

Keywords: Tuberose, single type, variety and spacing, economics, benefit cost ratio

### Introduction

In India, tuberose (*Polianthes tuberosa* L.) is a popular crop for cut and loose flowers. It is an ornamental bulbous plant belongs to family Asparagaceae and is native of Mexico (Trueblood, 1973)<sup>[3]</sup>. In South India, it is commonly planted for its fragrant white flowers, which are used for garlands and decorations. It is also used for worshipping, offerings in religious functions and on auspicious days (Krishnamoorthy, 2014)<sup>[1]</sup>. The flowers are used for the extraction of valuable essential oil, which is having greater export demand (Martolia and Srivastava, 2012)<sup>[2]</sup>. For this crop, there are numerous local varieties and cultivars available these days. Certain types may not perform as well in other places with different climates than they do in one. Thus, the varietal evaluation for a certain site enables the producer to choose the variety that will yield the most and be most fit for that specific area. Any crop's ability to be successfully grown is determined by a number of agronomic practices, such as optimal spacing, in addition to the high yielding variety. Thus, in order to cultivate tuberose and produce the best possible quality and number of tuberose flowers, plant spacing is very crucial. Considering the present situation and above facts, the present investigation was undertaken with the objective to determine the optimum spacing for better growth, spike yield and quality of tuberose.

## **Materials and Methods**

The current study was conducted from March 2021 to January 2022 at the College Farm, College of Horticulture, Sardarkrushinagar Dantiwada Agricultural University, Jagudan, Dist. Mehsana, Gujarat. Split plot design was used to set up the experiment, which included fifteen treatment combinations of three spacings and five varieties: 30 cm x 30 cm ( $s_1$ ), 45 cm x 20 cm ( $s_2$ ) and 45 cm x 30 cm ( $s_3$ ) and five varieties Arka Prajwal ( $v_1$ ), Phule Rajani ( $v_2$ ), Shringar ( $v_3$ ), Mexican Single ( $v_4$ ) and Arka Nirantara ( $v_5$ ). He treatments that were combined



## International Journal of Statistics and Applied Mathematics

were as follows: T<sub>1</sub>: 30 cm x 30 cm + Arka Prajwal, T<sub>2</sub>: 30 cm x 30 cm + Phule Rajani, T<sub>3</sub>: 30 cm x 30 cm + Shringar, T<sub>4</sub>: 30 cm x 30 cm + Mexican Single, T<sub>5</sub>: 30 cm x 30 cm + Arka Nirantara, T<sub>6</sub>: 45 cm x 20 cm + Arka Prajwal, T<sub>7</sub>: 45 cm x 20 cm + Phule Rajani, T<sub>8</sub>: 45 cm x 20 cm + Shringar, T<sub>9</sub>: 45 cm x 20 cm + Mexican Single, T<sub>10</sub>: 45 cm x 20 cm + Arka Nirantara, T<sub>11</sub>: 45 cm x 30 cm + Arka Prajwal, T<sub>12</sub>: 45 cm x 30 cm + Phule Rajani, T<sub>13</sub>: 45 cm x 30 cm + Shringar, T<sub>14</sub>: 45

cm x 30 cm + Mexican Single and T<sub>15</sub>: 45 cm x 30 cm + Arka Nirantara. In March, bulbs with a diameter of 2.5 - 3.0 cm were planted, and irrigation and fertilization were done in accordance with standard recommended package standards. From each treatment, five plants were chosen for observation.

# **Results and Discussion**

| Sr. No. |                        |                                  |                 | E         | Fixed Cost (3 yr) |             |                         |  |  |
|---------|------------------------|----------------------------------|-----------------|-----------|-------------------|-------------|-------------------------|--|--|
|         |                        | Particular                       | Labour/quantity | Frequency | Cost of Material  | Labour Cost | - Fixed Cost (For 1 yr) |  |  |
|         | Pre-Planting Operation |                                  |                 |           |                   |             |                         |  |  |
| [A]     | 1.                     | Ploughing (3 hr x 600 ₹)         | -               | 2         | 3,600             | -           | 1,200                   |  |  |
|         | 2.                     | Planking (3 hr x 600 ₹)          | -               | 1         | 1,800             | -           | 600                     |  |  |
|         | 3.                     | FYM @ 20 t/h                     | -               | 1         | 60000             | -           | 20000                   |  |  |
|         | 4.                     | FYM application                  | 10              | 1         |                   | 10200       | 3400                    |  |  |
|         | Bulb                   |                                  |                 |           |                   |             |                         |  |  |
| [B]     | 1.                     | Transport                        | -               |           | 1,000             | -           | 334                     |  |  |
|         | 2.                     | COC treatment (5 kg)             | 4               | 1         | 3,500             | 1,360       | 11,273                  |  |  |
|         | 3.                     | GA <sub>3</sub> treatment (20 g) | 4               |           | 28,960            |             |                         |  |  |
|         | Fertilizer Cost        |                                  |                 |           |                   |             |                         |  |  |
|         | 1.                     | Urea (N: 200 kg/ha)              | 1304 kg urea    | -         | 7,735             | -           | 2,578                   |  |  |
| [C]     | 2.                     | SSP (P: 200 kg/ha)               | 3750kg SSP      | -         | 31,125            | -           | 10,375                  |  |  |
|         | 3.                     | MOP (K: 200 kg/ha)               | 1034 kg MOP     | -         | 18,713            | -           | 6,238                   |  |  |
|         | 4.                     | Fertilizer application           | 12              | 6         | -                 | 24,480      | 8,160                   |  |  |
|         | Planting               |                                  |                 |           |                   |             |                         |  |  |
| [D]     | 1.                     | Bed preparation                  | 10              | 1         | -                 | 3,400       | 1,134                   |  |  |
|         | 2.                     | Bulb Planting                    | 15              | 1         | -                 | 1,700       | 567                     |  |  |
| [E]     |                        | Intercultural Operations         |                 |           |                   |             |                         |  |  |
|         | 1.                     | Weeding                          | 6               | 45        | -                 | 91,800      | 30,600                  |  |  |
|         | 2.                     | Plant protection                 | 4               | 15        | -                 | 22,550      | 7,517                   |  |  |
| [F]     |                        | Irrigation                       | -               | -         | 60,000            |             | 20,000                  |  |  |
|         |                        | Total C                          | Cost (₹/ha)     |           | 2,16,433          | 1,55,490    | 1,23,976                |  |  |

(Note: Tuberose is generally grown for 3 years but here experiment was carried out for 1 year)

Rate of labour = 340 ₹/dayUrea = 5.93 ₹/kg

SSP= 8.3 ₹/kg MOP= 18.09 ₹/kg

Bulb =  $5 \notin$ /bulb FYM= 1000  $\notin$ /t

Among various treatments, the least total variable cost  $(1,26,857 \notin ha)$  was found in  $T_{13}$  (45 cm x 30 cm + Shringar) while highest total variable cost  $(1,92,665 \notin ha)$  was found in treatment  $T_6$  (45 cm x 20 cm + Arka Prajwal). Total cost of cultivation for tuberose crop in 1 hectare area was minimum

with  $(2,50,832 \ \text{\ensuremath{\bar{x}}}/ha) T_{13}$  (45 cm x 30 cm + Shringar) treatment. While highest total cost of cultivation  $(3,16,641\ \text{\ensuremath{\bar{x}}}/ha)$  for 1 hectare was found with treatment T<sub>6</sub> (45 cm x 20 cm + Arka Prajwal).

Table 1b: Details of variable cost

| Treatment       | Number of plants / ha | Bulb cost (₹/ha) | Harvesting cost (₹/ha) | Variable cost (₹/ha) |
|-----------------|-----------------------|------------------|------------------------|----------------------|
| $T_1$           | 1,11,111              | 1,85,185         | 5,440                  | 1,90,625             |
| $T_2$           | 1,11,111              | 1,85,185         | 3,740                  | 1,88,925             |
| T <sub>3</sub>  | 1,11,111              | 1,85,185         | 3,400                  | 1,88,585             |
| $T_4$           | 1,11,111              | 1,85,185         | 3,400                  | 1,88,585             |
| T5              | 1,11,111              | 1,85,185         | 3,400                  | 1,88,585             |
| T <sub>6</sub>  | 1,11,111              | 1,85,185         | 7,480                  | 1,92,665             |
| T <sub>7</sub>  | 1,11,111              | 1,85,185         | 4,080                  | 1,89,265             |
| T <sub>8</sub>  | 1,11,111              | 1,85,185         | 3,400                  | 1,88,585             |
| T9              | 1,11,111              | 1,85,185         | 3,740                  | 1,88,925             |
| T10             | 1,11,111              | 1,85,185         | 3,400                  | 1,88,585             |
| T11             | 7,40,74               | 1,23,457         | 5,100                  | 1,28,557             |
| T <sub>12</sub> | 7,40,74               | 1,23,457         | 4,080                  | 1,27,537             |
| T <sub>13</sub> | 7,40,74               | 1,23,457         | 3,400                  | 1,26,857             |
| T <sub>14</sub> | 7,40,74               | 1,23,457         | 3,740                  | 1,27,197             |
| T15             | 7,40,74               | 1,23,457         | 3,400                  | 1,26,857             |

Price of bulb = 5 ₹/bulb

(Note: Bulb cost is divided by 3 as experiment was carried out for 1 year)

| Table 1c: Details of tota | al cost |
|---------------------------|---------|
|---------------------------|---------|

| Treatment       | Fixed cost (₹/ha) | Variable cost (₹/ha) | Total cost (₹/ha) |
|-----------------|-------------------|----------------------|-------------------|
| T <sub>1</sub>  | 1,23,976          | 1,90,625             | 3,14,601          |
| T <sub>2</sub>  | 1,23,976          | 1,88,925             | 3,12,901          |
| T <sub>3</sub>  | 1,23,976          | 1,88,585             | 3,12,561          |
| $T_4$           | 1,23,976          | 1,88,585             | 3,12,561          |
| T <sub>5</sub>  | 1,23,976          | 1,88,585             | 3,12,561          |
| T <sub>6</sub>  | 1,23,976          | 1,92,665             | 3,16,641          |
| <b>T</b> 7      | 1,23,976          | 1,89,265             | 3,13,241          |
| T8              | 1,23,976          | 1,88,585             | 3,12,561          |
| Т9              | 1,23,976          | 1,88,925             | 3,12,901          |
| T10             | 1,23,976          | 1,88,585             | 3,12,561          |
| T <sub>11</sub> | 1,23,976          | 1,28,557             | 2,52,532          |
| T <sub>12</sub> | 1,23,976          | 1,27,537             | 2,51,512          |
| T13             | 1,23,976          | 1,26,857             | 2,50,832          |
| T14             | 1,23,976          | 1,27,197             | 2,51,172          |
| T15             | 1,23,976          | 1,26,857             | 2,50,832          |

Table 2: Effect of treatments on economics and benefit cost ratio (B:C ratio)

| Treatment       | Yield (kg/ha) | Gross income (₹/ha) | Total cost of cultivation (₹/ha) | Net income (₹/ha) | B: C ratio |
|-----------------|---------------|---------------------|----------------------------------|-------------------|------------|
| $T_1$           | 26564.81      | 1062592.59          | 321433.30                        | 741159.29         | 3.31       |
| T <sub>2</sub>  | 19321.30      | 772851.85           | 319733.30                        | 453118.55         | 2.42       |
| T <sub>3</sub>  | 18145.14      | 725805.56           | 319393.30                        | 406412.25         | 2.27       |
| $T_4$           | 17714.24      | 708569.44           | 319393.30                        | 389176.14         | 2.22       |
| T <sub>5</sub>  | 23565.05      | 942601.85           | 319393.30                        | 623208.55         | 2.95       |
| T <sub>6</sub>  | 30377.51      | 1215100.53          | 323473.30                        | 891627.23         | 3.76       |
| T <sub>7</sub>  | 19609.52      | 784380.95           | 320073.30                        | 464307.65         | 2.45       |
| T <sub>8</sub>  | 19635.45      | 785417.99           | 319393.30                        | 466024.69         | 2.46       |
| T9              | 21512.17      | 860486.77           | 319733.30                        | 540753.47         | 2.69       |
| T10             | 25265.61      | 1010624.34          | 319393.30                        | 691231.04         | 3.16       |
| T <sub>11</sub> | 17325.93      | 693037.04           | 259364.91                        | 433672.13         | 2.67       |
| T <sub>12</sub> | 12165.12      | 486604.94           | 258344.91                        | 228260.03         | 1.88       |
| T <sub>13</sub> | 12514.81      | 500592.59           | 257664.91                        | 242927.69         | 1.94       |
| T14             | 11855.25      | 474209.88           | 258004.91                        | 216204.97         | 1.84       |
| T15             | 18721.30      | 748851.85           | 257664.91                        | 491186.95         | 2.91       |

Data (Table 2) pertaining to the economics of treatments shows that maximum gross income  $(323473.30 \ \text{\sc{s}})$  was observed with treatment  $T_6$  (45 cm x 20 cm + Arka Prajwal) followed by  $T_1$  (30 cm x 30 cm + Arka Prajwal) and minimum (474209.88  $\text{\sc{s}}$ ) in the treatment  $T_{14}$  (45 cm x 30 cm + Mexican Single). Similarly, maximum net income (891627.23  $\text{\sc{s}}$ ) was observed with treatment  $T_6$  (45 cm x 20 cm + Arka Prajwal) followed by  $T_1$  (30 cm x 30 cm + Arka Prajwal) followed by  $T_1$  (30 cm x 30 cm + Arka Prajwal) and minimum (216204.97  $\text{\sc{s}}$ ) in the treatment  $T_{14}$  (45 cm x 30 cm + Mexican Single). On the other hand highest benefit cost ratio (3.76) also observed with treatment  $T_6$  (45 cm x 20 cm + Arka Prajwal) followed by  $T_1$  (30 cm x 30 cm + Arka Prajwal) and minimum (1.84) in the treatment  $T_{14}$  (45 cm x 30 cm + Arka Prajwal) and minimum (1.84) in the treatment  $T_{14}$  (45 cm x 30 cm + Mexican Single).

# Conclusion

From the present study, it could be concluded that planting of variety Arka Prajwal under spacing 45 cm x 20 cm spacing was found most beneficial in terms economics and benefit cost ratio as compared to other varieties and spacings under study.

# References

- 1. Krishnamoorthy V. Assessment of tuberose (*Polianthes tuberosa*) varieties for growth and yield characters. Asian Journal of Horticulture. 2014;9(2):515-517.
- 2. Martolia K, Srivastava R. Varietal evaluation of tuberose (*Polianthes tuberosa* L.) for flowering, concrete and absolute content. Indian Journal of Agricultural Science. 2012;88:170-180.

3. Trueblood EWE. Tuberose cultivation. Econ Bot. 1973;27(2):157-173.